
This paper is a post-print of a paper submitted to and accepted for publication in IET Renewable Power 

Generation and is subject to Institution of Engineering and Technology Copyright. The copy of record is 

available at IET Digital Library. 

1 

 

Hybrid MMC Based Multi-terminal DC/DC Converter with Minimized 
FBSMs Ratio Considering DC Fault Isolation 
 
 
Zhiwen Suo 1*, Gengyin Li 1, Lie Xu 2, Rui Li 2, Weisheng Wang 3, Yongning Chi 3 

 
1Electronic and Electrical Engineering, North China Electric Power University, Beijing, 

People’s Republic of China 
2 Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1RD, UK 
3 Renewable Energy Department, China Electric Power Research Institute, Beijing, People’s 

Republic of China 
*suozhiwen@126.com 

 

 

Abstract: An isolated high-power multi-terminal DC/DC converter is studied in this paper, based on 

hybrid MMC configuration consisting of full-bridge submodules (FBSMs) and half-bridge submodules 

(HBSMs). To decrease the investment and power losses, a reduced arm FBSMs ratio (less than 0.5) 

scheme is adopted. A detailed analysis on the relationship of the DC/DC converter inner AC voltage and 

the arm FBSMs ratio under reduced DC voltage is presented. Based on this, a control strategy during DC 

fault is proposed which continues operating the converter connected to the faulty DC side with reactive 

current absorption.  Under the same arm FBSMs ratio, compared to the conventional strategy of blocking 

the faulty side converter during a DC fault, the proposed unblocking method with reactive current 

injection can not only achieve greater DC fault current declining rate, but also ensure maximum power 

transfer between the interconnected healthy DC grids by maintaining a higher inner AC voltage in the 

DC/DC converter. The two strategies are compared and validated by simulations using PSCAD/EMTDC 

under different arm FBSMs ratio. 

 

 

1. Introduction 

It has been well accepted that HVDC technology is more attractive and likely to be the only feasible 

option for connecting large offshore wind farms over long distance. Compared to simple point-to-point 

DC transmission system, DC grid is expected to provide higher power supply reliability and equipment 

redundancy, more adaptable power supply mode, and more flexible and secure power flow control [1-3]. 

Although the prospect of DC grid offers many benefits, one of the main challenges is the 

interconnection of different DC networks. For connecting DC networks with different DC voltage levels 

and catering for the need of network protection and power flow control, DC/DC converters are required. 

Thus the development of DC/DC converters suitable for high power / high voltage application is one of 

the key challenges for implementing future multi-voltage levels, multi-terminal DC grid [4-6]. 
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As the conventional DC/DC topologies designed for low or medium voltage and power range are not 

suitable for HVDC applications, many studies have been carried out on high-power high-voltage DC/DC 

converters for HVDC system [7-17]. Modular Multilevel Converter (MMC) is now the optimal technical 

solution for HVDC applications due to its significant advantages, e.g. industrial scalability, low single 

device switching frequency, superior harmonic performance, DC fault isolation capability, etc.,[18]. A 

modular multilevel DC/DC converter with bidirectional fault blocking capability is presented in [9], which 

uses multiple interleaved strings of cascaded submodules (SMs) to perform single-stage bidirectional 

DC/DC conversion, offering a substantial improvement in utilization of total installed SM rating. However, 

extremely large output filter inductance may have to be installed to eliminate the fundamental AC 

component. A similar topology with bidirectional interrupting DC currents capability has been presented 

in [10]. The proposed high voltage DC auto transformer is also a single-stage converter consisting of two 

series connected voltage source converters with an AC link allowing energy transfer between the upper 

and lower converters, where the sum of the two DC voltages forms the high level DC voltage and the 

lower converter forms the low level DC voltage. This leads to significant cost reduction, though its lacking 

of galvanic isolation may limit its application in HV grid. 

