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Abstract

The non-linearity of a hardening-type oscillator provides a wider bandwidth and a higher energy harvesting capability
under harmonic excitations. Also, both low- and high-energy responses can coexist for the same parameter combin-
ations at relatively high excitation levels. However, if the oscillator’s response happens to coincide with the low-energy
orbit then the improved performance achieved by the non-linear oscillator over that of its linear counterpart, could be
impaired. This is therefore the main motivation for stabilisation of the high-energy orbit. In the present work, a schematic
harvester design is considered consisting of a mass supported by two linear springs connected in series, each with a
parallel damper, and a third-order non-linear spring. The equivalent linear stiffness and damping coefficients of the
oscillator are derived through variation of the damper element. From this adjustment the variation of the equivalent
stiffness generates a corresponding shift in the frequency—amplitude response curve, and this triggers a jump from the
low-energy orbit to stabilise the high-energy orbit. This approach has been seen to require little additional energy supply
for the adjustment and stabilisation, compared with that needed for direct stiffness tuning by mechanical means. Overall
energy saving is of particular importance for energy harvesting applications. Subsequent results from simulation and
experimentation confirm that the proposed method can be used to trigger a jump to the desirable state, thereby
introducing a beneficial addition to the performance of the non-linear hardening-type energy harvester that improves
overall efficiency and broadens the bandwidth.
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Introduction

Efficient energy harvesting from ambient environmen-
tal vibration is of great current interest as a means of
providing a free power supply for small-scale elec-
tronics. Compared with other energy sources, vibra-
tions are generally ubiquitous'? and one can readily
envisage autonomous wireless sensor nodes and
microsystems being usefully powered by such vibra-
tion, particularly in inaccessible or hostile environ-
ments. This paper presents a comprehensive
analytical and experimental study of the benefits of
stabilisation of the high-energy orbit in a novel hard-
ening-type non-linear energy harvester in order to
improve the efficiency of energy harvesting.

One important feature of conventional vibration-
driven energy harvesters is that they provide max-
imum power when the resonant frequency of the
device matches the environmental excitation fre-
quency.>’ However, because of the significantly
reduced performance under off-resonance conditions,

and the difficulty in directly matching the linear res-
onance of most practical mechanical devices to the
variable frequencies present in an environmental
ambient vibration source, research effort has been
put into eliminating such shortcomings in linear
devices. For instance, a mechanical bandwidth filter
comprising piezoelectric cantilevers of various
lengths, and with tip masses attached to a common
base, has been considered by Shahruz®® as a solution
for increasing the bandwidth of response. Rastegar
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et al.'” designed an ingenious frequency up-conver-
sion mechanism as a concept for two-stage energy
harvesting. The low-frequency vibration of the pri-
mary vibrating unit (i.e. the mass) can be transferred
to high-frequency vibrations of the secondary vibra-
tion units (i.e. the piezoelectric cantilevers), hence pro-
viding a single-frequency robust vibration energy
harvesting solution in low-frequency excitation
scenarios.

Subsequently, the exploitation of non-linear phenom-
enology started to take over with variations of the
Duffing oscillator providing several interesting possibi-
lities.'"'® A hardening-type oscillator was investigated
by Mann et al.'” and it was found that at relatively high
sinusoidal excitation levels, both low and high-energy
responses can coexist for the same parameter combin-
ations. When compared with a linear oscillator using
similar parameters the effectiveness of a non-linear
energy harvesting device can apparently be increased
over certain frequency ranges when operating on the
high-energy orbit. In addition to this technique a mono-
stable non-linear device using the piezoelectric effect was
proposed by Stanton et al.'® The response of this system
showed an increase in bandwidth and the resulting
experimental results verified a distinct capability for out-
performing the linear approach.

In the studies just described slow forward or back-
ward sweeps of the excitation frequency are required as
a precondition in order to stabilise the high-energy orbit,
despite the implementation challenge that this offers in
practice, and in fact this is a formidable requirement for
satisfying ideal harvesting conditions. In order to solve
this problem a load circuit with a switch between the
conventional load, a negative resistance circuit, and a
switching control law dependent on the amplitude of
the oscillator’s response, were introduced and the effects
of such a sub-system studied numerically by Masuda
et al."” The effect of this was to impart a capability for
self-excitation in order to entrain the oscillator with the
excitation exclusively onto the high-energy orbit.
However, besides the additional electrical energy
required to drive the circuit, switching this approach
also consumes part of the harvested energy in order to
destabilise the low-energy orbit and trigger the jump.
Although the technique works well enough it is not
ideal in the context of energy harvester self sustainability
and overall efficiency.

