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ABSTRACT 

The main aim of the present project is to obtain a better 

understanding of the dynamic control of a wind turbine. To 
accomplish this, an adaptive dynamic controller was developed 
and connected to a wind DFIG Simulink model. In order to 

demonstrate the effectiveness of the controller in question, a 
three phase fault in the power grid was simulated. Results 
showed how the implementation of the adaptive dynamic 
programming controller helped to improve the speed of 
response of the system. It also helped to reduce the magnitude 
of the oscillations taking place after the disturbance is 

removed. 

    The non-linear systems are difficult to model and to 
control. New modern control techniques allow controlling these 

systems without having the system model, reducing the 
complexity. Among these techniques, it is the adaptive dynamic 
control that estimates the parameters of the dynamic system on-
line and adapts their control to the new conditions without 
spreading the error throughout a feedback network.  

 

INTRODUCTION 
 

The fossil fuel resources on the earth are limited and the oil, 

gas and coal production will peak in a few decades. This has 

woken up the interest in green energies, with the wind energy 

industry playing an important role. Since wind is an 

intermittent and random resource control strategies are needed 

to maximize energy capture. This paper focuses on adaptive 

dynamic programming. 

Three different types of wind turbine generator technologies 

exist: fixed-speed induction generator (FSIG), doubly fed 

induction generator (DFIG) and fully-rated converter wind 

turbine (FRC). In order to develop decoupled control of the 

active and reactive power, the DFIG model is required. The 

DFIG is used worldwide due to its advantageous 

characteristics. More control flexibility, improvement of power 

quality and system efficiency and exploitation of features 

provided by wind turbine power electronics stand out. The 

stator of the DFIG is directly connected to the grid while to 

connect the rotor a back to back converter is needed. The said 

converter needs to be rated for a fraction of the total output 

power. This fraction depends on the allowable sub- and super-

synchronous speed range. The converter consists of three main 

components: rotor side controller, grid side controller and DC 

link capacitor. The use of the said controller ensures constant 

voltage and constant frequency to the grid as well as good 

power quality. Previous studies demonstrated that the controller 

of the back to back converter significantly affects the stability 

of the DFIG [1].  

The implementation of a STATCOM was studied in [2]to 

help with the uninterrupted operation of a wind farm having 

DFIGs during power grid disturbances. The power network 

utilized in [2] is a single machine infinite bus system and there 

is no coordination between the wind farm and the STATCOM. 

In [3], the authors used a heuristic dynamic programming 

technique to design a novel interface neurocontroller for the 

coordinated reactive power control between a large wind farm 

composed by DFIGs and a STATCOM obtaining fair results. 

In [4], the authors proposed an on-line learning control 

system based on neural dynamic programming. This on-line 

control improves the performance of the plant over time due to 

it learns from its own errors and tries to strength its signal to 

enhance its future performance. It also memorizes system states 

with positive reinforcement. In future, similar states will be 

associated with a control action leading to a positive 

reinforcement.  

In this paper, the adaptive dynamic programming (ADP) 

architecture proposed in [4] and utilized in [5] has been used to 

control the reactive power of a wind farm under a three phase 

grid fault. Two neural networks, the action and the critic, were 

programmed in a separated Matlab function and connected to 

the power_wind_dfig phasor Simulink model. Simulation 

studies were carried out to verify the controller. As mentioned, 

the main aim of this project is to obtain a better understanding 

of the dynamic control of a wind generator. To do so a replica 
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of the application developed in [5] has been done. 

 

Figure 1. Wind turbine power system [5] 

WIND FARM POWER SYSTEM 

 
Fig. 1 illustrates the wind turbine power system used in this 

paper. The wind turbine is connected to the DFIG through a 

low speed shaft, a gearbox and a high speed shaft respectively.  

The wind farm has been represented by this one large wind 

turbine with a DFIG generator. 30MW are produced by this 

wind farm consisting of twenty 1.5MW rated power wind 

turbines. Fig. 2 shows the model used in the simulation studies 

with the controller connected. 