If two MMCs are connected front-to-front through an AC transformer, they can also operate as a 

bidirectional DC/DC converter. Such a converter topology has been reported in [13], which uses a 

particular modulation strategy where both MMCs contribute to the voltage elevation besides the AC 

transformer stage. The use of medium frequency transformation reduces the volume of passive 

components. However, the transformer is subject to high dv/dt at the rising and falling edges of the square 

waveform AC link voltage leading to increased technical requirements and costs. To avoid this problem, a 

quasi two-level (Q2L) DC/DC converter has been proposed in [14], where the converter generates a square 

wave with controllable dv/dt by employing the SM voltages to create transient intermediate voltage level. 
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This significantly reduces the size of the capacitors used in the SMs compared to conventional MMC. 

Soft-switching characteristics of the Q2L DC/DC converter is then analyzed in [15] and [16].   

Although the front-to-front configuration can handle DC fault by blocking both sides of the MMCs, 

for a multi-terminal DC/DC converter interconnecting more than two DC grids, DC fault on one grid will 

cause the blocking of all the MMCs in the DC/DC converter, affecting the power transfer between the 

healthy DC grids in a multi-section HVDC interconnection system [19]. 

Recently, the hybrid MMC design concept has been proposed which combines different SM 

topologies in order to optimize converter performances [19-25]. A three-terminal DC/DC converter based 

on a simplified hybrid MMC configuration is proposed in [19]. Different from the basic hybrid MMC with 

half FBSMs and half HBSMs per arm [22], this MMC structure is a simplified configuration with less 

semiconductor devices, but also has the advantage of being able to block the DC/DC converter terminal 

connected to faulty DC grid , while continues operating the other terminals connected to healthy DC grids. 

By utilizing the FBSMs negative level output, the converter can achieve continued operation without 

converter blocking during a DC fault [25-27]. A STATCOM operation scheme of the MMC adopting 

clamp double submodule (CDSM-MMC) is also proposed in [26] with arms alternately turned on. 

So far, the researchers are mainly focusing on the hybrid MMC configuration with arm FBSMs ratio 

(the ratio of FBSMs to the total number of SMs per arm) greater than (e.g. the Boost FBSM-MMC 

presented in [25] with a ratio of 0.67) or equal to 0.5. If the ratio decreases further, the conduction losses 

and investment can be further reduced. However, the number of the FBSMs for fault blocking may 

become insufficient and thus, extra control strategy needs to be designed to isolate the fault accordingly. 

This paper proposes a DC fault isolation strategy, i.e. converter unblocking with additional reactive 

current injection  for multi-terminal DC/DC converter based on hybrid MMC with reduced arm FBSMs 

ratio (less than 0.5). Compares with conventional converter blocking strategy, by unblocking the faulty 

side converter with reactive current injection, the converter can be designed to use fewer semiconductor 
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devices and have lower power losses, and to achieve faster fault isolation during a DC fault with less 

impact on the healthy grids. The proposed strategy is verified by a three-terminal DC test system using 

PSCAD/EMTDC simulation.  

2. Hybrid MMC Based DC/DC Converter Design Principle 

 
2.1. Basic Configuration 

 

Fig. 1a presents a three-terminal DC/DC converter comprising three hybrid MMCs interconnected 

by two two-winding transformers. Taking hybrid MMC2 as an example to demonstrate the converter 

configuration, each arm is a combination of F FBSMs and (N–F) HBSMs, where N is the SM number per 

arm. Udc2n is the nominal DC-link voltage, L2 is the arm inductance, and Uc2 is the nominal SM capacitor 

voltage. upj2 and unj2 (j=a,b,c) are the output voltages of the upper and lower arms respectively and the 

equivalent output phase voltage ej2 is then expressed as (unj2-upj2)/2. The arm currents of the upper and 

lower arms are respectively denoted as ipj2 and inj2, and ij2 is the input AC phase current. 