Another solution to this problem is to vary the stiff-
ness of the energy harvester. Su et al.?® have success-
fully shown in an experiment that it is possible to tune
both of linear and non-linear stiffnesses of a hardening-
type energy harvester in order to trigger a jump to the
high-energy orbit, and to achieve this by adjusting the
distance between magnets used in the proposed design.
A linear DC motor and a lead screw were utilised in
that work to tune the stiffness and the energy consumed
for this form of mechanical tuning was the main short-
coming that was found. A similar effort to tune the
stiffness of a linear vibration-based generator was

reported by Zhu et al.>! Inspired by a linear vibration
isolation system with variable stiffness as proposed by
Lin et al.,?* the method of damping variation is used in
this paper to change the equivalent linear stiffness of a
non-linear harvester for stabilising the high-energy
orbit. It provides an advantage for practical implemen-
tation because of the fact that it consumes much less
energy to vary the damping compared with directly
tuning the stiffness using the mechanical method, espe-
cially when an electromagnetic damper is adopted. It
should be noted that this kind of electrical damper was
successfully used for a self powered vehicle suspension
by Nakano et al.,”® where the electrical damping was
tuned by varying the load resistance in the electrical
drive circuit. A novel non-linear vibrational energy
harvester is designed in this paper whose equivalent
linear stiffness can be changed by just varying the
damping. Moreover, the proposed principle of stabilis-
ing the high-energy orbit is demonstrated by analysis of
the variation in the frequency—amplitude response
curves during the tuning process thereby validating dif-
ferent damping coefficient tuning methods.

The work reported in this paper is organised as
follows. The next section describes the mathematical
model of a stiffness tunable device, and the expres-
sions for equivalent stiffness and damping coefficient
are derived. This is followed by a frequency-response
analysis of the system under harmonic base excitation.
The corresponding influence on the frequency
response during the process of stiffness tuning is
then investigated. Finally, the effectiveness of the
theory is confirmed by a series of simulation and
experimental results.

Methodology

Apparatus illustrations and modelling of the energy
harvester

A schematic diagram for an energy harvester is shown
in Figure 1. It is composed of two linear springs con-
nected in series, with two dampers in parallel with the
springs, and a third order non-linear spring. It should
be noted that the model is a one-degree-of-freedom
system because the linear springs are connected at a
node which is an effectively massless point. The
equivalent linear stiffness of the system can be tuned
by adjusting the damping coefficient of controllable
damper c¢,.

The governing equations for the motion of the
system shown can be stated as

(Ia)
(1b)

mx = —ky(x — x,) — e2(¥ — X,) —k3x* + F
klx,, + C])'CI, = kz(x — Xp) + Cz().C — Xp)
where m is the mass, ki, k, are the stiffness coefficients

of the springs, and c¢;, ¢; are the damping shown in
Figure 1. x and x, are the displacements of the mass
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Figure I. Schematic diagram of the stiffness, tunable, hard-
ening-type energy harvester.

and the connection point of the springs, respectively.
The single-frequency harmonic excitation is given by
F = fcoswt.

The harmonic balance method is applied to gener-
ate the responses. The harvester response is presumed
to be accurately modelled by a truncated Fourier
series, where the number of terms dictates the accur-
acy of the intended solution.?® This type of motion
maintains a dominant fundamental frequency at the
frequency of excitation. Hence, equations (2a) and
(2b) can represent the assumed Fourier series expan-
sion of the displacements of the mass, and connection
point, respectively

X = a; sin wt + by cos wt (2a)
Xp = ay sinwt + by cos wt (2b)

where X = a2 + b? and Xlz, =d3 + b3. X and X, there-
fore represent the corresponding displacement ampli-
tudes. Equations (2a) and (2b), and the time
derivatives, are substituted into equations (la) and
(1b). Ignoring higher order harmonics and equating
the coefficients of the harmonic terms coswt and
sin wt, four equations are obtained from the mechan-
ical equation as follows

kiay — cibyw = ka(ay — az) — c2(by — br)w (3a)
kiby — cramw = ka(by — by) — c2(a) — ax)w (3b)
— may* + ka(ay — az) — ea(by — by)w

