
This version is available at https://strathprints.strath.ac.uk/56912/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk/) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
DC Technologies for Widespread Renewable Deployment and Efficient Use of Energy

Dr Abdullah Emhemed

University of Strathclyde
Institute of Energy and Environment
Technology and Innovation Centre,
99 George Street, Glasgow G1 1RD

t: +44 141 444 7274, e: Abdullah.emhemed@strath.ac.uk
Outline

- Background and research experience
- Core research activities
- Opportunities for future collaborations
- Summary
- List of publications
Institute for Energy and Environment

Core disciplines
- Power System Analysis
- Power System Simulation
- Power System Economics
- Energy Markets
- Active Network Management
- Machines & Power Electronics
- Control, Protection & Monitoring
- Wind Energy Systems
- Renewables
- Dielectric Materials/Pulsed Power
- HV Technology/UHF Diagnostics
- Energy System Modelling
- Research portfolio: £40m
Background and research experience

Personal Experience
- MSc in Electrical Power Systems (2005 from University of Bath UK)
- PhD in Electronic and Electrical Engineering (2010 from University of Strathclyde UK)
- Senior post-doc researcher at the University of Strathclyde (since 2012)

Core research
- Power system protection and stability with more focus on DC systems
- Protection and safety of LVDC last mile distribution networks
- HVDC and wind energy modeling in Real Time Digital Simulation

Research Leadership
- Coordinating Strathclyde Power System Dynamic Research Team
- A member of the IEC System Evaluation Group (SEG 4) on LVDC
- Acted as a coordinator for forming a European Consortium (6 EU Universities and 13 companies) on LVDC and coordinated the development of an EU H2020 bid on DC in smart distribution systems (submitted Jan 2016)
- Strathclyde PI for EU COST Actions proposal “EUDCMI” (under preparation)
Core research activities

DC in Last Mile Distribution Systems

Addressing the technical constraints

- Reduced losses
- Better control of peak demands
- Reduced fault level
- Enhanced voltage profile
- More efficient for renewables
- Easier to connect multiple sources, and No phase balance and synchronisation issues
- Powerful ICT platform for integrating various smart grid functionalities

Benefits

- Secure, safe, and reliable operation
- Smart Energy Management
- Flexible generation
- Flexible charging
- Flexible demand
- Release additional generation and demand headroom
- Offers more flexible market mechanism with better stimulation of customers
DC Protection Challenges and Solutions

- Modelling the behaviour of an LVDC under different fault conditions
- Development and prototype testing of DC protection scheme with the speed and selectivity required to enable an LVDC last mile
- Contributed to two chapters of the IET CoP on LVDC & IEC SEG4 WG5

Challenges: Moving to Hybrid AC-DC Systems

UK Future Grid 2015-2030

<table>
<thead>
<tr>
<th>Year</th>
<th>Slow Progression Scenario</th>
<th>Gone Green Scenario</th>
<th>Accelerated Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>20</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>2025</td>
<td>7</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>2030</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

- Reduced system inertia
- Reduced fault level
- Intermittency in wind and solar increases the volatility of energy flows, and it will be more difficult to estimate the reserve power for stability
- The maximum secured loss of generator will increase to 1800MW instead of 1320MW (as expected to be the size of a single nuclear power plant)

Aspects of System Operability affected with regard to Future Energy Scenarios [NG ETYS2013]
Core research activities

Research on Hybrid HV DC-AC Networks

Modelling of a hybrid AC-DC power network with offshore wind farms in Real Time Digital Simulations for contingency and dynamic stability studies

Simulating very stressed events and understanding the resilience (the dynamic interaction) of the hybrid AC-DC grid base on future UK NG low carbon scenarios
Aggregation model of wind farm

Main parts of a wind-farm aggregated model: Wind speed model, Specification of wind-farm layout, and wind turbine model
DC in distribution systems

- Hot area of research with very limited experience
- Lack of standards (topology, voltages, cable connections, interference, and etc.)
- International systematic approach on LVDC not yet provided
- Existing LV protection is too simple and not capable of enabling the potential benefits afforded by DC last mile networks
 - DC protection for safety challenge
 - The requirement for high speed DC protection
 - Detecting and locating DC faults challenge
 - Protection against DC voltage disturbances
 - DC faults interruption challenge

Hybrid AC-DC grids with offshore wind farm in RTDS

- Modelling and testing the interaction of the hybrid AC-DC grid with the control and protection systems (simulated or implemented in hardware via HIL)
 e.g. evaluating relay performance under different network operating conditions, validation of protection and control algorithms, etc.
- The design of high speed and selective DC protection schemes
- Detecting and locating DC faults on MTDC grids
- Aggregated modelling of wind farms in RTDS for stability studies
Summary

DC technologies and systems are required for wider uptake of renewables

- The requirement for more flexible and efficient power systems to deliver low carbon energy and the evolutionary leap in power electronics and controls have stimulated the market of DC technologies

- DC distribution systems are one of the new emerging technologies to recently attract attention for providing more efficient and flexible platform to increase LV power capacity, and connect more distributed renewables

- Multi-terminal HVDC (MTDC) systems have been introduced as the next step for better control and sharing of renewables within different regions such as in the “Supergrid” concept

DC technologies and systems implementation are challenging

- Replacing or energising an existing part of an AC network using DC is very challenging, and present significant operating and protection challenges in addition to lack of mature experience and standards

- There is still lack of research and application experience on the quantification of technical, economic, environmental and social benefits available from the introduction of DC technologies specially at distribution level.

- Further research is also required on innovative key enablers of DC systems including smart and efficient power electronics interfaces, optimal energy management, and discriminative safe and fast acting DC protection.
Thanks you and Q