Assuming the SM capacitor voltages are balanced at the nominal value, the arm voltage is in the 

range of 0~NUc2, without utilizing the negative voltage generating capability of the FBSMs [22]. Thus, the 

nominal DC and AC phase peak voltages at the maximum modulation of 1 are expressed as 

                              

dc2n c2

c2 dc2n

2 2
mE

U NU

NU U





 


                        (1a) 

In some occasions, HVDC systems need to be operated at reduced DC voltages, e.g. DC-based 

deicing or during a DC fault. If the AC phase peak voltage remains unchanged from Em, some of the 

FBSMs can be used to generate −Uc2 state in each arm so as to reduce the DC voltage. The arm voltage is 

in the range of -k2NUc2~NUc2 and the minimum DC voltage the converter can operate is given as 

                               2min 2 21 2dc dc nU k U              (1b) 

where k2 is the ratio of FBSMs to the total number of SMs per arm and equals F/N. Similar relationship 
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can also be derived using the equation (15) in [28] by setting kMMC=1. 

 

         a                    b 

Fig. 1.  Hybrid MMC based multi-terminal DC/DC converter  
a Configuration of the hybrid MMC based DC/DC converter 

b Equivalent Circuit for the hybrid MMC based DC/DC converter 

 

Under normal operation, one MMC in the hybrid MMC based DC/DC converter operates as a 

voltage source to generate an inner AC voltage with constant amplitude and frequency, and the other 

MMCs control the power flows between the inner AC sides and connected DC terminals [19]. Defining U2 

(line-to-line rms voltage) shown in Fig. 1b as the inner AC voltage, which is converted to the terminal 

voltage level of MMC2, when a DC pole-to-pole fault happens on one side of the connected DC grid, 

depending on the arm voltage produced by the FBSMs, the inner AC voltage of the multi-terminal DC/DC 

converter may have to be reduced accordingly in order to prevent over current feeding from the AC side. 

However, the inner AC voltage of the DC/DC converter should also be kept as high as possible to ensure 

maximum active power exchange between the healthy DC grids. In order to achieve the minimum arm 

FBSMs ratio, assuming the inner AC voltage of the DC/DC converter is controlled by hybrid MMC1 to U2, 

the relationship between U2 and the equivalent output voltage E2 (line-to-line rms voltage) generated by 

MMC2 can be derived according to the positive current direction shown in Fig.1b as 

                              
2 2

2 2 2 2(U ' ) ( ' )E U U                (2) 
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where IP and IQ are the active and reactive phase rms current of MMC2, Req and Xeq are the equivalent 

resistance and reactance (sum of arm and transformer leakage reactance referred to MMC2 AC side). 

Neglecting the resistance, under a certain inner AC voltage U2 and reduced DC voltage U'dc2, the 

required minimum arm FBSMs ratio for MMC2 can be expressed as  

   

2 2 2
2 2 2

2

2 2

'
24( 3 ) 72( ) 3

2

6

dc
j peak eq Q eq P dc n

dc n dc n

U
E U X I X I DU

k
U U

   
 

            
(4) 

where Ej2peak is the equivalent output phase peak voltage, D is the ratio between the reduced and nominal 

DC voltages and is given as U'dc2/Udc2n. Similar relationship can also be derived using equation (19) in [28] 

by setting kMMC=1. 

Equation (4) indicates k2 can be reduced (i.e. less FBSM) by injecting extra positive reactive current 

(increase IQ in (4)) into MMC2, leading to reduced investment and conduction losses of MMC2 during 

normal operation. The same concept can be equally applied to the hybrid MMC1 and MMC3. 

2.2. Arm Current and Capacitor Voltage Balancing Consideration 
 

As the MMCs have limited current capability, under reduced DC voltage a corresponding reduction 

in active power (current) must be simultaneously applied. Defining the ratio of the active power flowing 

into hybrid MMC2 under reduced and nominal DC voltage as n, and neglecting converter power losses, the 

three-phase AC and DC powers under reduced DC voltage are 

                                    
2 dc2n dc22

3
' cos

2
dc m mP IP DU En I   

                                
(5) 

where I'dc2, I'm are the DC and phase peak current under reduced DC voltage,  is the power factor angle, 

P2 is the nominal active power transfer between the AC and DC sides of the hybrid MMC2. 