3 (3¢)
+ Zkg(b%al +aj) =0

— mb1&? + ko(by — b)) + ¢x(a) — ar)w
3 (3d)
+ Z/q(afb] +h)=f

Equations (3a) and (3b) are solved in terms of a, and
by, then substituted into equations (3c) and (3d). The
latter are squared and summed to produce the follow-
ing equation as

2 1exo 42k, [k%kz +haki + (ciko + 3k )o?
1677 7271k +ko) et +00)a?
k3ka + I3k + (ctha + 3k ) o? 5
{ (ki +koY+(e1 + e e? ¢
[k%c'z +hk5e1+ (3¢ +C%cz)w3]2]X2 _p
(ki +k2)* +(e1 +2)’0? B

_me]x‘*

“

For the equivalent model of the system, the corres-
ponding relationship between the frequency and amp-
litude of the response can be given as**

212X 4 2 ks (ke — mo?) 5
6" 2 )
+ I:(kg - mw2)2+c§w2]X2 =7

where k, is the equivalent linear stiffness coefficient,
and ¢, is the equivalent damping coefficient. From
equations (4) and (5), the equivalent stiffness and
damping coefficients can be expressed as

_ kika(ky + ko) + (C%kg + C%k])wz
(k1 + k2)*+(c1 + )7 0?

e

(6)

. kley + K3er + crea(er + )’ )
(ki k) e + o) e?

A set of physically reasonable parameters used for
simulation is shown in Table 1. These data are also
used for the numerical examples afterwards.

The equivalent stiffness and damping coefficients as
functions of ¢, and the stiffness coefficient ratio k;/k;
are plotted in Figures 2 and 3, respectively. It is noted
that the equivalent stiffness increases with increasing
¢, and that it can be tuned within a larger range when
ky/k1 is smaller, as shown in Figure 2. However, from
Figure 3, it can be shown that the equivalent damping
increases first, then decrease with increasing ¢, and
that smaller k,/k; can cause a greater equivalent
damping when a certain value of the damping coeffi-
cient ¢; is applied.

The effects of damping coefficient variation on the
response

The tuning of the damping coefficient can cause a
change in the equivalent stiffness, and then a further
influence on the frequency—amplitude response curve
of the oscillator. The detailed principle of the pro-
posed method is presented in this section. Figure 4
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Table |. Parameters of the vibrational energy harvester.

Parameter m C k)

o F w

Value I kg 1.2Nm/s

1000N/m

2.45 x 10N/m? I'N 5.2Hz

=]
=]
=)

Equivalent stiffness k_(N/m)
w
g

@
S

50
Damping coefficient ¢, (Nm/s) 0 0

Tos
Stiffness coefficient ratio k,/ k,

Figure 2. Equivalent stiffness coefficient as a function of c;
and stiffness coefficient ratio k, /k;.

Equivalent damping ¢, (Nm/s)

50
Damping coefficient ¢, (Nm/s) 0 o0

0.5
Stiffness coefficient ratio &,/ &,

Figure 3. Equivalent damping coefficient as a function of ¢,
and stiffness coefficient ratio k; /k;.

shows the frequency-response curves under different
values of damping coefficient ¢, according to equation
(4), while the other parameters shown in Table 1 are
kept constant. Variations in the damping coefficient
have an influence on both the jump-up and jump-
down frequencies. By increasing the linear stiffness,
the frequency-response curve shows a movement to
the right.

The process of triggering the jump is also illu-
strated in Figure 4. It is assumed that the energy har-
vester is oscillating at point A when ¢, is equal to
5Ns/m, with this point located in the low-energy
orbit, and then by starting to increase c,, the shape
of the frequency-response curve slowly varies, as
shown in Figure 4. The operating point jumps to
point B when the frequency of the excitation exceeds
the jump-up frequency. The oscillator is now operat-
ing in the preferred orbit. However, variation in the
stiffness also decreases the amplitude of the response.
Thus, following the high-energy orbit, the operating

point subsequently moves to C by decreasing the
damping coefficient ¢,. It is noted that in the process
of tuning the damping coefficient there is a possibility
that the multi-valued frequency-response curve dis-
appears (for ¢ =20 Ns/m) because the equivalent
damping coefficient initially increases with ¢, as
shown in Figure 3. This phenomenon does not influ-
ence the jump from point A to B, but the movement
from point B to C and this is further discussed below.

The jump-up and jump-down frequencies of a
hardening-type, lightly damped Duffing oscillator
with linear viscous damping can be found in the lit-
erature. Brennan et al.?* presented a full set of expres-
sions for the analytical solution using the harmonic
balance method, and made some comparisons with
other expressions. To analyse the tuning process
quantitatively, and for the sake of clarity, the
approach taken by Brennan is followed.

