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Abstract. The development speed and application range of the additive 
manufacturing (AM) processes, such as selective laser melting (SLM), laser metal 
deposition (LMD) or laser-engineering net shaping (LENS), are ever-increasing in 
modern advanced manufacturing field for rapid manufacturing, tooling repair or 
surface enhancement of the critical metal components. LMD is based on a kind of 
directed energy deposition (DED) technology which ejects a strand of metal 
powders into a moving molten pool caused by energy-intensive laser to finally 
generate the solid tracks on the workpiece surface. Accurate numerical modelling 
of LMD process is considered to be a big challenge due to the involvement of 
multiple phase changes and accompanied mass and heat flows. This paper 
overviewed the existing advancement of additive manufacturing, especially its 
sub-category relating to the DED. LMD process is analyzed in detail and 
subsequently broken down to facilitate the simulation of each physical stage 
involved in the whole process, including powder transportation and dynamics, 
micro-mechanical modelling, formation of deposited track and residual stress on 
the substrate. The proposed modelling considerations and a specific CFD model of 
powder feeding will assist in accurately simulating the DED process; it is 
particularly useful in the field of aerospace manufacturing which normally has 
demanding requirement on its products.  

Keywords. additive manufacturing(AM), laser metal deposition (LMD), direct 
energy deposition (DED) 

1. Introduction 

In engineering, additive manufacturing (AM) refers to a process in which objects or 
parts are built up and finally produced by means of adding, depositing and 
consolidating material (typically powder or filament) on to a substrate layer by layer. 
This term, AM, reflects its processing strategy and is defined to differentiate itself with 
the conventional material removal or subtractive process, such as machining, forming 
or casting. Rapid prototyping (RP), rapid manufacturing (RM), layer manufacturing, 
solid freeform fabrication (SFF) and more recently recognized industrial version of 3D 
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printing, are usually taken as the synonyms of AM to some extent. Since being 
available from the mid of 1980s and then mainly used to fabricate displayed models 
and prototypes, AM technology has already developed for more than 20 years[1–2]. It 
was popular because of its desirable attributes such as easy generation of complex 
geometry, arbitrary configurations, efficient material use and possibility of material 
function design[3]. Nowadays, AM is becoming one of the most fast-developing 
advanced manufacturing techniques both in the fields of academic and industry due to 
the recent innovations in materials and accessibility of commercial high-energy system 
using both laser or electron beam to melt materials[4]. Easy access to various 
commercial AM devices really gives this technology a more flexible customization 
route and a kind of “on-demand” manufacturing mode which could drastically reducing 
waiting  times and product stocks. It is totally different with the large-scale production 
mode and will definitely open up new product market and upgrade conventional 
manufacturing technologies. Some researchers[5] therefore reckoned that AM and its 
relating technologies will bring us with the “renaissance in manufacturing”. Some other 
even regarded that AM technology which involves a comprehensive integration of 
materials science, mechanical engineering, and laser technology, is already starting an 
important revolution in manufacturing industry[6]. 

2. Advance in Additive Manufacturing  

AM is a comprehensive process encompasses many specific technologies. These 
technologies involved could be classified into 7 categories according to the techniques 
used to deposit layers and the ways in which the deposited layers are bonded together 
to form the track[7]. In terms of ASTM F42 committee’s suggestions, the 7 categories 
are[7]: 1) vat photo polymerization (e.g. Stereolithography, SLA); 2) material jetting 
(e.g. multi-jets modelling, MJM); 3) binder jetting (e.g. 3D printing, 3DP); 4) material 
extrusion (e.g. fused deposition modelling ,FDM); 5) powder bed fusion (e.g. SLS, 
SLM, EBM); 6) sheet lamination (e.g. laminated object manufacturing, LOM); 7) 
directed energy deposition (e.g. LMD/LENS, EBAM).  
Table 1.  Process categories, corresponding technologies and materials for existing AM processes[7] 

Process category Specific technology Corresponding Materials 

 
(1) Vat photo polymerization  

 
Stereolithography (SLA) 

 
UV curable resins 
 

(2) Material jetting  MJM (multijet modeling)  
waxes, ceramics, UV curable resins 
 

