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Abstract 24 

Objective: In this study, we have used a chemometrics-based method to correlate key 25 

liposomal adjuvant attributes with in vivo immune responses based on multivariate 26 

analysis.  27 

Methods: The liposomal adjuvant, composed of the cationic lipid 28 

dimethyldioctadecylammonium bromide and trehalose 6,6-dibehenate was modified 29 

with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios and the 30 

main liposomal characteristics (liposome size and zeta potential) was measured along 31 

with their immunological performance as an adjuvant for the novel, post exposure 32 

fusion tuberculosis vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). Partial least 33 

square regression analysis was applied to correlate and cluster liposomal adjuvants 34 

particle characteristics with in-vivo derived immunological performances (IgG, IgG1, 35 

IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, INF-γ).  36 

Key Findings: Whilst a range of factors varied in the formulations, decreasing the 37 

DSPC content (and subsequent zeta potential) together built the strongest variables in 38 

the model. Enhanced DDA and TDB content (and subsequent zeta potential) 39 

stimulated a response skewed towards a cell mediated immunity, with the model 40 

identifying correlations with INF-γ, IL-2 and IL-6.  41 

Conclusion: This study demonstrates the application of chemometrics-based 42 

correlations and clustering, which can inform liposomal adjuvant design. 43 

 44 

 45 

46 
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Introduction 47 

For a vaccine to be regarded as effective, it must stimulate an adequate immune 48 

response, sustain safe administration and be patient friendly [1, 2]. Subunit vaccines 49 

contain selected purified antigens and potentially reduce side effects, eradicate 50 

reversion to virulence and the need for culturing harmful pathogens, whilst eliciting 51 

specific immune responses, ultimately generating a safer, more immunologically 52 

defined form of vaccination [2, 3]. As purified recombinant proteins generally induce 53 

low immunogenicity when administered alone, a suitable immunostimulatory adjuvant 54 

is required to produce a more potent vaccine [4, 5]. Liposomes are one of few 55 

immunological adjuvants approved for human administration and have been shown to 56 

be competent stimulators of an immune response [6]. In recent studies, key factors 57 

that influence the efficacy of liposomal adjuvant activity include vesicle charge, size 58 

and bilayer fluidity, as these affect interactions with immune system components [7]. 59 

For example, enhance antigen adsorption and retention, and an increased intensity in 60 

intracellular liposome presence, promoted by using cationic liposomal adjuvants is 61 

seen as a viable approach for effective vaccine delivery [[1, 8, 9, ].  62 

 63 

Despite potentially curative pharmacotherapies being readily available for many 64 

decades, tuberculosis (TB) is still the primary cause of preventable deaths worldwide 65 

[10]. The necessity of a host to inhibit Mycobacterium tuberculosis (MTB) infection is 66 

dependent upon the stimulation of cellular Th1 type immunity. Liposomal composition 67 

is a key variable that can influence the potency of such adjuvant delivery systems for 68 

TB vaccines. Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) 69 

with an optimised incorporation of the glycolipid trehalose 6,6-dibehenate (TDB) forms 70 

an adjuvant system (CAF01) capable of stimulating powerful cell-mediated immunity 71 

against MTB, upon successful delivery of the recombinant TB fusion protein, Ag85B–72 

ESAT-6 (H1 vaccine) [11]. 73 

 74 

With modern and high throughput analytical equipment, researchers often accumulate 75 

a large quantity of data, which necessitates the use of appropriate analytical tools for 76 

extraction of valuable information. Analysing such large data sets requires time and is 77 

a particular challenge for extracting the most useful information out of that data set. 78 

Computer-based methodologies are incorporated into the analysis of large data sets, 79 

in order to extract features within a reasonable timeframe. Often, the analysis of only 80 

one variable at a time is not sufficient and the simultaneous analysis of several 81 

variables is highly desirable. Multivariate analysis (MVA) is a flexible and multipurpose 82 

tool for data analysis. MVA can be used to provide an overview in a data set, for 83 



4 

 

classification and comparison between groups of data and for regression modelling 84 

between two sets of data, often referred as variables (X) and responses (Y). Opposed 85 

to multiple linear regression tools, MVA handles many variables and many 86 

observations at a time and deals with dimensionality problems. Furthermore, it can 87 

extrapolate using limited data sets and is relatively robust to noise in the variables, as 88 

well as the responses [12]. Principal components (PC) are computed through the 89 

multidimensional space to approximate the best data fit. In order to model the 90 

systematic variation in the data set, usually at least two PC are computed, orthogonal 91 

to each other, which aim to approximate the data as much as possible.  92 

 93 

Principal component analysis (PCA) is the basis in a multivariate analysis, where a 94 

simple overview of the information in a dataset is required. Here, a large data set is 95 

grouped and trends and outliers are identified [13, 14].  PCA produces a summary, 96 

which identifies correlation between observations or groups. Furthermore, trends or 97 

sudden shifts in the dataset can be identified. PCA is used for identification of the 98 

relationship between the X-variables only and reduces the dimensionality of a 99 

multivariate data table into a lower-dimensional plane. Partial least square (PLS) 100 

analysis additionally deals with the Y-variables, the responses in a particular system 101 

or measurement. Here, the aim is to predict Y from X. The application of PLS 102 

determines how the responses are influenced by the factors and variables in a process, 103 

as well as identifying response correlations. Furthermore, we can use PLS to identify 104 

controlling factors responsible in achieving a desired response [14-16].  105 

 106 

The application of relatively simple statistical analysis on experimentally obtained data 107 

is common practice. The use of more advanced statistical tools like Design of 108 