The non-dimensional form of equation (5) can be
expressed as

9 p2y.3 2
6P U6+iﬁ(1—Q)U4

i ®)
+((1- 2 +eeep) vt =1

: 2 .
WhCl‘GQZw%,wn: ke U:l‘"’\,,ﬁZk’;—;andgz Ce

m’ f 2mw,"

To find the analytic expressions for the jump-up
and jump down frequencies, equation (8) is re-
arranged as

U*Q* + ((4;2 -2)U* - %ﬂU“)Qz
3 2 ©)
+ <U+ZﬁU3) =1

Solving equation (8) and assuming that > < <1,
the positive solutions are

- (10)

Ly~ \/3;3[]2 . V1 —4202 = 3204

’ 4
It should be noted that when the jump-up phenom-
enon occurs, this frequency is weakly dependent upon
the damping ratio. Thus, by setting ¢ = 0 and finding
the point at de‘f =0, the non-dimensional displace-
ment amplitude of the jump-up frequency can be

given as

2\ 173
()
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Figure 4. Frequency—response curve of a hardening-type system.

Substituting equation (11) into equation (10) gives
the jump-up frequency

N 3/38\"°
Q, ~ 1+§(7) (12)

To trigger a jump to the high-energy orbit, the
dimensional jump frequency w, should be higher
than the excitation frequency w. Hence, from equa-
tion (12), the minimum equivalent stiffness coefficient
for triggering a jump is defined by

, 5 3\ o 1/3
k, = mw” — 5 (ozF) (13)

It is assumed that the electrical damping is small
and ¢ < < ¢;. By setting ¢; =0, the corresponding
minimum control damping coefficient can be given by
equation (6) as

’ 2_
o \/kg(kl + ko —kika(ks + ko) (14

a)2(k1 — k:,)

Using equation (14), and substituting equation (13)
into equation (7), the required equivalent damping
coefficient to get the target equivalent stiffness can
be expressed as

e+ kP~ Kotk + ko)) (ky — k)
a)(k1 + kz)

Coy =

(15)

To increase the jump-up frequency tuning range as
much as possible, it is necessary to analyse the influ-
ence of the parameters k»/k, and «F? on the ratio
between the maximum and minimum jump-up fre-
quencies and this can be expressed as the following
frequency ratio

Wy max _ \/kmax + (3/2)4/3(0{1:2)1/3
@y min \/kmin + (3/2)4/3(05F2)1/3

(16)

where kmax = ki when ca=c=0 and
kumin = kik2/(k1 + k) when ¢; — 0.

Assuming that k; = 1000N/m, the jump-up fre-
quency ratio as a function of k/k; and aF? is
shown in Figure 5, where aF> governs the degree of
non-linearity and the excitation amplitude.

It is noted that a smaller stiffness coefficient ratio
ky/ki is propitious for increasing the tuning range.
Additionally, the weaker non-linearity and smaller
excitation amplitude can achieve a similar effect for
increasing the jump-up frequency tuning range.

As analysed above, it is possible to trigger a jump
to the high-energy orbit by tuning the damping until
the jump-up frequency exceeds the frequency of the
excitation. However, under some conditions it is
necessary to continue to decrease the equivalent stiff-
ness to close to the jump-down frequency, which is the
peak response point of the oscillator. It should be
noted that the equivalent damping of the system
also varies besides the equivalent stiffness in the pro-
cess of damping variation, as shown in Figure 3,
which has strong influence on the occurrence of the
multi-valued frequency—amplitude curve and the
value of the jump-down frequency. Thus, excessive
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Figure 5. Jump-up frequency ratio as a function of k; /k; and
af?.

equivalent damping during the tuning process (point
B to point C shown in Figure 4) may again lead to an
undesirable jump-down to the low-energy orbit.

The condition for the multi-valued frequency—
amplitude curve to occur is defined as>*

28

B> 3¢ (17)

Equation (17) can be combined with equations (13)
and (15) to give

5 2 3/2
aFZ > 2 (Ceuk;>

> 357 ("m a9

It can be seen that the stronger non-linearity and
higher level of excitation amplitude are beneficial for
meeting the requirement determined by equation (18)
for an inflexion to occur. However, this will decrease
the tuning range of the jump-up frequency.