The upper and lower arm currents under reduced DC voltage can be expressed as (6), considering 

the DC and fundamental AC components [22]: 
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              (6) 

The peak arm current is 

                                
dc

^
2

3 2

m
arm

I I
I

 
        (7) 

Assuming Ipeak is the maximum allowed arm current considering the semiconductor device’s current 

capability, to ensure safe operation of the converter, the following equation must be satisfied: 

                                

^

arm peakI I                   (8) 

Substituting (5) and (7) into (8), the necessary active power reduction radio can be derived as 

                                           
2

2

3 cos

(2 cos )

dc n peakDU I
n

D P







              (9) 

Equation (9) shows the maximum active power reduction ratio under a reduced DC voltage to ensure 

continuous operation of the multi-terminal DC/DC converter. It should be noted that the ratio would be 

further reduced by considering the increased reactive current in order to reduce the required FBSMs per 

arm. 

Due to the increase of DC current under reduced DC voltage, thereby the reduced discharging time, 

the arm currents must maintain both positive and negative within one fundamental period to avoid HBSMs 

capacitor voltages unbalance [22]. Thus the DC and AC currents need to meet the following requirement  

                                       
dc2

3 2

mI I 
                           (10) 

Substituting (5) into (10), the required power factor can be derived as 

                                     cos 2D                          (11) 
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Equation (11) indicates the power factor may decrease accordingly under reduced DC voltage, which 

implies that reactive current will be needed to ensure enough discharging time for HBSMs to ensure 

capacitor voltage balancing. 

The capacitor voltage balancing strategy for the hybrid MMC based DC/DC converter, which uses 

similar principles as conventional HBSM based MMC when Non (the number of inserted SM) is positive, 

with all the SMs participating in the regulation of capacitor voltage balancing. When Non is negative, only 

FBSMs are involved in the capacitor voltage balancing process [22]. 

3. DC Fault Isolation Strategies of the Hybrid MMC Based DC/DC Converter 

 

A DC pole-to-pole fault is one of the most serious faults that must be considered for HVDC design 

and operation, and has significant impacts on device parameters, control strategies and protection 

configurations. An unblocking DC fault isolation strategy is proposed in the paper, which allows for 

continuous operation of the faulty side converter with active control of its reactive current injection. As a 

comparison, the conventional fault isolation method of blocking the faulty side converter during a fault 

with coordinated control of inner AC voltage will also be briefly introduced. 

3.1. Blocking of the faulty side converter 
 

After a DC pole-to-pole fault, if the series-connected voltage of the FBSMs, which are inserted into 

the fault current path, is higher than the peak AC line-to-line voltage, the DC fault can be isolated 

following the blocking of the converter [22]. Base on this, the minimum FBSMs number per arm required 

to isolate the DC fault can then be determined. 

Base on (1a), the following relationship should be satisfied to block the DC pole-to-pole fault [29]: 

        m
2 2

ax

3
2

2

3

2

dc
arm l l

n cU
U

U
E

N
                (12) 

2Uarm is the sum of the upper arm FBSMs voltage on one phase and the lower arm FBSMs voltage 

on another phase. El-lmax is the peak line-to-line voltage applied at the converter AC terminals.  



This paper is a post-print of a paper submitted to and accepted for publication in IET Renewable Power Generation and is 

subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library. 

9 

 

The required minimum arm FBSMs ratio to ensure successfully blocking the DC fault can be 

determined  [29] 

                                       2

3

4
k                 (13) 

By blocking hybrid MMC2, hybrid MMC3 can maintain normal operation and transmit original 

active power from AC to DC side. However, if k2 is further reduced (e.g. for cost reduction), the DC fault 

cannot be isolated simply by blocking the faulty side converter. 