Experiment (DoE) studies and MVA studies are becoming more commonplace. 109 

Nevertheless, the combination of such theoretical multivariate models with 110 

experimentally obtained data or offline analysis may result in powerful systems 111 

providing extra information and confidence in a given research application. In-vivo 112 

testing of new pharmaceutical or biopharmaceutical compounds is time and cost 113 

intensive and currently indispensable during the development of new pharmaceutically 114 

active compounds. Whereas offline analytics are relatively simple and cost-effective, 115 

and if effective would be beneficial in-vivo predictions. This necessitates that the critical 116 

quality parameters of a given system are known and identified.  117 

 118 

The goal of this study was to correlate and cluster in-vivo adjuvant activity from 119 

characteristics of a set of liposomal adjuvants containing the cationic lipid 120 

dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB). 121 
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Liposomes formulated from DDA:TDB were chosen as the initial formulation as we 122 

have investigated and characterised its activity as an adjuvant [e.g. 7-9]. To generate 123 

a set of formulations based on DDA:TDB, we incorporated increasing levels of the 124 

saturated phosphatidylcholine, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 125 

into DDA:TDB, where the ratio of DDA:TDB remained locked at a 8:1 molar ratio, 126 

resulting in 4 formulations with varying DDA,TDB and DSPC concentrations(Table 1). 127 

Using these formulations, we investigated the effect of liposomal composition and 128 

physical attributes on adjuvant action to identify key controlling features of the 129 

liposomes using MVA. MVA was used to both identify clusters of specific immune 130 

responses, and to verify a possible link to the physicochemical properties of an 131 

adjuvant, namely the size and zeta potential of the liposomes. A tuberculosis antigen 132 

vaccine candidate, known as H56, that combines the early secreted antigens of 133 

Ag85B–ESAT-6 with the latently expressed Rv2660c antigen, shown to provide 134 

protective immunity before and after exposure [17] was used in these studies. In this 135 

study, we combine the experimentally obtained data with a theoretical model that was 136 

based on PCA and PLS analysis in order to allow for prediction of liposomal adjuvant 137 

in-vivo performance.  138 

 139 

Materials and Methods 140 

Materials 141 

Dimethyldioctadecylammonium (DDA), trehalose 6,6-dibehenate (TDB) and 1,2-142 

distearoyl-sn-glycero-3-phosphocholine (DSPC) were purchased from Avanti Polar 143 

Lipids (Alabaster, Alabama, USA). The fusion protein Ag85B-ESAT-6-Rv2660c (H56 144 

antigen), synthesised to a final concentration of 0.7 mg/mL, was obtained from the 145 

Statens Serum Institut (SSI, Copenhagen, Denmark). Tris-base (Ultra Pure), 146 

purchased from ICN Biomedicals (Aurora, OH) was used to make Tris buffer (adjusted 147 

to pH 7.4 with HCl). Phosphate Buffered Saline (PBS) tablets were purchased from 148 

Sigma-Aldrich Co. Ltd. (Dorset, UK). Chloroform and methanol (extra pure) were 149 

purchased from Fisher (UK). Double distilled water was used in preparation of all 150 

solutions. 151 

 152 

Preparation of liposomes via lipid hydration 153 

Liposome formulations were prepared by the long established method of lipid hydration 154 

[18]. Lipids were dissolved in a chloroform:methanol mixture (9:1 v/v), with DDA and 155 

TDB set to a 5:1 DDA:TDB weight ratio/8:1 molar ratio. Additional liposomal 156 

formulations were prepared where this DDA:TDB remained locked at this ratio but 157 

DDA:TDB was substituted with DSPC at ratios of 25, 50 and 75 % (Table 1). These 158 

lipid mixtures were added to a round bottomed flask and upon solvent extraction via 159 



6 

 

rotary evaporation and N2 flushing, a dry film was produced. The remaining film was 160 

hydrated in Tris buffer (10 mM, pH 7.4) for 20 minutes at 10 °C above the main gel-to-161 

liquid phase transition of DDA at ~47 °C [11, 19] or DSPC at 55 °C to completely 162 

hydrate the film and form liposomes. Addition of H56 was performed after liposome 163 

formation at final concentrations of 0.1 mg/mL. Antigen adsorption to liposomes was 164 

promoted by incubation for 30 minutes at room temperature. 165 

 166 

Determination of particle size and zeta potential by dynamic light scattering 167 

The z-average diameter and zeta potential was measured using via dynamic light 168 

scattering (DLS) (Malvern Zetasizer Nano-ZS, Malvern Instruments, Worcs., UK). 169 

Measurements took place at 25 °C in (1/10 dilution; 1 mM TRIS, pH 7.4). All 170 

measurements were carried out on triplicate batches of formulations. 171 

 172 

Immunisation study 173 

Vaccination of mice 174 

All experiments were undertaken in accordance with the 1986 Scientific Procedures 175 

Act (UK). All protocols have been subject to local ethical review and were carried out 176 

in a designated establishment under the project license number PPL 30/2743. Female 177 

C57BL/6 mice, 6-8 weeks old were obtained from Charles River, UK. Vaccine 178 

preparations were prepared with the liposomes (Table 1) with the addition of Ag85B-179 

ESAT-6-Rv2660 (H56) antigen to a final concentration of 0.1 mg/mL (5 µg/vaccine 180 

dose). All mice, with the exception of the naive group, were immunised intramuscularly 181 

(i.m.) with the proposed vaccines (0.05 mL/dose) three times, with two week intervals 182 

between each immunisation. 183 

 184 

Sera collection 185 

Five scheduled bleeds took place over the seven-week immunisation study with blood 186 

samples taken at regular intervals prior to termination. Blood drawn from the tail vein 187 

