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Abstract

An unaveraged 3D model of the FEL has been devel-
oped which can model variably polarised undulators. The
radiation field polarisation is self-consistently driven by the
electron dynamics and is completely variable. This paper
describes both physical model and computational code.

INTRODUCTION

Future FEL’s may need to utilize effects which occur on
the scale of a resonant radiation wavelength or smaller,
timescales which are beyond the resolution of averaged
FEL simulation codes. In order to investigate these ef-
fects and the facilities which will exploit them, 3D codes
which solve unaveraged mathematical models of the FEL
will be needed. The simulation codes of [1] and [2] are
such codes. The disadvantage of a mathematical model
with increased resolution is of course the much higher sam-
pling rates needed to accurately model the system. To han-
dle potentially very large data sizes such codes are best run
in parallel on multiple processors.

In this paper the development of the unaveraged parallel
computational model from [1] and [2] is reported. In [2],
the variable H was added to describe the strength of the
wiggler field in the x axis. This has been replaced by two
new variables to control the strength of the wiggler field
in both x and y enabling full variable wiggler polarization.
The numerical method has been further refined to enhance
its speed returning to the original Finite Element Method
used in [1] while retaining the parallel memory distribution
of [2]. The radiation field in x and y is now described fully
including the ‘fast’ phase variations rather than via a com-
plex envelope description. The code utilizes only open-
source routines.

THE MODEL

An unnormalized vector basis:

f̂ = fxx̂ + ifyŷ (1)

is used to define a variable polarized undulator field

Bw =
Bw

2
(̂fe−ikwz + c.c.) (2)

where Bw is the peak magnetic field strength so that fx and
fy describe the strength of the wiggler magnetic field in x

and y. The vector basis f̂ is un-normalized so that the RMS

magnetic field B̄w varies from Bw/
√

2 ≤ B̄w ≤ Bw as the
wiggler changes from planar to helical.

The electromagnetic field is defined as:

E(x, y, z, t) =
1√
2

(
êξ0e

i(kz−ωt) + ê∗ξ∗0e−i(kz−ωt)
)

(3)
with complex envelope ξ0(x, y, z, t) and the normalized
vector basis ê = 1√

2
(x̂+iŷ) is defined with ê·ê = ê∗·ê∗ =

0 and ê · ê∗ = 1.

The 3D FEL is described using the coupled Maxwell-
Lorentz equations which in the Compton limit and with the
paraxial approximation gives:

∇2E− 1
c2

∂2E
∂t2

= −μ0e

m

N∑
j=1

pj

γj
δ3(xj , yj, zj) (4)

F = −e(E + v × B), . (5)

where δ3(xj , yj , zj) = δ(x − xj(t))δ(y − yj(t))δ(z −
zj(t)).

Projecting the wave equation (4) onto ê∗ gives:

(
∇2 − 1

c2

∂2

∂t2

)
E⊥ = −μ0e

m

N∑
j=1

p⊥j

γj
δ3(xj , yj , zj) (6)

where E⊥ = ξ0e
i(kz−ωt) = Ex − iEy is the transverse

field. Similarly p⊥j = pxj − ipyj is the perpindicular mo-
mentum of the jth electron.

Defining the independent variables z̄ = 2kwρz and z̄2 =
2kwρβ̄z(ct − z)/(1 − β̄z), equation (6) becomes:

∇2
⊥E⊥ + (2kwρ)2

(
∂

∂z̄

(
∂

∂z̄
− 2β̄z

1 − βz

∂

∂z̄2

))
E⊥ =

− e

ε0mc
4k2

wρ2
( β̄z

1 − β̄z

)2 ∂

∂z̄2

N∑
j=1

p⊥j

βzjγj
δ3(xj , yj, z̄2j)

(7)

and the independent variable of the parameters of the δ3

Dirac delta function is now z̄.
Assuming:

∣∣∣∣
∂

∂z̄
E⊥

∣∣∣∣ <<

∣∣∣∣
β̄z

1 − βz

∂

∂z̄2
E⊥

∣∣∣∣ , (8)

which is equivalent to the neglect of the backwards
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wave [3], then the wave equation (7) simplifies to:

∇2
⊥E⊥ − (2kwρ)2

2β̄z

1 − βz

∂E⊥
∂z̄∂z̄2

=

− e

ε0mc
4k2

wρ2
( β̄z

1 − β̄z

)2 ∂

∂z̄2

N∑
j=1

p⊥j

βzjγj
δ3(xj , yj, z̄2j)

(9)

Projecting the Lorentz equation (5) onto ê∗ and chang-
ing to the variables (z̄, z̄2) the equation for the transverse
momentum is obtained:

dp⊥j

dz̄
=

−e

2kwρcβzj

[
ξ0e

−i
z̄2j
2ρ −

pzj

γjm

(ξ0

c
e−i

z̄2j
2ρ + iBwG∗

)]
(10)

and the z component is:

dpzj

dz̄
=

−ep⊥j

4mckwργjβzj

(ξ∗0
c

ei
z̄2j
2ρ − iBwG

)
+ c.c., (11)

where G = (fx cos(z̄/2ρ) + ify sin(z̄/2ρ)) is a term de-
scribing electron ‘jitter’ motion in z resulting from prop-
agation in a non-helical wiggler field. Using relation (11)
with the equation for the electron energy:

dpzj

dz̄
= mc

d

dz̄
(γjβzj),

along with equations (9), (10) and (11) and the scaling of
[1], modified slightly so that:

εQj =
1 − βzj

βzj
, ε =

1 − β̄z

β̄z
,

x̄ =
x√
lglc

, ȳ =
y√
lglc

,

p̄⊥ =
p⊥
mc

, A =
e
√

f2
x + f2

y

mcωp
√

2γrρ

gives the final set of working equations which are solved
numerically by the code:

−iρ

(
∂2A⊥
∂x̄2

+
∂2A⊥
∂ȳ2

)
+ 2iρ

∂2A⊥
∂z̄∂z̄2

=
√

f2
x + f2

y

2
γr

āwn̄p

∂

∂z̄2

N∑
j=1

p̄⊥j

(1 + |p̄⊥j|2)1/2
×

(εQj(εQj + 2))1/2δ3(x̄j , ȳj , z̄2j) (12)

dp̄⊥j

dz̄
=

āw

ρ
√

2(f2
x + f2

y )
×

(
iG∗ − εQj

(
2γrρ

āw

)2

A⊥j

)
+ Fj (13)

dQj

dz̄
=

āw

4ρ

√
2

f2
x + f2

y

Qj(εQj + 2)
1 + |p̄⊥j |2 ×

(
−i(εQj + 1)(p̄⊥jG − p̄∗⊥jG

∗)+

εQj

(
2γrρ

āw

)2

(p̄⊥A∗
⊥j + p̄∗⊥jA⊥j)

)
(14)

dz̄2j

dz̄
= Qj (15)

dx̄j

dz̄
=

√
Qj(2 + εQj)

1 + |p̄⊥j |2
�(p̄⊥j) (16)

dȳj

dz̄
= −

√
Qj(2 + εQj)
1 + |p̄⊥j|2

�(p̄⊥j) (17)

where the equations for the x̄, ȳ and z̄2 electron coordinates
are simply derived from the scaled momentum/energy rela-
tions. The field term A⊥ = Ax − iAy is the scaled perpen-
dicular field, related to the scaled complex envelope A by

A⊥ = Ae−i
z̄2
2ρ . Hence the code now solves explicitly for

the x̄ and ȳ radiation field components. This assists in re-
solving some numerical issues requiring many conversions
between real and complex numbers when the electrons in-
teract with a complex envelope A.

The term Fj describes a generic focussing channel of
the electron transverse motion. This is similar to the natu-
ral focussing of the helical wiggler which for convenience
may be varied independently of the actual undulator used
via a scaling factor f . In the scaled notation used here the
focussing force is given by:

Fj = −f
βzj ā

2
w

√
ε

8γjρ2
(x̄j − iȳj). (18)

COMPUTATIONAL SOLUTION

The code integrates the working equations by using a
split step Fourier method [4], where the first half step
solves field diffraction in the absence of the electron trans-
verse current and the second step propogates the electrons
and field equation in the absence of diffraction. Where
previously the code solved the non-diffractive half-step in
Fourier space, as outlined in [2], it is now solved using a Fi-
nite Element Method [5]. However, the beneficial memory
and processing distribution across processors in the parallel
algotithm of the previous Fourier method is retained.