Unlike the AC/DC converter, the inner AC voltage of the hybrid MMC based DC/DC converter can 

be actively controlled by hybrid MMC1. To ensure the DC fault at hybrid MMC2 can be blocked, the 

maximum allowed inner AC line-to-line rms voltage can be determined as 

                                  2 2 22 dc nU k U                (14) 

To implement this strategy, hybrid MMC1 can be switched to active control mode after detecting DC 

over-current on hybrid MMC2. The detection time delay can be negligible because communications are all 

within the DC/DC converter. However, under such condition, the active power flowing through hybrid 

MMC3 will be reduced due to the reduction of the inner AC voltage. 

3.2. Unblocking of the faulty side converter 
 

When the DC voltage drops to zero as the result of DC fault on MMC2, there is no active power 

exchange between its AC and DC sides. By substituting D = 0 and IP = 0 in (4), the controlled inner AC 

voltage is given as:
  

                       
2 2

2

6
3

2

dc n
eq Q

k U
U X I                (15) 

Equation (15) indicates that allowing MMC2 to absorb a certain amount of reactive power into the 

converter can raise the inner AC voltage to a higher level, thus ensuring maximum active power exchange 

between MMC1 and MMC3.
 
As the arm current in hybrid MMC2 only contains reactive current, previously 
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mentioned HBSMs charging problem will not exist as there are always sufficient charging and discharging 

times due to the zero DC offset in the arm current. 

However, under such a condition, a small amount of energy is still required from the AC side of the 

MMC2 to compensate the converter power losses to ensure the SM capacitor voltages are maintained at the 

rated values. Thus, a SM capacitor voltage balance controller is added. The complete control diagram of 

the hybrid MMC2 during DC faults is shown in Fig. 2, ω is the rated angular frequency, and the frequency 

can be chosen higher than 50Hz, e.g. 350Hz, to reduce the volume [12]. The SM capacitor average voltage 

is compared with the required SM reference value, which is used as an input to produce a d-axis reference 

id
* for active power. While the q-axis reference iq

* for reactive power is set directly without the outer loop 

(within the maximum value 1p.u.). Its purpose is to keep U2 close to its original value to ensure maximum 

active power transfer between the healthy MMC1 and MMC3.  

It should be emphasized that the additional reactive current absorbed by the faulty side converter 

during the fault has to be provided by the remaining healthy converters, which could affect their active 

power transmission capability due to their current limitation. For instance, assuming the rated capacities of 

MMC1, MMC2 and MMC3 are 1p.u., 0.5p.u., and 0.5p.u., respectively, when a DC pole-to-pole fault 

happens at MMC2, it absorbs full capacitive current of 0.5 p.u.. Under such a condition, the required 

reactive current can be entirely provided by MMC1 without affecting the active power transmission 

between MMC1 and MMC3 (maximum 0.5 p.u. active power). However, if a DC pole-to-pole fault 

happens at MMC1, considering the limitations of the arm current and converters capacity, the DC power 

transfer between MMC2 and MMC3 will need to be reduced to less than 0.5 p.u., and the reactive current 

absorbed by MMC1 during the DC fault can be equally distributed between MMC2 and MMC3. The 

strategy can also be applied to multi-terminal DC/DC converter, and the needed reactive current during 

DC fault condition can be provided by the healthy converters according to their rated capacities. 
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Fig. 2.  Control diagram of the hybrid MMC2 during DC pole-to-pole fault 

 

When a DC fault occurs at MMC2, the DC current will initially rise. Due to the superior 

controllability of the hybrid MMC, a closed-loop DC inrush current controller can also be designed for 

MMC2 to accelerate the DC fault current decline rate by generating a negative DC voltage. As shown in 

Fig. 2, Idc2ref is the preset DC current reference, and Idc2 is the measured DC current. The Gain will switch 

from 0 to 1 after detecting DC side over current of hybrid MMC2 (e.g. 1.2p.u.). The output of the PI 

controller is limited between 2k2Udc2n and 0. Under normal operation, the Gain equals 0 since the current 

is within the threshold value, so this control loop has no effect and the hybrid MMC2 produces rated DC 

voltage output. When the DC current surpasses the threshold value after the fault, the Gain will switch to 1 

and the PI controller output starts to decrease from zero to dynamically regulate the DC components of the 

arm voltages to limit the DC current to the preset reference value. Under such a condition, the reference 

voltages of the arms can be given by 
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The U*
dc will also switch from Udc2n to 0 after detecting the DC fault. With the DC current being 

further reduced to be less than the preset reference, the input to the PI controller becomes positive and the 
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controller produces a maximum output of 0. The added controller thus has no effect and the DC current 

will reduce to zero naturally. 