(50 µL) with micropipette capillary tubes coated in heparin solution (0.1% w/v in PBS), 188 

was added to 450 µL PBS (giving a final dilution of 1/10) and centrifuged using a Micro 189 

Centaur centrifuge at 13,000 RPM for 5 minutes. The supernatants of each mouse 190 

sample was collected and stored at -20 °C for future analysis.  191 

 192 

In-vitro spleen cell culture  193 

Spleen cell suspensions were produced into 10 mL RPMI 1640 cell culture medium 194 

(w/o Glutamine) supplemented with 10% (v/v) FBS and 1% (v/v) PSG (BioSera, East 195 

Sussex, UK). Cell suspensions were then centrifuged at 1000 RPM for 10 min at 15 196 

°C and upon supernatant removal, the remaining pellet was resuspended in 10 mL 197 



7 

 

RPMI, before repeated centrifugation prior to pellet resuspension in 5 mL RPMI. Single 198 

cell suspensions were used to evaluate splenocyte proliferation and antigen specific 199 

cytokine responses. For splenocyte proliferation, H56 was added to sterile 96 well cell 200 

culture plates (Greiner Bio-One Ltd, Gloucestershire, UK) at various concentrations of 201 

0-25 μg/mL with a positive control of concanavalin A (2 μg/mL). 100 μL of spleen cell 202 

suspensions were added and incubated at 37 °C, 5% CO2, and upon 72 hours 203 

incubation, 40 μL of [3H] thymidine at 0.5 (μCi) in supplemented RPMI was added per 204 

well and incubated for 24 hours. Well contents were harvested onto quartz filter mats 205 

(Skatron/Molecular Devices, Berkshire, UK) using a cell harvester (Titertek 206 

Instruments, Alabama, USA) and transferred to 20 mL scintillation vials (Sarstedt, 207 

Leciester, UK) containing 5 mL scintillation cocktail (Ultima Gold, PerkinElmer, 208 

Cambridgeshire, UK). Incorporation of [3H] thymidine in cultured cells was measured 209 

with a scintillation counter. 210 

 211 

Assessment of H56 specific antibody isotype titres 212 

Serum samples were assessed for levels of IgG, IgG1 and IgG2b antibodies by the 213 

enzyme-linked immunosorbent assay (ELISA). The ELISA plates (96 well, flat 214 

bottomed, high binding, Greiner Bio-One Ltd, Gloucestershire, UK) were firstly coated 215 

with 3 µg/mL H56 antigen prior to overnight incubation at 4 °C. All plates were washed 216 

three times with PBST wash buffer (40 g NaCI, 1 g KCI, 1 g KH2PO4, 7.2 g Na2HPO4,  217 

(2H20) per 5 litres of ddH20, incorporating ~0.4 mL of Tween 20) (Microplate washer, 218 

MTX Lab Systems, INC., Virginia, USA). Plates were then blocked by coating each 219 

well with 100 µl of Marvel in PBS (dried skimmed milk powder, 4% W/V, Premier Foods, 220 

Hertfordshire, UK) and incubated for one hour at 37 °C before washing three times 221 

with PBST buffer. 140 µL of serum sample was serially diluted in PBS (70 µL 222 

sequentially) in dilution plates, added to the washed ELISA plates and incubated for 223 

one hour at 37 °C. Plates were then washed five times with PBST buffer before the 224 

addition of 60 µL/well of horseradish peroxidise (HRP) conjugated anti-mouse isotype 225 

specific immunoglobulins of IgG, IgG1 and IgG2b (AbD serotec, Oxfordshire, UK) 226 

diluted to 1/750, 1/4000 and 1/4000 in PBS respectively, to identify anti-H56 227 

antibodies. Plates were washed a further five times with PBST buffer before adding 60 228 

µL/well substrate solution (colouring agent: 6x 10 mg tablets of 2,2’-azino-bis (3-229 

ethylbenzthiazoline-6-sulfonic acid) (ABTS; Sigma, Dorset, UK) in citrate buffer (0.92g 230 

Citric Acid + 1.956g NA2 HPO4 per 100 mL) incorporating 10 µL of hydrogen peroxide 231 

(30% H2O2/100 mL) and incubation for 30 min at 37 °C. Absorbance was read at 405 232 

nm using a microplate reader (Bio-Rad Laboratories, model 680, Hertfordshire, UK). 233 

Known positive serum and pooled naïve mice sera were used as positive and negative 234 

controls respectively. 235 
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 236 

Quantification of cytokine production by the sandwich ELISA 237 

Isolation of splenocyte cell suspensions and plating onto 96 well cell culture plates was 238 

conducted as summarised above. The cells were subsequently incubated for 48 hours 239 

at 37 °C (5% CO2), prior to supernatant removal and storage at -70 °C for future 240 

analysis. Quantification of the cytokines, IL-2, IL-5, IL-6, IL-10 and IFN-γ within cell 241 

culture supernatants took place using each specific DuoSet ELISA development kit 242 

(R&D Systems, Oxfordshire, UK). The plates were firstly coated with 100 μL capture 243 

antibody per well and incubated at room temperature overnight. The plates were then 244 

washed three times with PBST buffer before blocking. The plates were subsequently 245 

incubated at room temperature for a minimum of one hour before washing a further 246 

three times. 100 μL/well of sample or standards was then added to each well and 247 

incubated for two hours at room temperature. The plates were washed three times 248 

before adding 100 μL of cytokine specific detection antibody per well and incubation 249 

for two hours at room temperature. Upon washing three times, 100 μL of Streptavidin-250 

horseradish peroxidise (HRP) was added per well (diluted 1/200). The plates were then 251 

covered to avoid exposure to direct light and incubated at room temperature for 20 252 

minutes. After three more washes, 100 μL substrate solution was added to each well 253 