The resolution of the model is not limited to the resonant
radiation wavelength. The field must be sampled on the
sub-wavelength scale to describe the resonant wave oscilla-
tions to the desired resolved frequency. Because of this, the
data sizes for a full 3D field and 6D electron phase-space
distribution can be large, hence the use of a parallel code
algorithm to distribute the data and solve the equations.

The code of [2] used a fully distributed memory so-
lution which solved both field source and diffraction in
the Fourier domain. In terms of memory distribution this
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works well, however the solution requires a prohibitive
number of calculations per step. In order to drive the
Fourier field each electron must interact with every field
node, and the number of calcuations required is then pro-
portional to the number of electrons × the number of
Fourier nodes. In a full 3D system (and with electrons in 6
dimensions), this can give the order of 1014 interactions per
quarter step using a standard Runge Kutte 4th order method
for a moderately sized system, each of which is composed
of many computational operations. The base number of
calculations for a moderate simulation is prohibitively in-
efficient.

In replacing the Fourier method with the finite element
method, however, each electron interacts with only its 8
surrounding nodes, so the number of calculations is propor-
tional to the number of electrons ×8. The base number of
calculations is therefore significantly smaller and the code
runs much more efficiently.

The main problem with a parallel algorithm for this finite
element model is in the uniform distribution of the data.
There are two different interaction systems, the electrons
and the field, which are constantly shifting spatially in time
with respect to each another due to the slippage of the field
with respect to the electrons. Any given electron must have
its local field stored on its processor for any given step.
However, the local field shifts with each step. Furthermore,
the rate at which the local field shifts is not a constant in
an unaveraged system - the equations allow the electron to
have a rapid change in energy within one radiation period
e.g. for very high radiation fields.

One approach is to pick one of the systems, either the
field or electrons, distribute it evenly and fix this distribu-
tion. The data distribution for the other system must be
calulated at each step and will be shifted around the pro-
cessors as appropriate. If the field is chosen as the fixed
distribution, the electron variables will be shifted between
processors. However, this leads to a poor spread of the
computational load, as the electrons can only generate,
amplify, and interact with the field finite elements which
immediately surrounds them. This is especially true for
short electron bunches, which is one of the areas an un-
averaged code is particularly useful - the electrons in the
bunch will only be distributed over a small percentage of
the processors available at any one time. Those proces-
sors will be doing all the work to drive the field. Tak-
ing the opposite approach, by distributing the electron data
uniformly across the processors, the computational load is
well spread. However, the management of the field data be-
tween processors can become complicated by the need for
the electrons on one processor to interact with potentially
distant field nodes and the desire to uniformly distribute the
field nodes across processors for the diffractive half-step.

In the compromise of the code presented here, the elec-
trons are distributed evenly in memory and a full copy of
the field is kept on each processor. This is justified by
considering the relative memory sizes for a typical FEL
system: each electron has 6 dimensions and the number

Figure 1: Illustration of the the differences in computa-
tional solution between [2] and the code used here.

of electrons can potentially be a few orders of magnitude
larger than the number of field nodes; the field has only 3
dimensions. Clearly, the priority is to distribute the elec-
trons in memory. However, recalculating the field distribu-
tion each step can add significant inter-processor commu-
nication time, which can hamper the ability of a parallel
code for large processor numbers.

3D BEAM EFFECTS

The effects of the 3D electron beam are illustrated with
a simple example. The beam is said to be matched when its
radius is matched to the undulator focussing channel which
may be calculated from the normalised emittance relation
γεx = γεy = εn = γr2

b/β [6], and in terms of the scaled
notation and putting in terms of the normalised emittance
εn,

σ̄b =

(
2
√

2ρεn

εāwlg

) 1
2

(19)

where lg is the gain length of the FEL, and σ̄b is the Gaus-
sian radius in x̄ and ȳ.