 

Figure 2. Wind farm model [5]  

WIND FARM MODEL WITH ADP CONTROLLER 

Fig. 3 displays a sketch of the layout of the on-line ADP 

controller [4]. The reinforcement signal, r(t), is externally 

provided and depends on voltage and active power 

measurements from the wind farm. X is the 2 elements state 

input vector and u is the control signal. Note that signal u is 

also one of the 5 inputs of the critic network. The output of the 

critic network, J, approximates the discounted reward-to-go 

value of the Bellman equation [6]. Specifically, it approximates 

R(t)at time t as follows, 

                

 

   

 
 

(1) 

Where R(t) is the future accumulative reward-to-go value at 

time and α is a discount factor for the infinite-horizon problem 

(0 < α < 1). In this paper, α is equal to 0.95. 

At the beginning, the ADP controller is “naive”. Weights and 

parameters in both networks are initialized using random 

values. After the first observation of the system, parameters 

start adjusting according to the situation in the action network. 

 

Figure 3. Layout of the ADP controller [4] 

A.  The Critic Network 

The critic network adapts to approximate the output function 

J(t). Equation 2 is used to predict the error in the critic network. 
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In this network the objective function to be minimized is, 
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The weights are updated by making use of a gradient-based 

adaptation given by the next equations,  
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Where l(t) > 0 is the learning rate at time t. This parameter 

has been maintained constant during the whole process with a 

value of 0.3.     is the matrix of weights in the critic network.  

B. The Action Network 

The idea behind the ADP controller is to backpropagate the 

error between the target,   , and the approximation of the J 

function [7]. In this paper,    has been set to 0. To update the 
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network weights the following equations have been utilized. 

Equation 7 corresponds to the error in the action network while 

Equation 8 shows the performance error measure. The point in 

updating the weights is to minimize this performance error.  

 

                 
 

(7) 
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The algorithm to update the weights in the action network is 

very similar to that of the critic network. Its gradient descent 

policy is, 
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where    is the matrix of weights in the action network and 

l(t) is the learning rate. 

C. Learning Algorithms 

In the learning system described above, two elements stand 

out, the critic network and the action network. These non-linear 

multilayer feedforward networks have one hidden layer with 6 

neurons. The approximation for the J function in the critic 

network is, 
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Where 

q inputs of the hidden layer in the critic network 

p outputs of the hidden layer in the critic network 

x state vector 

Since all the outputs of the hidden layer converge in the node 

of the last layer and we have worked with matrices, all the 

elements within the obtained 1x6 matrix have to be summed 

together to obtain a scalar value of J. 

 

The adaptation of the critic network is, 

    
   

 (hidden layer to output layer) 
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    
   

 (input layer to hidden layer) 
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The adaptation in the action network is similar to that of the 

critic network. It is also implemented by a feedforward network 

with a 6 neurons hidden layer. However, this network only has 

4 inputs. As said, the equations for the action network are 

similar to those of the critic network with u being the input to 

the action node. Since in this paper, we have worked with 

matrices, all the elements in the matrix 1x6 that arrive into the 

action node have to be summed together so as to obtain a scalar 

value of the output of the action network. h(t) is the input 

vector to the hidden layer while g(t) is the output vector of the 

said layer. The rule to update the weights in the action network 

also owns two sets of equations. 

    
   

 (hidden layer to output layer) 
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The last term of Equation 22 corresponds to the matrix of 

weights associated with the input element from the action 

network. 

    
   

 (input layer to hidden layer) 
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As the weights are initialized randomly, they need to be 

normalized in order to restrict them into a desired range. Norm 

1 was used. 

 

        
            

               
 

 
 

 

(24) 

The equation to normalize the weights in the action 

is similar to the equation used to the critic network. 

 

In the critic network, Equations 16 and 19 were utilized to 

update the weights while Equations 20 and 22 were used for 

updating the weights in the action network. 

D. Design of the ADP based wind farm controller 

A 3 elements state vector contains the voltage, V, the active 

power, P, both measured at bus 575 and the desired ultimate 

objective,   , that in our case is 0. This vector is the input to 

our ADP controller. The output of the controller, u, is an 

additional signal      , which is added to the steady state 

signal     to produce the control signal     . The said control 

signal is then connected to the rotor side controller of the 

converter. The main aim of controlling the reference reactive 

power signal is that the generator can produce or absorb 

reactive power when needed to keep the DFIG voltage level at 

its corresponding level. If a large disturbance in the power grid 

takes place, the      signal will be able to adjust allowing the 

DFIG either to absorb or to produce reactive power depending 

on the features of the fault. This adjustment can significantly 

improve the behavior of the system after the grid fault has been 

removed by reducing the sag and the overshot of the voltage of 

the wind farm and at the cross coupling point. It also helps 

damp the oscillations after the fault is recovered. 