(1:1 mixture of colour reagent A and B: stabilised hydrogen peroxide and stabilised 254 

tetramethylbenzidine respectively). The plates were then covered and incubated at 255 

room temperature for 20 minutes. The experimental reaction was halted by adding 50 256 

μL stop solution (2N H2SO4) per well. The optical density was immediately determined 257 

using a microplate reader at 450 nm (Bio-Rad Laboratories, model 680, Hertfordshire, 258 

UK). 259 

 260 

Statistical tests 261 

Data was analysed by one-way analysis of variance (ANOVA) followed by the Tukey 262 

test to compare mean values of different groups. Differences were considered to be 263 

statistically significant at p < 0.05.  264 

 265 

Multivariate Data Analysis 266 

Principal Component Analysis (PCA) and Partial Least Square (PLS) regression 267 

analysis was performed (SIMCA version 13.0, Umetrics) in order to analyse more than 268 

one variable at a time. The relationship between the variables DDA concentration, 269 

liposome size and zeta potential and the immunological responses (IgG, IgG1, IgG2b, 270 

INF-γ, IL-2, IL-5, IL-6, IL-10, spleen proliferation) was displayed in a loading plot, using 271 

all experimentally obtained raw data in this study. Model fit was interpreted by 272 

goodness of fit (R2) and goodness of prediction (Q2) and regarded as good for R2>0.5 273 
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Weights were selected to maximize the correlation. The loading scatter plot was used 274 

for identifying relationships between the variables and the responses, as well as the 275 

relationships between the variables themselves and the responses themselves. For 276 

interpretation, a line from a selected variable was drawn though the origin of the loading 277 

scatter plot and X- and Y-variables were projected on the line. Variables opposite to 278 

each other were determined as negatively correlated, positive correlation was 279 

determined with variables adjacent to each other. The specific regression coefficients 280 

plots are used to evaluate the X-Y relations in the here computed PLS model. 281 

Correlated responses demonstrate similar coefficient profiles, whereas uncorrelated 282 

responses would show a different profile. The model was validated using a 283 

permutations plot with 40 permutations for each Y-response. 284 

 285 

Results and Discussion 286 

Liposomal adjuvants characteristics 287 

Upon vesicle production, dynamic light scattering was used to determine the particle 288 

size, polydispersity and zeta potential of the liposomes before and after H56 antigen 289 

addition (0.1 mg/mL: 5 µg/vaccine dose). In the present study, DDA-TDB remained 290 

locked at a molar ratio of 8:1, as previous studies found this ratio to be most beneficial 291 

in immunological performance [11]. This formulation was modified by the incorporation 292 

of DSPC in substitution for DDA-TDB at various molar % ratios, therefore the 293 

concentrations of DSPC, DDA and TDB were each varied but the DDA and TDB 294 

concentrations were linked (Table 1). From the results, it can be seen that varying the 295 

composition of the liposomes resulted in changes in both vesicle size and zeta 296 

potential (Table 2). The particle size of DDA-TDB liposomes in Tris buffer prior to 297 

substitution was ~500 nm, with a polydispersity of 0.3 and a strong cationic surface 298 

charge of ~50 mV (Table 2), in accordance with previous results [11, 19, 20]. 299 

Incorporation ofDSPC generated significantly larger vesicles (P < 0.05) but with no 300 

clear trend of DSPC concentration to vesicle size and all remained in a sub micrometer 301 

size range of 650-850 nm.  In contrast the zeta potential decreasing with increasing 302 

DSPC, as would be expected (Table 2). Upon surface adsorption of H56 antigen the 303 

particle size of all formulations increased significantly (P < 0.05) to 850 -1300 nm 304 

depending on the formulation, whilst cationic zeta potential decreased (Table 2). For 305 

all 4 formulations tested antigen loading was > 85 % (results not shown), with no 306 

significant difference, presumably due to the high cationic lipid content/anionic antigen 307 

content even with the 75 % DSPC formulation. For MVA analysis the liposome 308 

characteristics post-addition of antigen were used. 309 

 310 

Immunological characterization for H56 specific antibody isotypes  311 
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When considering the antibody responses in mice immunised, by day 37 all four of the 312 

liposome formulations induced significantly higher (P < 0.05) IgG immune responses 313 

in mice compared to mice immunised with antigen alone, with no significant difference 314 

between the formulations (Fig. 1A).  A similar trend was noted with IgG1 responses in 315 

the vaccinated mice (Fig. 1B). In the case of IgG2b (Fig. 1C), liposomal adjuvants 316 

composed of 75 mol% DSPC generated significantly lower (P < 0.05) levels of antibody 317 

titres at all time points tested compared to DDA-TDB, and IgG2b responses were not 318 

significantly different to responses in mice immunised with non-adjuvanted H56 (Fig. 319 

1C). This suggests that up to 50 % DSPC within the liposome formulation did not 320 

compromise the immunogenic effect of the DDA-TDB adjuvant, which is capable of 321 

inducing protective cellular immunity against TB when administered with a model 322 

vaccine antigen [21]. This data is in line with previous studies conducted within our 323 

group, where DDA was directly replaced with DSPC but the TDB concentrations were 324 

not changed (and hence the 8:1 molar of DDA-TDB was not maintained) [22]. This 325 

suggests that IgG1 antibody responses remain high over a wider range of DDA and 326 