4. Comparison of the Fault Isolation Strategies 

 

 
Fig. 3.  Three-terminal DC test system 

 

The proposed fault isolation strategy is compared with the conventional blocking strategy, taking the 

three-terminal DC test system shown in Fig. 3 as an example. The parameters of the test system are listed 

in Table 1. It should be noted that the capacitor reference voltage of hybrid MMC2 can be set to 25kV to 

accelerate the simulation time without significantly affecting the quality of the outcome [23, 30, 31]. 

Table 1 Nominal parameters of the three-terminal DC test system 

 
Component Value 

 

Hybrid MMC1,2,3  rated power 1000MW,500MW,500MW 

AC-side voltage1, 2, 3 (nominal line-to-line rms voltage) 

DC-side voltage1,2,3 

Number of SMs per arm (hybrid MMC2) 

Capacitor reference voltage (hybrid MMC2) 

SM capacitor(hybrid MMC2) 

Number of SMs per arm (hybrid MMC2) 

Inductance per arm( hybrid MMC2) 

320kV,160kV,250kV 

640kV,300kV,500kV 

12 

25kV 

1000 µF  

25kV 

0.2 p.u. (Based on 160 kV/500MW)  

 

AC transformer inductance ( hybrid MMC2)  0.2 p.u.  
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According to (14) and (15), the relationships between the FBSMs ratio k2 and the inner AC voltage 

U2 for the two DC fault isolation strategies, i.e. converter blocking and unblocking are now rewritten as 

                       

2 2

2

2 2

2 2

2

2

26

3

dc n

eq Q

dc n dc n

k U
U

X I
k U

U U

















              (17) 

Fig. 4 shows the inner AC line-to-line rms voltage (p.u.) as the function of the arm FBSMs ratio 

under the different fault isolation strategies during a DC pole-to-pole fault.  

 

Fig. 4.  Relationship of k2 and U2 adopting different fault isolation strategies 
 

As shown in Fig. 4, under the same arm FBSMs ratio k2, unblocking of the fault side converter with 

1 p.u. reactive current injection can achieve higher U2 compared to that of converter blocking. This means 

that for the same k2, more active power can be transmitted between DC grid 1 and 3 (MMC1 and MMC3) 

with converter unblocking as the inner AC voltage amplitude can remain at a higher value than simply 

blocking the converter.  

Due to the low probability of DC pole-to-pole fault, a criterion of active power reduction ratio 

(namely U2 reduction ratio) between the healthy DC grids in case of one adjacent DC grid fault may be set 
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up in advance according to the system requirement. The required arm FBSMs ratio k2 for the hybrid 

MMC2 can then be obtained according to (17). For instance, U2 is set as 0.8 p.u. in case of DC faults, 

which means the active power transmission between the healthy DC grids will be restricted to 0.8 p.u.. 

The values of k2 according to (17) are 0.30 with converter blocking and 0.22 for the case of converter 

unblocking with 1 p.u. reactive current injection, respectively. This means that with the proposed 

unblocking strategy, the required number of FBSMs can be reduced compared to simply blocking the 

converter during a DC fault, leading to reduced power losses during normal operation and cost. As shown 

in Fig. 4, if U2 is set at 1 p.u., the corresponding arm FBSMs ratio k2 are 0.38 and 0.31, respectively for 

converter blocking and unblocking.  