A simulation to test the beam matching effects was per-
formed. The parameters used were

ρ = 0.015, lb = 4lc, εn = 10−6μ m, āw = 1.5,

fx = fy = 1, γr = 489, λw = 0.03m,

and electron beam shot noise is simulated via the method
of [7]. The beam radius should therefore be ≈ 1.61. The
field evolution and interaction is artificially switched off, so
the electrons travel unpeturbed through the wiggler. This
allows the effect of only the focussing term on the electron
motion to be observed.

The result is shown in figure 2. The matched beam ra-
dius is calculated by the code and the particles are then
loaded according to the shot-noise model of [7]. It is
seen that the noise introduces a small deviation from the
matched beam radius giving a value of ≈ 1.56. The elec-
tron beam radius then exhibits a very small oscillation on
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Figure 2: The radius of the electron beam as a function of
propagation distance through the wiggler z̄.

propagating through the wiggler. Increasing the number of
macroparticles will decrease this small noise-oscillation.

A simulation including self consistent electron-field in-
teraction is now shown. The electrons are seeded by a field
with a constant gaussian profile in the tranverse plane. The
scaled rms radius of the seed radiation intensity is chosen
to match the rms value of the gaussian distribution of the
electron beam σ̄r = σ̄b. Radiation diffraction was artif-
ically switched off for this example. This will therefore
show only the effects of the 3D electron beam on the sys-
tem. The electron beam parameters are the same as for the
previous example, the seed field peak intensity in x̄ and ȳ
is chosen so that the scaled power is 10−3. For compari-
son, simulations are performed both with and without the
emittance and focussing. The results are shown in Fig. 3.
For the case of no emittance or focussing the beam trans-
verse monmentum has zero spread and therefore does not
diverge even without a focussing channel. For the case with
emittance and focussing the beam is matched and retains
a constant radius as shown above. Hence any effects in
the generation of radiation can be attributed to emittance
and betatron effects only. The expected reduction in power
generated and rate of the instability are clearly seen.

CONCLUSIONS

A new model for describing a 3D variably polarized FEL
has been presented which uses an efficiently parallelised
algorithm with finite elements to solve the working equa-
tions. A simple example of matching a 3D electron beam to
a focussing channel and a diffraction-free FEL interaction
were shown. The new code uses only publically available
linear-solvers etc. and is intended for open-source release
in the near future. A post processing visualization package
is being worked on. The method of modelling diffraction is
currently being updated from the method of [2] which uti-
lized a complex envelope A to describe the radiation field.
The new model uses the full field of the radiation i.e. in-
cluding the fast oscillatory variations.
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Figure 3: Power as a function of z̄2 after ≈ 10 gain lengths
through the wiggler. Both simulations were run with iden-
tical parameters, one with emittance and beam focussing
(blue) and one without (green).

REFERENCES

[1] C.K.W. Nam, P. Aitken and B.W.J. McNeil, Unaveraged
Three Dimensional Modelling of the FEL, Proceedings of
FEL 2008, Gyeongju, Korea

[2] L.T. Campbell and B.W.J. McNeil, A Fully 3D Unaveraged,
Non-localised Electron, Parallelized Computational Model
of the FEL, Proceedings of FEL 2009, Liverpool, UK

[3] B.W.J. McNeil and G.R.M. Robb, Phys. Rev. E 65, 046503
(2002)

[4] R.H. Hardin and F.D. Tappert, Applications of the split-step
Fourier method to the numerical solution of nonlinear and
variable coefficient wave equations, SIAM Review, 15, 423
(1973)

[5] K.H. Huebner, E.A Thornton and T.G. Byrom, The Finite
Element Method For Engineers, Wiley (1995)

[6] R. Bonifacio R. Corsini et al, Rivista Del Nuovo Cimento
Vol 15 N 11 (1993)

[7] B.W.J. McNeil M.W. Poole and G.R.M. Robb, Phys. Rev.
ST - Acc. Beams 6, 070701 (2003)

MOPB30 Proceedings of FEL2010, Malmö, Sweden

98 FEL Theory