TDB concentrations and liposome characteristics whilst IgG2b decreased with 327 

decreasing DDA content, irrespective of the DDA-TDB ratio. 328 

 329 

Immunological characterization for H56 specific spleen proliferation rates 330 

Antigen specific splenocyte proliferation in mice previously vaccinated with the 331 

liposomal systems and upon re-stimulation with H56 vaccine at increasing 332 

concentrations from 0-25 μg/mL was assessed. DDA-TDB liposomal adjuvants 333 

generated the strongest cell proliferation (Fig. 2). However, cell proliferation was seen 334 

to be dependent on DDA-TDB concentration as there is a notable trend of decreasing 335 

responses from cells harvested from mice immunised with liposomes containing 336 

increasing DSPC levels (and corresponding decreasing levels of DDA-TDB) within the 337 

liposome formulation (Fig. 2). Indeed, liposomal adjuvants containing 75 mol% DSPC 338 

were consistently low even upon re-stimulation at higher H56 concentrations (Fig. 2).  339 

 340 

Spleen cell cytokine responses  341 

Spleen cell cytokine responses from mice immunised with the various liposomal 342 

formulations show variable correlation to the DSPC content (Fig. 3).  In general, IFN-343 

γ, IL-2 and IL-6 levels were shown to decrease with increasing DSPC content (Fig. 3A, 344 

B and D). Whilst IL-5 production was low for all groups (Fig. 3C), with mice which 345 

received antigen alone having similar levels to those mice which received liposomal 346 

adjuvants. In contrast, the presence of DSPC in the liposomal adjuvant tended to 347 

increase IL-10 responses (Fig 3E).  348 

 349 
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With increasing replacement of DDA-TDB with DSPC in the formulation, the zeta 350 

potential decreases and the strength of immune response tends to skew towards a 351 

Th2 type response, even with the small decreases in zeta potential noted in these 352 

formulations (Table 1). The effect of liposomal charge has been studied previously for 353 

the quality of immunity stimulated with Ag85B-EAST-6 antigen [20] in which it was 354 

noted that production of IFN-γ was strongly dependent upon the liposomal adjuvants 355 

being positively charged. In contrast, DDA-TDB substituted with 75 mol% DSPC 356 

displayed a weak cellular immune response. The resultant Th2 type immune response 357 

observed can be considered to be independent of the surface charge of the system, 358 

corresponding with previous studies [20] stating that a Th2 type elicited response was 359 

not significantly affected by liposomal adjuvant charge. 360 

 361 

Multivariate analysis for clustering Th1 and Th2 type immune responses to adjuvant 362 

characteristics 363 

Multivariate model evaluation 364 

Whilst the above in-vivo results are in line with previous studies, it is difficult to 365 

investigate the multifactorial changes in liposome attributes that occur when the lipid 366 

composition is modified, therefore the principle aim of this work was to analyse this in-367 

vivo data set using MVA. Initially, the correlation of two fitted principal components 368 

(PC1 and PC2) for the overall model fit was determined as loadings and weights. The 369 

model type was PLS with 12 observations. Initially we selected the liposome size and 370 

the DDA concentration as x-variables, (2 X-variables and 10 Y-variables). This data 371 

was chosen in order to assess whether the size of the liposome or the DDA 372 

concentration (which was linked to the TDB concentration) is the most contributing 373 

factor in the vaccine immune response. The fraction of the X-variation modelled in PC1 374 

was 62 % (eigenvalue 1.24) and 100 % in PC2 (eigenvalue 0.764). The fraction of the 375 

Y-variation modelled with the first PC was 46 %, and 13 % in the second PC. The 376 

cumulative goodness of fit was 0.59 and the cumulative goodness of prediction was 377 

0.37. 378 

 379 

In the second analysis study, we selected the liposome size, zeta potential and DDA 380 

concentration as variables (3 X-variables and 9 Y-variables). Obviously, given that zeta 381 

potential measurements are be directly linked to the amount and type of lipid used (as 382 

well as the aqueous media the liposomes are suspended in), the zeta potential 383 

represents a response towards lipid composition. However, this set allowed us to verify 384 

how the model predicted the influence of zeta potential on immune responses  in-vivo. 385 

Here, the cumulative goodness of fit was 0.97 and the goodness of prediction was 386 

0.52, with two PC fitted (PC1 with 64% of the fraction in the X-variation modelled 387 
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(eigenvalue 1.92), 97% respectively in the PC2 (eigenvalue of 0.98); Y-variation 388 

modelled in first PC was 44%, 53% in PC2). Unfortunately, including the TDB 389 

concentration as a variable resulted in a non-statistically valid model. 390 

PC1 and PC2 in both model setups were regarded to comprise satisfactory information 391 

to construct a predictive model on the data set. Furthermore, we analysed the 392 

cumulated R2 and Q2 values for each Y-variable (Fig. 4), in both model setups. R2 393 

represents a goodness of the model fit and describes how well the variation of the 394 

respective variable is explained; Q2 indicates how well the respective variable can be 395 

predicted. A threshold value for R2> 0.5 was chosen for valid models; values below 0.5 396 

indicated noise present.  IgG and IgG1 responses were shown to be insignificant in 397 

both designs chosen, due to negative Q2 value (Fig. 4 A and B). Spleen proliferation, 398 

INF-γ, IL-2, and IL-6 showed good model fit above 0.5, with respective good prediction 399 

power indicated by a relatively low level of noise in the data set (Fig. 4 A and B). 400 

Goodness of prediction for the responses IgG2b, IL-5 and IL-10 was at or below 0.5, 401 

indicating a higher amount of noise present for these responses.  402 

PLS regression to cluster H56 specific antibody isotypes 403 

Modelling of the data revealed no strong or moderate outliers present (evaluated in the 404 