 

Fig. 5.  Relationship of IQ and U2 adopting the unblocking strategy under different k2 

 

Without blocking the converter, Fig. 5 shows the inner AC line-to-line rms voltage (p.u.) as the 

function of the reactive current injection (p.u.) under different arm FBSMs ratio. The x-axis values of the 

square dots represent the inner AC voltages that can be achieved with the relevant k2 when the faulty side 

converter is blocked. As can be seen, under a certain k2, the blocking strategy can achieve nearly 15% 

higher inner AC voltage U2 than the unblocking strategy without reactive current injection. However, 

when the injected reactive current is higher than the bold dashed line formed by the square dots shown in 
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Fig. 5, the unblocking strategy has more advantage over the blocking strategy. It can be seen that under a 

certain k2, the bigger the reactive current injection is, the higher the inner AC voltage can remain. Also, 

under the same U2, smaller k2 is required with higher reactive current injection.  

  

Table 2 Impact of k2 variation on U2 utilizing different fault isolation strategies 

 
 

0.17 0.25 0.31 0.33 0.38 

Blocking 0.44 0.66 0.82 0.88 1.00 

Unblocking1 

(IQ=0.764p.u.) 
0.61 0.80 0.94 1.00 1.10 

Unblocking2 

(IQ =1p.u.) 
0.68 0.87 1.00 1.06 1.17 

 

Table 2 shows the impact of k2 variation on U2 utilizing different proposed fault isolation strategies 

for a few specific cases. Due to different slopes of the curves, the inner AC voltage boost effect for 

unblocking scheme is more obvious under smaller k2. Also, the minimum arm FBSMs ratio can be 

achieved by maximum reactive current injection (e.g. 1p.u.). For example, U2 can remain at the nominal 

value by absorbing 0.764 p.u. reactive current into the converter with k2 being 0.33, compared to k2 being 

0.38 when the converter is blocked. The k2 can be further reduced to 0.31 by absorbing 1 p.u. reactive 

current. 

5. Simulation results 

To verify the proposed fault isolation strategies, a three-terminal DC test system containing a hybrid 

MMC based DC/DC converter shown in Fig. 3 is developed using the parameter listed in Table 1. Average 

model is adopted for hybrid MMC1 and MMC3 to accelerate the simulation speed [19], whereas a more 

detailed model of hybrid MMC2 is built with a total of 12 SMs per arm comprising 12k2 FBSMs and 12(1-

k2) HBSMs. Each SM has a capacitance of 1000μF and is rated at 25kV. The nominal inner AC voltage U2 

is controlled by hybrid MMC1 to 160kV, with a frequency of 50Hz. In order to achieve greater DC fault 

current decline rate, the preset DC current reference Idc2ref shown in Fig. 2 is set to half of the nominal DC 

k2 

U2 Strategies 
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current. During normal operation, 1000MW active power is imported from DC Grid 1 and is evenly 

distributed between DC grid 2 and DC grid 3.  

 

Fig. 6.  Simulation results for blocking of the hybrid MMC2 under a DC pole-to-pole fault when k2 =0.33 

a MMC2  SMs capacitor voltages 

b MMC2 DC terminal voltage and current 

c MMC2 AC voltage and current 

d Active power of MMC1,2,3 and reactive power of MMC2 

 

Fig.6 shows the simulation results for blocking of the hybrid MMC2 during fault when k2 equals 0.33 

(FBSM: HBSM=1:2). As illustrated in Fig. 6, a permanent DC pole-to-pole fault is initiated at the hybrid 

MMC2 DC terminal at 2s. After detecting the DC current exceeding the threshold value (1.2p.u.), all the 

IGBTs in the hybrid MMC2 are blocked, and active control of hybrid MMC1 is activated by controlling the 

inner AC voltage to 0.88p.u. to ensure that no AC fault current flows through MMC2 to the faulty DC side. 

This causes the active power flowing into DC grid 3 to reduce from 500MW to 442MW. Meanwhile, the 

DC current at MMC2 drops quickly down to zero with Δt being 3ms, where Δt is the time interval for the 



This paper is a post-print of a paper submitted to and accepted for publication in IET Renewable Power Generation and is 

subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library. 

