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ABSTRACT

An error actuated output feedback controller for a
sub-class of linear multipass processes designated as
*differential unit memory’ is defined. Further, the design of
this controller for closed-loop stability is considered. In
particular, a recently developed computationally feasible
stability test is used to present some preliminary work on this
problem.

Multipass processes are a class of dynamic systems
characterised [1] by a repetitive action with interaction
between successive passes. ial examples include [1]
longwall coal cutting and metal rolling.  Further, these
processes can [1] exhibit undesirable characteristics which
require unique control action.

Previous work [2] has developed a rigorous stability
theory for multipass processes using an abstract
representation which includes the class of so-called [1]
differential unit memory linear multipass processes as a
special case. The members of this class are described by the
state-space model.
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Here Y,(t) is the kth pass profile, X,(t) is the kth pass state
vector, U(t) is the kth pass control input and the pass length
o is assumed finite.

The definition of, together with conditions for, stability
of (1) can be found in [1}. Further, the testing of these
conditions has been considered in [3]. This has resulted in
a computationally feasible simulation based test.  Note,
however, that no work has yet been reported on the design of
output feedback based control schemes. Consequently this
paper defines a so-called current pass error actuated
proportional output feedback controllerfor (1). Additionally,
thisrecently developed simulation based testis used topresent
some preliminary work on its design for closed-loop stability.

The result of this section is based on the so-called [3]
associated conventional linear system of (1) defined as

X(t)=AX(t)+B,Y(),X(0)=0

W) =CX(t) )
or W=LY where
@Yy =C j "¢ B Y(1dt 3)
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Hence, in effect, (2) has been obtained from (1) by setting
B = 0, dropping the pass subscript and ignoring the pass
length. Further, (2)is assumed to be controilable, observable
and stable. In addition, it is assumed that its step response
matrixW'(r) = C [ ¢*'B,dt'is available from appropriate
simulation studies.

To proceed, let f be a scalar continuous function defined
on a(x)ly finite interval [0,t]. Then N(f) denotes the norm of f
on {04, ie.

NDAIFON+Z 1 £5) = £ | +1f0) =) @

where 0= <t, <t,<----- are the local minima and maxima
of f on [0, + o] and k is the largest integer satisfying ¢ <t.
Fort =+ oo,

N(t)= sup N.f) = limit  N(f) )

whenever the limit exists. Note also that the computation of
§4) and (5) is a simple exercise [4] from graphical display of

Suppose, therefore, that (5) is applied to each element in
turn of W'(t) and denote the resulting matrix by W edlip.
Then the following result, for a proof see [3], constitutes a
sufficient condition for stability of (1) where r (.) denotes the
spectral radius.

THEOQREM 1: (1)is stable if
1 (IW'sdllp) < 1 6

The testing of (6) for a given example is straightforward [3],
consisting, essentially, of appropnate simulation studies to
obtain W' and the subsequent computation of r({W'sdlip).
Hence this test is clearly computationally feasible and well
suited to inclusion within a computer aided design package.

One approach (for others see [3]) to alten'ng the dynamic
characteristics of (1) is to follow standard linear systems
theory and employ current pass error actuated output feedback
control. Thus a current pass error actuated ional
output feedback controller for (1) takes the form:

Upa(D) = Key, (1), OSIS a, k20 )

where K is an / x m real constant matrix, €,,,(t) = 1;,,(t) -
Yia(t) is the current pass error vector, and r,,,(teR"
represents desired behaviour on pass k+1. Suppose also that
(7) is applied to (1). Then it follows immediately that the
resulting closed-loop system is stable if theorem 1 holds for



??l’e linear operator defined by substituting A-BKC for A in
).

Consider now the problem of designing (7) to stablhse
(1). Then a fundamental question to be answered is when,
and under what conditions, does such a stabilising control law

exist. This is termed [3] the existence problem for (7) applied
to (1) and its solution in the general case could prove a
formidable task. For one special case, however, the following
result provides a solution.

THEOREM: Suppose that m = ! and that the matrices A, B,
B, and C are given (after nse of a state transformation if
appropriate [3]) by A =-A,” A;,B=A,",B,=L and C=1,
respectively, where A,, and A, are real constant matrices.
Suppose also that A," A, has a diagonal canonical form and
set

K=pA,- A (8)

where p is a positive real scalar. Then || W|l,=; I, and
hence by theorem 1 the closed-loop system is stable for all
choices of p > 1.

Note: Theorem 2 relates to the important practical case when
the so-called derived conventional linear system, [3], of (1)
has the structure of a multivariable first order lag.

4. Condusions

A current pass error actuated proportional output
feedback controller for differential unit memory linear
multipass processes has been defined. Further, the design of
this controller for closed-loop stability has been considered.
In particular, a solution to this problem in one special case
has been developed.
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