PCA analysis; data not shown). Due to insignificance in the model for the antibody 405 

subtypes IgG and IgG1, these were removed from further analysis, with IgG2b 406 

remaining, but at a low confidence level. This is in line with the basic statistical analysis 407 

in Figure 1 that revealed no significant difference between the formulations for IgG and 408 

IgG1, confirming that these antibody subtypes are not an ideal measure for vaccine 409 

efficacy in these systems, indicated by statistical insignificance in the PLS analysis.  410 

 411 

PLS regression to analyse specific spleen proliferation rates 412 

The liposomal adjuvants were shown to promote splenocyte proliferation upon 413 

restimulation with H56 antigen, demonstrated by the strong correlation between the 414 

variables DDA (Fig. 4C) (and zeta potential; Fig. 4D) to splenocyte proliferation in the 415 

coefficient plot, with size not shown to correlate with responses. DDA concentration is 416 

the most influential variable for the response spleen proliferation, visible by the high 417 

coefficient value (close to 1) as well as a small confidence interval. The loading scatter 418 

plots shows a close correlation of splenocyte proliferation response to the variable 419 

DDA (Fig. 4E) and zeta potential (Fig. 4F), identifying their strong correlation. This 420 

confirms that the biggest effect to spleen proliferation rates is the increase in DDA 421 

content, which is strongly linked to the zeta potential of a vaccine. As indicated in 422 

Figure 3, the peak of proliferation correlates with DDA-TDB liposomes, which have the 423 

strongest zeta potential (Table 2).  424 
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 425 

PLS regression to cluster cytokines responses 426 

The PLS analysis revealed a statistical significance for the responses INF-γ, IL-2, IL-6 427 

and IL-10 for the variables DDA (Fig. 4 C), as well as for the variable zeta potential 428 

(Fig. 4D) again as would be expected due to their link. Overall, the DDA content as 429 

well as the zeta potential showed a positive correlation to INF-γ, IL-2 and IL-6, and an 430 

inverse correlation to the response IL-10. The increase in DDA in a vaccine adjuvant 431 

formulation gave no notable correlation in size but does result in a higher zeta potential, 432 

which is predicted to increase the specific INF-γ, IL-2 and IL-6 production in-vivo. The 433 

corresponding peak in INF-γ production (Fig. 3A) was detected for the DDA-TDB 434 

liposomes, which also provided the strongest cationic zeta potential (Table 2).  Here, 435 

the model predictions are in line with the previous reported results that showed  436 

increasing cationic charge (but with constant TDB concentrations across the 437 

formulations) enhanced INF- γ as well as IL-6 [22].  However in addition to this, the 438 

model suggests no impact of DDA and zeta potential content on IL-5, but an inverse 439 

correlation between the response IL-5 and the liposome size (Fig. 4C and D), indicating 440 

that a smaller liposome size is predicted to increase the specific IL-5 production. 441 

Nevertheless, initial model evaluation of the response IL-5 indicated a level of noise 442 

present in the data set, which should be considered in any predictions made until model 443 

validation is verified.  444 

 445 

The specific regression coefficients (Fig. 4E and F) represent the X-Y relations in the 446 

computed PLS model; which simplifies the model overview. Correlated responses 447 

demonstrate similar coefficient profiles. Similar coefficient profiles for the responses 448 

INF-γ , IL-2 and IL-6 for the variables DDA and zeta potential suggesting a grouping 449 

and relation between those cell mediated responses, which can be clustered together 450 

as Th1-specific immune responses driven by the DDA content. This cluster is visible 451 

in both loading scatter plots (Fig. 4E and F) and not influenced by zeta potential being 452 

included in the model as a variable or a response, with a strong cluster of the 453 

responses INF-γ, IL-2, IL-6 and IgG2b, all which are linked with Th1 specific immune 454 

responses. When several Y-variables need to be modelled and analysed together, PLS 455 

offers the ability to generate a simpler depiction of data sets, rather than generating 456 

separate models for each response. It is recommended to analyse strongly correlated 457 

Y-variables together and group them, as their correlation stabilizes the model [12]. 458 

However, this only applies for dependent responses that measure and incorporate 459 

similar measurements.  460 

 461 

Model summary 462 
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We see that the DDA (and the linked TDB) concentration in a vaccine formulation is a 463 

crucial variable and most importantly more influential to the immunological response 464 

than the actual liposome size (across the range considered). Generally, a strong link 465 

between the DDA concentration and zeta potential could be identified; for selecting the 466 

zeta potential as a Y-response (Fig. 4E) as well as a X-variable (Fig. 4F), its close link 467 

to DDA as a variable confirms the significance of the zeta potential to initiating a Th1 468 

mediated immune response in-vivo. Overall, the model developed was statistically 469 

valid for the variables, DDA and zeta potential (spleen proliferation, IFN- γ, IL-2, IL-6, 470 

IL-10, IgG2b), and to limited extent liposome size (in the case of IL-5), as summarized 471 

by the importance of the x-variables. The variable influence on projection plot (VIP) 472 

(Fig. 5), which summarizes all components and y-variables [23], indicated that the 473 

variable DDA content (Fig. 5A) and zeta potential (Fig. 5A&B) were ranked as the 474 

variables with the highest impact in the PLS models.  However, whilst the zeta potential 475 

is shown to strongly influence the immune responses in-vivo and thus could be taken 476 

as a controlling factor, it is directly linked to the DDA content. Furthermore, we have 477 

previously shown that liposomes of the same DDA content, and hence same zeta 478 

potential, gave different immunological profiles depending on the TDB content [11]. 479 