(3) Binder jetting  3DP (3D printing)  
waxes, composites, polymer, 
ceramics, metals 

(4) Material extrusion FDM  thermoplastics 
 

(5) Powder bed fusion 
SLS,  
SLM,  
EBM(electron beam melting)

waxes, thermoplastics, metals 
metals 
metals 

   
(6) Sheet Lamination LOM Paper, metals, thermoplastics 
   
(7) Directed energy deposition LMD/LENS metals 
 EBAM metals 



Table 1 lists the category names, corresponding technologies and materials to be 
dealt with for these 7 categories of AM processes. It is also possible to divide AM 
processes into 4 main categories only based on the materials dealt with, e.g. liquid, 
filament/paste, powder, or solid sheet[8]. After intensive research and development in 
the areas of materials, processes, software, equipment, and integration, AM has been 
used directly and indirectly to produce prototype parts with suitable material properties 
for evaluation and testing, as well as to make tools, dies, and molds. Currently, the 
direct fabrication of functional end-use products is becoming the main trend of AM 
technologies, in particular, for metallic products[9]. 

2.1. Directed energy deposition (DED)  

As one of the 7 categories of AM processes, directed energy deposition (DED) is 
suitable for producing metal parts via the layer-by-layer deposition of molten metal 
powders or filament. It employs energy-intensive source (e.g. normally a laser or an 
electron beam) to generate a melt pool on the substrate into which metal powder or 
filament is injected [2, 4, 7]. The molten pool follows a specified route to move on and fill 
the top of substrate and progressively build up and deposit the part according to 
designed CAD geometry. Many AM technologies involve in this standard category, 
such as laser metal deposition (LMD), laser-engineering net shaping (LENS), direct 
metal deposition (DMD), Direct Laser Deposition (DLD), laser consolidation, laser 
cladding, laser deposition welding and powder fusion welding, many of which are 
trademarks of various machine manufacturers or research establishments. It is worthy 
to note that the local high-energy in DED process will affect the microstructure, 
deposited material properties, residual stress state and thermal-induced distortion of the 
final part. 

2.2.  Laser metal deposition (LMD) 

Laser metal deposition belongs to the AM category of DED. LMD involves a laser 
beam used to form a molten pool on a metallic substrate, into which powder is fed. The 
powder melts to which is fusion bonded and forms a deposited track on the substrate. 

This kind of laser based AM process generally has a complex non-equilibrium physical 
and chemical metallurgical nature, which is material and process dependent[2]. The 
current development focus of DED/LMD is to produce complex shaped functional 
metallic components, including metals, alloys and metal matrix composites (MMCs), to 
meet demanding requirements from aerospace, defense, automotive and biomedical 
industries. The influence of material characteristics and processing conditions on 
metallurgical mechanisms and resultant microstructural and mechanical properties of 
LMD processed components are highly desired to be clarified.  

3. Numerical Modelling Considerations for LMD 

To maximize the AM technology’s potential and study the above-mentioned influence 
of material deposition and processing condition of LMD on material and mechanical 
property, modeling and control of its process are of the priority. To better understand 
the physic phenomena during LMD, it is needed to use a combination of modelling 
methods to simulate different stages of LMD process. 
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5. Discussion and conclusions 

AM-related technologies are increasingly used in modern manufacturing as surface 
enhancement, rapid manufacturing, tooling and repair processes. LMD is based on 
blowing a powder stream into a moving laser-induced melt pool; modelling of LMD is 
difficult as it is characterized by multiple phase changes, mass and heat flows. In this 
research, the existing advancement in additive manufacturing, especially the category 
of DED is overviewed. The LMD process is analyzed in detail and subsequently 
broken down to 3 stages for further simulation of each physical procedure involved in 
LMD including powder conveyance and dispersion, molten pool dynamics and track 
formation and residual stress on the substrate. The proposed numerical modelling 
considerations and detailed CFD model of powder feeding will assist in accurately 
simulating the DED processes; it is particularly useful in the field of aerospace 
manufacturing which normally has demanding requirement on its products.   
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