Under steady state conditions,      is considered to be 

reactive neutral by only introducing a constant signal of value 

0.    

E.  Design of the critic network 

As described, it is a multilayer network with 6 neurons in the 

hidden layer. To define the output of the hidden nodes a 

sigmoid function has been selected. A 5 elements vector 

containing the measured states of the voltage, V, and active 

power, P, at bus 575, their one time-delayed values and the 

output of the action network, u or     , is input to the critic 

network. Signal r(t) is not an input of the network. However, it 

is used to define the error function. The reinforcement signal is 

as follows, 
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Where 1.026 and 0.53 are an approximation of the nominal 

values per unit of voltage and active power respectively.  

The output of the critic network is an approximation of the 

value of the Bellman equation. 

F.  Design of the action network 

As defined, the architecture of both networks is really 

similar. With the same number of hidden nodes defined by 

sigmoid functions, this multilayer network has a 4 elements 

input vector. Voltage, V, and active power, P, at bus 575 and 

their one time-delayed values form the said vector. The output 

of the network is the control signal      . A linear function 

was used to define the output of the last layer. 

SIMULATION RESULTS 

 
   In [8], the authors demonstrated that there is no interaction 

between the wind turbines of a wind farm if their controllers are 

properly tuned. Having this in mind, our wind farm has been 

represented by a large wind turbine with a DFIG generator. As 

it has been already shown in Fig. 2, our infinite bus system 

produces 30MW through twenty 1.5MW wind turbines. The 

wind turbines are connected to a 25kV distribution system that 

exports power to a 120kV grid through a 30km, 25kV feeder. 

To the wind farm, the 120kV grid is equal to an infinite bus. All  

the turbines in the farm have DFIG technology consisting of 

wound rotor induction generators and back to back converters. 

The stator is directly connected to the 60Hz power grid while 

the rotor is fed at a variable frequency through the mentioned 

converter [9]. 

Following the guidelines in [4], the ADP was developed and 

connected to the converter to verify its effectiveness. A 75ms 

three phase fault was simulated. The wind speed was varied 

from 8 to 14m/s with a step time of 5 seconds. The duration of 

the simulation was set to 30 seconds with the disturbance 

taking place at 25 seconds. The wind turbine protection was 

disabled. A comparison of the performance of the wind farm 

with and without the ADP controller was carried out. Figs. 4, 5, 

6 and 7 display the voltage of the wind farm at bus 575 with 

and without controller and the voltage at the cross coupling 

point (25kV) with and without ADP controller respectively. As 

seen, the behavior of the system after the disturbance has been 

considerably improved. The speed of response of the voltage 

signal at bus 575 and at the cross coupling point has been 

increased. The oscillations after the grid is recovered have been 

damped as well.  
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Figure 4. Wind farm voltage with ADP at bus 575 

 

Figure 5. Wind farm voltage without ADP at bus 575 

 

Figure 6. Voltage with ADP at the cross coupling point 

 

Figure 7. Voltage without ADP at the cross coupling point 

DISCUSSION AND CONCLUSION 

This paper tackles DFIG generator reactive power control 

from the ADP perspective. The architecture of the model used 

in our simulations studies has been shown in detail. A detailed 

description of the controller utilized and how it was developed 

has been provided too. According to the results acquired, it can 

be said that the performance of the wind turbine under large 

disturbances can be improved by making use of the ADP 

controller. The speed of response of the voltage signals was 

considerably enhanced. The damping features of the signals 

were also significantly improved. However, certain differences 

between the results obtained in this study, with and without the 

ADP controller, and the results given by the authors in [5] have 

been observed even though the same approach has been 

followed.  

In future, more complex and larger models could be studied 

in order to verify the effectiveness of our controller on these 

scenarios. It would be also interesting to vary parameters such 

as wind speed or learning rate to see how the controller 

behaves.  
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