17 

 

fault current decaying from peak to preset DC current reference value. The FBSMs capacitor voltages in 

MMC2 increase from the nominal value of 25kV to 27.6kV due to the initial charging from the AC side.  

  
Fig. 7.  Simulation results for unblocking of the hybrid MMC2 under a DC pole-to-pole fault when k2 =0.33 

a MMC2  SMs capacitor voltages 

b MMC2 DC terminal voltage and current 

c MMC2 AC voltage and reactive current (positive for flowing into MMC2) 

d Active power of MMC1,2,3  and reactive power of MMC2 

 

Fig.7 shows the simulation results without blocking hybrid MMC2 under the same k2. The DC 

voltage quickly drops to zero after the fault, and the active power flowing into hybrid MMC2 reduces to 

zero accordingly. Compared with the conventional blocking scheme, the inner AC voltage can remain 

unchanged after fault (i.e. U2 remains at 1 p.u.) by absorbing 0.764p.u. reactive current (i.e. 382MVar 

reactive power) into MMC2. Consequently, active power transmission to DC grid 3 is not affected. 

Negative level output at the hybrid MMC2 DC terminal can also be seen due to the function of added 

closed-loop DC inrush current controller, which accelerates the DC current reduction with Δt of 0.4ms, 
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being one-seventh the time of conventional blocking scheme. Also, the FBSMs and HBSMs capacitor 

voltages slightly deviate from the reference value when the DC fault happens, and then gradually return to 

normal values due to the effect of the added capacitor voltage balance controller. It demonstrates that the 

proposed unblocking of the fault side converter with reactive current injection scheme can not only block 

the DC fault more quickly, but also continue operating to regulate the inner AC current, ensuring the 

maximum active power transfer between the healthy grids. This feature shows excellent DC fault ride-

through capability of the hybrid MMC based multi-terminal DC/DC converter. 

 

Fig. 8.  Simulation results for unblocking of the hybrid MMC2 under a DC pole-to-pole fault when k2 =0.25 

a MMC2  SMs capacitor voltages 

b MMC2 DC terminal voltage and current 

c MMC2 AC voltage and reactive current (positive for flowing into MMC2) 

d Active power of MMC1,2,3  and reactive power of MMC2 

 



This paper is a post-print of a paper submitted to and accepted for publication in IET Renewable Power Generation and is 

subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library. 

19 

 

Fig. 8 shows the simulation results for unblocking of the hybrid MMC2 under a DC pole-to-pole 

fault when k2 equals 0.25 (FBSM: HBSM=1:3). By absorbing 1 p.u. reactive current (i.e. 435MVar 

reactive power) into the faulty side converter, the inner AC voltage can be raised to 0.87p.u. with 

coordinate control of hybrid MMC1 and MMC2, which is nearly the same value compared with the 

conventional blocking scheme when k2 equals 0.33. It implies that by fully utilizing the faulty side 

converter capacity, the active power flowing into the DC grid 3 can be maintained at the same level but 

using less FBSMs, leading to reduced power losses and cost. 

6. Conclusions 

A high power multi-terminal DC/DC converter based on hybrid MMC with DC fault blocking 

capability for interconnecting large HVDC systems has been studied in this paper. A converter unblocking 

strategy during a DC fault is proposed, which allows for continuous operation of the faulty side converter 

with active control of its reactive current injection. The proposed method is compared to the conventional 

fault isolation method of blocking the faulty side converter during a DC fault. Simulations are carried out 

to validate the effectiveness of the proposed strategy. The results show that the proposed scheme of 

unblocking the faulty side converter with a certain amount reactive current injection can achieve faster DC 

fault isolation and has less impact on the healthy grids when compared with the conventional blocking 

strategy. The proposed fault isolation scheme allows for significant economy savings for hybrid MMC 

based DC/DC converter due to the reduced arm FBSMs ratio, making it possible to be employed in the 

future multi-terminal DC grid with different voltage levels. 
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