Another condition is that the jump-down fre-
quency should be kept higher than the excitation fre-
quency. The jump-down frequency can be found by
equating the two values in equation (10) to yield

1 —422U0% = 38220 =0 (19)
and rearranging the expression gives
2 38
Uy~ 3_ﬁ< 1+@—1> (20)

Substituting equation (20) into equation (10) yields
the jump-down frequency of the frequency—amplitude
curve as

@1

Figure 6. Minimum jump-down frequency as a function of
ky/k; and aF2.

As shown in Figure 3, a maximum equivalent
damping exists when the damping ¢, is large
enough. Substituting equations (6) and (7) into equa-
tion (21) leads to the corresponding damping ¢, versus
the minimum jump-down frequency being obtained
from % = 0, which leads to the following expression

2

o (/9KE + dheky + 4K3 — 3k, )
Dkiky — 3k [k + dkiky + 4K + 9K + 263

(22)

The corresponding equivalent stiffness coefficient
k.qs and damping coefficient ¢,,; can then be obtained
by substituting equation (22) into equations (6) and
(7), respectively. Thus, the condition for keeping the
oscillating point on the high-energy point can be
expressed as

Qdmin =2 (23)

Using the same values of k; and «F? as previously
obtained, and setting the mass at m = 1 kg, Figure 6
shows the minimum jump-down frequency 4min as a
function of the stiffness coefficient ratio k»/k; and
aF?. It is obvious that the higher values of kj/k;
and oF” can increase the available minimum jump-
down frequency of the system, which also indicates
that the jump-down frequency can also be increased
by employing a greater non-linearity in the stiffness
and excitation amplitude. However, as discussed
above, this will decrease the tunable jump-up fre-
quency range. Therefore, the parameters k;/k; and
aF? should be appropriately selected.

Numerical examples

The parameters in Table 1 are used for simulation but
under different excitation level F and stiffness
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Figure 7. Variation of the damping coefficient and velocity vs displacement phase trajectories of the magnetic end mass (blue line:
damping coefficient instantaneously tuned, and green line: damping coefficient slowly tuned): (a) changing the damping coefficient ¢,
(b) response with F and k; set to 3N and 1000 N/m, respectively, (c) response with F and k; set to 2N and 1000 N/m, respectively, and

(d) response with F and k; set to 3N and 500 N/m, respectively.
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Figure 8. Jump-down frequency as a function of damping coefficient ¢, under various excitation levels and stiffness coefficients k;.

coefficient k,. Figure 7 presents the tuning process for
the damping coefficient ¢,, and the corresponding vel-
ocity versus displacement phase trajectories of the
magnetic end mass. As shown in Figure 7(b), the oscil-
lating point jumps to the high-energy orbit with the
increase in the damping coefficient, and then moves

further towards the maximum response point by
decreasing ¢, and by setting F and k, equal to 3N
and 1000 N/m, respectively.

However, when the excitation amplitude F is set to
2N, the condition defined by equation (23) cannot be
satisfied, as shown in Figure 8, the minimum
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Figure 10. Measured output voltage on the load resistance.

jump-down frequency is smaller than the excitation
frequency of 5.2Hz. The oscillating point jumps to
the low-energy orbit again during a decrease in the
damping coefficient, which is shown in Figure 7(c)
(green line). A similar response can be seen in
Figure 7(d) (green line) when the stiffness coefficient
ky is set to 500 N/m. The corresponding jump-down
frequency as a function of the damping coefficient ¢,
is also presented in Figure 8. It establishes that the
smaller value of k,/k| can decrease the available min-
imum jump-down frequency of the system in the pro-
cess of damping variation.

The condition defined by equation (23) provides a
limitation on the tuning procedure. However, from
Figure 7(c) and (d) (blue line), it is interesting to find
that another approach to triggering a jump to the high-
energy orbit is by instantaneously decreasing the
damping coefficient ¢,, when the condition defined by
equation (23) is not satisfied. It is known that the
steady-state orbit is also significantly dependent upon
the initial conditions. This is evaluated by using the
basin of attraction obtained by choosing the initial
conditions from the lattice points in the phase plane
and then solving the equation of motion numerically
until the trajectory converges to one of the steady-state

0.5
& Without control p
—~ 04} | —&— With control
g
%
5 03
5
B
§ 02F
< o1}
o4& - - -
0 5 10 15 20 25 30
Time (s)

Figure 11. Cumulative energy on the load resistance.

solutions.'® As mentioned previously, by increasing the
controllable damping ¢, the operating point can jump
to the high-energy orbit (see point B in Figure 4). Then,
when ¢, instantaneously decreases to the initial value
this could be regarded as an initial condition to be
applied to the oscillator, and this initial condition is
caused by the response of the oscillator at point B in
Figure 4. If the initial conditions can lead to the basin
of attraction for the high-energy solution then the
oscillator will stabilise on the corresponding high-
energy orbit. This approach gives a possible solution
to the limitation problem defined by equation (23).

