Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Vibration of pre-stressed thin cylindrical shells conveying fluid

Zhang, Y.L. and Gorman, Daniel and Reese, Jason (2003) Vibration of pre-stressed thin cylindrical shells conveying fluid. Thin-Walled Structures, 41 (12). pp. 1103-1127. ISSN 0263-8231

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A general approach to modelling the vibration of prestressed thin cylindrical shells conveying fluid is presented. The steady flow of fluid is described by the classical potential flow theory, and the motion of the shell is represented by Sanders' theory of thin shells. A strain-displacement relationship is deployed to derive the geometric stiffness matrix due to the initial stresses caused by hydrostatic pressure. Hydrodynamic pressure acting on the shell is developed through dynamic interfacial coupling conditions. The resulting equations governing the motion of the shell and fluid are solved by a finite element method. This model is subsequently used to investigate the small-vibration dynamic behaviour of prestressed thin cylindrical shells conveying fluid. It is validated by comparing the computed natural frequencies, within the linear region, with existing reported experimental results. The influence of initial tension, internal pressure, fluid flow velocity and the various geometric properties is also examined.