Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Real-time assessment of nanoparticle-mediated antigen delivery and cell response

Cunha-Matos, Carlota A. and Millington, Owain R. and Wark, Alastair W. and Zagnoni, Michele (2016) Real-time assessment of nanoparticle-mediated antigen delivery and cell response. Lab on a Chip, 16 (17). pp. 3374-3381. ISSN 1473-0197

Text (Cunha-Matos-etal-LC-2016-real-time-assessment-of-nanoparticle-mediated-antigen-delivery)
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (2MB) | Preview


Nanomaterials are increasingly being developed for applications in biotechnology, including the delivery of therapeutic drugs and of vaccine antigens. However, there is a lack of screening systems that can rapidly assess the dynamics of nanoparticle uptake and their consequential effects on cells. Established in vitro approaches are often carried out on a single time point, rely on time-consuming bulk measurements and are based primarily on populations of cell lines. As such, these procedures provide averaged results, do not guarantee precise control over the delivery of nanoparticles to cells and cannot easily generate information about the dynamics of nanoparticle-cell interactions and/or nanoparticle-mediated compound delivery. Combining microfluidics and nanotechnology with imaging techniques, we present a microfluidic platform to monitor nanoparticle uptake and intracellular processing in real-time and at the single-cell level. As proof-of-concept application, the potential of such a system for understanding nanovaccine delivery and processing was investigated and we demonstrate controlled delivery of ovalbumin-conjugated gold nanorods to primary dendritic cells. Using time-lapse microscopy, our approach allowed monitoring of uptake and processing of nanoparticles across a range of concentrations over several hours on hundreds of single-cells. This system represents a novel application of single-cell microfluidics for nanomaterial screening, providing a general platform for studying the dynamics of cell-nanomaterial interactions and representing a cost-saving and time-effective screening tool for many nanomaterial formulations and cell types.