Experimental tests

This section describes the experimental tests per-
formed to validate the proposed method. A picture
of the fabricated energy harvester attached to the
shaker table (m060, IMV Corp., Japan) is shown in
Figure 9, in which three permanent magnets are
arranged in a repulsive configuration to provide the
cubic non-linear stiffness,!” and where the magnetic
end mass attached to the piezoelectric beam is aligned
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with respect to the symmetrically fixed permanent
magnets (top and bottom magnets) in the vertical dir-
ection. The top and bottom magnets are symmetric-
ally attached to sliders on a rail and this configuration
allows the distance to be adjusted equally on each
side, and so the natural frequency of the device is
set to 16.3 Hz. It should be mentioned that an elec-
trical damper is favourable for the experiment and
that it can be fabricated using a linear DC motor or
a DC generator coupled with a ball screw so that it
can produce a high level of damping. The damping
could be tuned using a variable resistance,”® with the
advantage that electrical energy can be harvested by
the controllable damper, even during the tuning pro-
cess. However, because of the mass of the linear DC
motor and the equivalent mass of the moment of iner-
tia of the ball screw and rotor, it becomes rather dif-
ficult to achieve a very high damping ratio, as
expected in an ideal experimental device. As an alter-
native, a small piece of ferrous metal is attached to the
beam and an electromagnetic restraining device is
placed under it with a small gap between them. And
the gap is set small enough to minimise the influence
on the response caused by the initial displacement
when the beam is released. The piezoelectric beam
can be regarded as two springs connected at the loca-
tion of the small piece of ferrous metal. The electro-
magnetic restraining device is used to simulate the
conditions that ¢; — 0 and ¢; — oo by restraining
and releasing the beam, respectively. On the other
hand, the piezoelectric bimorph provides the electrical
damper ¢; for energy harvesting. A schematic diagram
of the ideal energy harvester is also presented on the
right-hand side of Figure 9.

Figure 10 presents the measured voltage on a load
resistance of 1M when the energy harvester is sub-
jected to a base excitation of 0.62m/s® at 18 Hz. It
can be seen that the output voltage decreases when
the beam is held by the electromagnet restraining
device, because the oscillating point moves to the
lower frequency side of the frequency-response
curve, and the natural frequency of the system is mea-
sured to be 23.25 Hz. When the beam is released by the
electromagnet it can be seen that it jumps to the oscil-
lating point which is close to the jump-down point on
the high-energy orbit, and this validates the proposed
solution to the limitation defined by equation (23).
Figure 11 compares the cumulative generated energy
when the harvester is operated on the low-energy orbit
and the condition with damping variation.

Conclusions

This study has investigated the principle of stabilising
the high-energy response of a non-linear vibrational
energy harvester that is stiffness tunable, by
changing the damping coefficient of the system. The
mathematical model of the energy harvester with
equivalent stiffness and damping coefficients is

derived, and their influence on the frequency—
response curve during the tuning process is also pre-
sented. The ratio between the stiffness coefficients of
the two springs connected in series, the non-linear
stiffness, and the excitation amplitude all apparently
affect the available tuning range of the system, espe-
cially the minimum jump-down frequency when
decreasing the controllable damping coefficient, and
this provides a limitation. However, through numer-
ical study and experimentation it was established that
instantaneous variation of the damping was a possible
approach to the solution. The method proposed in
this paper can trigger a jump from the low-energy
orbit to the high-energy orbit, thus enhancing the
availability of harvestable energy from external har-
monic vibration. Compared with the approach of
self-excitation for stabilising the high-energy orbit
by consuming part of the harvested electrical energy,
and mechanical methods for stiffness tuning,'”?' the
proposed method requires little additional energy
consumption, as demonstrated in this study.
Certainly, a circuit is needed to vary the damping
and this is inevitable for any active tuning method.
However, this proposed method is a potentially easy
way of implementation and can be considered to be a
promising approach to promoting the practical imple-
mentation of a hardening monostable energy harvester.
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