This demonstrates that controlling factors between the formulation and the physico-480 

chemical characteristics must be identified when applying MVA to avoid incorrect 481 

interpretation. 482 

 483 

Model validation 484 

To assess the validity of the predictions made by the PLS analysis, the model was 485 

validated using respective permutations plots for each specific Y-response (Fig. 6). 486 

The permutation plots helped to assess the validity of the PLS model by assessing the 487 

risk of invalidity and verifying that the model does not only fit the current data set, but 488 

also predicts Y from new observations.   489 

 490 

Model validation is a crucial diagnostic function of MVA. Here, the X-data is left 491 

unmodified, whilst the Y-data is permuted and arranged in a different order after which 492 

a PLS model is fitted to the permuted data set.  The derived models are cross-validated 493 

by computing R2 and Q2. This random shuffling of the Y-data allows comparing the 494 

permuted values with the real R2 and Q2 values of the model. This permutation 495 

procedure is repeated for a certain number, mostly between 25 and 100, (here, we 496 

chose 40), which leads to the generation of parallel PLS models thus establishing 497 

reference distributions based on random data. These references are used to assess 498 

the statistical significance in the initial PLS model [24]. 499 

 500 
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Here, the goodness of fit and prediction (R2 and Q2) of the current model were 501 

compared with the R2 and Q2 of randomly permuted Y-observations while the X-502 

variables were maintained constant. For each Y-variable, 40 permutations were 503 

selected. The R2 and Q2 values from the original model were shown on the far right 504 

end of the respective graphs, whereas the Y-permuted models were shown on the left 505 

side. The correlation between permuted Y-vector to the original X-vector was depicted 506 

by the horizontal correlation axis. The criteria for model validity have been selected as 507 

the intercept of the Q2 regression line at or below zero.  Furthermore, the validity was 508 

assessed by depiction of all permuted R2 values below the R2 of the original model.  509 

 510 

The initial model that evaluated the zeta potential as a response, showed an excellent 511 

model validity with its respective permutation plot (Fig. 6A), confirming that the 512 

response zeta potential can be modelled and described by PLS methods. Models for 513 

the responses spleen proliferation, INF-γ, IL-2 and IL-6 showed excellent permutation 514 

plots (Fig. 6 B, C, D, E), confirming the validity of the PLS model and predictions made 515 

from selected responses. Validation for the variables IgG, IgG1, IgG2b, IL-5 and IL10 516 

failed (plots not shown), confirming the previous invalidity of the models as already 517 

seen in initial model evaluation (Figure 4 A and B). Furthermore, this confirms that the 518 

initially detected higher level of noise present for IL-5, IL-10 and IgG2b resulted in a 519 

non-valid model, exemplifying that any predictions made using MVA depend on 520 

verifying the validity of the models by the permutation testing. 521 

 522 

Nevertheless, interpretations should be made in consideration of the assay accuracy, 523 

which might lead to a higher level of noise in the data set, as seen for the variables 524 

IgG2b, IL-5 and IL-10. Although clear trends and clusters were visible, interpretation 525 

always depends on the accuracy of the assay. Furthermore, wider formulation profiling 526 

is required to challenge this use of MVA in more complex vaccine adjuvant studies. 527 

However, results here emphasize the use of multivariate analysis as a new tool for in-528 

vivo vaccine efficacy correlations and cluster analysis for Th1 specific immune 529 

responses.  530 

 531 

This study shows that useful clustering, trends and predictions can be made using 532 

MVA tools when a range of factors are varied (in this case DDA, TDB and DSPC 533 

content which results in variations in vesicle size and zeta potential). Correlating in-534 

vivo data may be a cost effective way for initial information about vaccine efficiency. 535 

Information extracted from MVA may speed up the drug and process development 536 

process, as desired in-vivo immune response targets might be predicted and are 537 

dictated by the characteristics of the adjuvant or delivery system.  From the present 538 
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study evaluations, the extraction of information from in-vivo data by partial least square 539 

regression models gives a powerful tool to further characterize a vaccine formulation. 540 

It can be used for initial clustering of in-vivo specific immune responses and help to 541 

allow for future predictions of vaccine efficiency; overall, a new and useful method to 542 

speed up the development process of a vaccine candidate.  543 

 544 

MVA is a useful tool for not only summarizing and visualizing data sets, it also allows 545 

for classification and identification of quantitative relationships between variables [12]. 546 

Matrices can be of alterable amounts of variables and observations, allowing for 547 

flexibility in generating the data set. The application of those mathematical and 548 

statistical tools is highly applicable for determination of relationships between various 549 

measurements derived from a system or process [25]. We define the relationship 550 

between two properties, where the effect of one property that can easily be measured 551 

in the laboratory is related to the second property, which is more difficult to measure. 552 

Initially, data of both property measurements are obtained, which are then built into a 553 

model using multivariate regression, linking the dependent and independent variables.  554 

 555 

The most significant advantage of using multivariate tools is the ability to analyse 556 

multiple variables simultaneously, along with the reduction of the dimensionality of the 557 

data set by projecting the data into a lower dimension thus improving data 558 

interpretation and presentation [26]. Visualization and simplification of complex 559 

pharmaceutical data is one of the main advantages of using MVA tools, and it is highly 560 

applicable in pharmaceutical research and process or product development [27]. MVA 561 

is furthermore often applied in diagnostics tools, where the identification of the major 562 

contributing variables leads to the isolation of the deviation, frequently applied in 563 

industrial processes for product quality control [26].  564 

 565 

Conclusion 566 

In conclusion, models were developed to cluster and predict Th1 immune responses 567 

to the vaccine formulation dependent on liposomal adjuvant characteristics. 568 

Substitution of DDA:TDB with DSPC reduced the cationic zeta potential and resulted 569 

in variations in vesicle size. The extent of DSPC incorporation correlated to polarised 570 

immune responses with a combination of cellular and humoral immunity. We have 571 

shown that the use of multivariate tools allows for clustering and predictions from key 572 

liposome characteristics to specific in-vivo immune responses. The reliability of derived 573 

PLS models suggests its general usefulness for predicting in-vivo specific immune 574 

responses from offline measurements. Such multivariate approaches may be useful in 575 

correlating key characteristics to critical quality attributes of a vaccine formulation. 576 



17 

 

Specific variable-dependences and independences support the selection of key 577 

variables that need to be further optimized in a development process. Such methods 578 

may be particularly useful for screening many variables at a time, especially in early 579 

stage development processes.  580 
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Tables. 662 

 663 

Table 1: Incorporation of DSPC into DDA-TDB formulations at 25, 50 and 75 mol%.  664 

 Weight µg per dose 

Formulation  (mol%) DDA TDB DSPC 

DDA:TDB 250  50  0 

+ 25% DSPC 188  36  88  

+ 50% DSPC 125  25  175  

+ 75% DSPC 63  14  264  

Values of weight and µmoles in the various liposome formulations where DDA:TDB 665 
was locked at a 5:1 wt ratio/8:1 molar ratio and increasingly replaced with DSPC in a 666 
50 µL dose. 667 
 668 

Table 2: Particle size, polydispersity and zeta potential liposomal adjuvants prior to 669 

and post H56 antigen adsorption.  670 

Formulation Antigen DDA/TDB 25% DSPC 50% DSPC 75% DSPC 

Vesicle size 

(nm) 

 517 ± 29 640 ± 24 856 ± 114 734 ± 67 

+ H56 981 ± 198 1266 ± 151 1036 ± 92 852 ± 52 

Polydispersity 

 0.32 ± 0.01 0.34 ± 0.01 0.32 ± 0.01 0.33 ± 0.02 

+ H56 0.42 ± 0.02 0.46 ± 0.06 0.54 ± 0.14 0.42 ± 0.1 

ZP (mV) 
 45.7 ± 0.7 42.7 ± 1.9 35.4 ± 3.6 33.2 ± 0.5 

+H56 47.4 ± 6.1 41.4 ± 3.7 31.7 ± 6.4 28.7± 5.3 

The liposomes were produced by lipid hydration in Tris buffer (10 mM, pH 7.4) and 671 
with H56 vaccine antigen added at 0.1 mg/mL. Characterisation used a Malvern 672 
Nanosizer ZS. Results denote the mean ± s.d. for three independent experiments. 673 
  674 
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Figure Legends 675 

 676 

 677 

Figure 1: Mean serum H56 specific antibody isotype titres stimulated by DDA-TDB 678 

and substitution with 25-75 mol% DSPC (n=5, +/- standard error) for A: IgG, B: IgG1 679 

and C: IgG2b subsets. Values display the positive reciprocal end point dilution 680 

(log10). Sera was collected prior to the first immunisation and on days 9, 24, 37 and 681 

49 respectively thereafter. Serum samples obtained across various time intervals 682 

upon immunisation were analysed for the presence of anti-H56 specific antibodies by 683 

the enzyme-linked immunosorbent assay (ELISA).  684 
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 685 

Figure 2. Spleen cell proliferation stimulated by H56 vaccine antigen (at 0, 0.05, 0.5, 686 

5 and 25 μg/mL; n=5, mean of replicates ± standard error) for DDA-TDB and 687 

substitution with 25-75 mol% DSPC. The level of H56 antigen specific splenocyte 688 

proliferation was indicated by the extent of [3H] labelled Thymidine incorporation into 689 

cultured splenocytes.  690 

  691 
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 692 

693 

Figure 3. Spleen cell cytokine production in response to re-stimulation with H56 694 

antigen at 0, 0.5 and 5 μg/mL, quantified for A: IFN-γ, B: IL-2, C: IL-5, D: IL-10 and E: 695 

IL-6. Results represent mean average cytokine production of five spleens per 696 

vaccination group +/- standard error. 697 

 698 

 699 
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700 

Figure 4. X/Y overview plot indicating the cumulated R2 and Q2 values for each 701 

response for A) DDA and size and B) DDA, size and zeta potential. Well modelled 702 

responses show a R2 and Q2 value above 0.5 IgG and IgG1 responses show poor 703 

model fit (negative Q2), that indicates noise and no correlation between the X and the 704 

Y variables for those responses (statistical insignificance).  PLS analysis results with 705 

Coefficient overview, displaying the coefficients for all responses to interpret how the 706 

X-variables affect the Y-variables for C) DDA and size and D) DDA, size and zeta 707 

potential. Loading scatter plot, where the relation between X and Y- variables are 708 

displayed for E) DDA and size and F) DDA, size and zeta potential. 709 

 710 
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 711 

Figure 5. VIP plot (variable importance for projection) summarizing the importance of 712 

the variables liposome size and zeta potential. The VIP plot is sorted from high to low 713 

and indicates the value of the variable zeta potential as the most important X-variable 714 

in the PLS model for A) DDA and size and B) DDA, size and zeta potential. 715 

 716 

 717 

 718 
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719 

Figure 6. Permutations plot for A: zeta potential, B: spleen proliferation, C: IFN- γ , D: 720 

IL-2, E: IL-6. Model validity was assessed for 40 permutations. The correlation 721 

between permuted Y-vector to the original X-vector is depicted by the horizontal 722 

correlation axis. The criteria for model validity have been selected as the intercept of 723 

the Q2 regression line at or below zero. 724 

 725 


