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Abstract  

 

The application of Ibl’s duplex diffusion layer model to the analysis of mass transport in pulse 

reverse plating with bipolar current pulses has been investigated. Although originally proposed 

to describe normal pulse plating, Yin has recently extended Ibl’s model to include pulse reverse 

plating. Using the expressions derived by Yin the pulse limiting current density was determined 

over a wide range of pulse plating conditions, and then compared to values calculated using 

more accurate numerical solutions. In general, there was good agreement between the two 

approaches which demonstrated the essential validity of Yin’s extension to Ibl’s original model. 

The simplified model is most accurate at long duty cycles, small dimensionless pulse times and 

for low values of the dimensionless pulse reverse current where its underlying assumptions are 

most likely to be valid. At very long dimensionless pulse times (i.e. T* > 1) the model becomes 

increasingly inaccurate and its use in these circumstances cannot be justified. 
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List of Symbols 

C  concentration 

Cb bulk concentration 

Cs  surface concentration 

D diffusion coefficient 

F Faraday constant 

i  current density 

iLIM steady-state limiting current density 

ip  peak forward (cathodic) current density 

i'p peak reverse (anodic) current density 

ipLIM pulse limiting current density 

i*pLIM dimensionless pulse limiting current density 

i*rpLIM dimensionless pulse reverse limiting current density 

i'p*   dimensionless peak reverse current density   

m summation index 

n  number of electrons transferred in reaction 

ton pulse on time 

toff pulse off time 

trev pulse reverse time 

T pulse time 

T* dimensionless pulse time 

 

α constant 

  thickness of steady-state diffusion layer 

p  thickness of pulsing diffusion layer 

λm  dimensionless summation parameter 

  duty cycle 
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1 Introduction 

Pulse plating has been used extensively in the surface finishing industries to deposit a wide 

range of materials including metals, alloys, composite materials and semiconductors.1-5 By 

careful choice of the pulse parameters it is possible to influence the mass transport, kinetics and 

electro-crystallisation aspects of the deposition process and thereby obtain materials with 

enhanced characteristics. Theoretical and experimental aspects of pulse plating were reviewed 

in 1986 in a book edited by Puippe and Leaman1 and this has been recently updated by a 

monograph by Hansal and Roy2 in 2012. Additionally, a number of useful review articles on the 

subject of pulse plating are also available.3-5 

 

A critical issue in DC or pulse plating is evaluating the mass transport of reacting species to the 

electrode surface as this determines the maximum rate at which plating can occur6 and can also 

influence the current distribution.7 For DC plating, a simple steady-state model can be used 

where it is assumed that mass transport occurs only by diffusion close to the electrode surface, 

while convection dominates further away. This results in the formation of a well characterised 

stagnant (Brunner-Nernst) diffusion layer near the electrode surface whose thickness, , 

determines the attainable limiting current, iLIM. Similar constraints also apply in pulse plating 

but the identification of mass transport limitations under transient (i.e. non steady-state) 

conditions is both conceptually and computationally more difficult to assess. 

 

A simple means for describing mass transport in pulse plating is the dual diffusion layer model 

originally proposed by Ibl in 1980.8 Although this model is based on numerous simplifications 

and approximations, it gives a good qualitative and quantitative understanding of mass transport 

limitations in pulse plating systems. Ibl’s model was originally developed for the case of pulse 

plating with simple rectangular unipolar current pulses. It has been tested theoretically against 

more precise mass transport models and typically shows agreement within 10%.8 Additional 

refinements proposed by Datta and Landolt9  have further improved the accuracy of the original 

model.  
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Despite the existence of more accurate numerical models of mass transport during pulse plating, 

Ibl’s duplex double layer model layer has some important advantages. Firstly, it allows one to 

easily visualise the transport processes occurring at the electrode surface, while providing a 

plausible insight into the phenomena involved.8 Secondly, it is more computationally simple to 

use than the numerical solutions proposed by others. For these reasons it is still common10-12 to 

model mass transport in pulse plating experiments in terms of Ibl’s model. 

 

The original model was developed for conventional pulse plating but in 1996 Yin13 proposed an 

extended model for the case of pulse plating using bipolar rectangular current pulses. This was a 

useful development as pulse reverse plating has become an increasingly important technique, 

especially in the manufacture of printed circuit boards.2,14 It is also routinely applied when 

improvements in the material distribution (i.e. throwing power) are required.14,15 Despite such 

motivations there has been no attempt to test Yin’s model either experimentally or theoretically. 

The aim of the present communication is to undertake such an evaluation and thereby verify that 

Ibl’s model can be used to determine mass transport effects under pulse reverse plating 

conditions.  

 

 2 Background 

Before discussing the various mass transport models in detail, it is necessary to define the 

relevant pulse parameters for both normal pulse plating with rectangular unipolar pulses (Fig. 

1a) and that for pulse reverse plating with bipolar rectangular pulses (Fig. 1b). In the former 

case we can define an on-time with a peak cathodic current of i = ip and duration ton followed by 

an off-time with a duration of toff and where i = 0. The total pulse time, T, is given by T = ton + 

toff and the duty cycle as  = ton/T. For pulse reverse plating we can define a peak cathodic 

current, ip, of duration ton followed by a reverse (anodic) current of i’p and duration trev. The 

pulse time is then T = ton + trev and the cathodic duty cycle is  = ton/T. It should be noted that all 

theoretical treatments of mass-transport effects in pulse plating assume perfect rectangular 
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pulses, but in reality this may not be fully realised due to double layer charging/discharging 

effects or limitations of the pulse rectifier.1,2  

 

As noted in the introduction, in 1980 Ibl8 presented a mass transport model applicable to 

deposition using simple rectangular unipolar current pulses. He introduced the concept of a dual 

diffusion layer consisting of an inner pulsating diffusion layer of thickness p coupled to an 

outer static diffusion layer (Figure 2). The outer concentration profile corresponds to the normal 

Nernst diffusion layer, with a corresponding steady state limiting current of iLIM. The inner 

concentration profile is associated with a pulse limiting current, ipLIM, which is the current 

density at which the surface concentration reaches zero at the end of the pulse (Figure 2). 

According to Ibl’s model these quantities can be expressed by the following equations: 

                                                   𝑖𝑝𝐿𝐼𝑀 = 𝑖𝐿𝐼𝑀 [
𝛿𝑝

𝛿
(1 − 𝜃) + 𝜃]

−1

                                                     (1) 

with 

                                                        𝛿𝑝 = [2𝐷𝑡𝑜𝑛(1 − 𝜃)]1/2                                                               (2) 

Crucially, while  is controlled by the hydrodynamic conditions, p depends only on the pulse 

parameters ton and  and the diffusion coefficient, D, of the reacting species.  Experimentally it 

is found that if either the steady-state, iLIM, or pulse limiting,  ipLIM, are exceeded this results in a 

reduced current efficiency and the formation of rough or dendritic deposits.10,16 Therefore it is 

necessary to choose pulse parameters carefully in order to not exceed transient or steady-state 

mass transport conditions.6,17 

 

An important question regarding these simplified models is whether they accurately describe the 

mass transport conditions under pulse plating conditions. In the case of rectangular current 

pulses it is possible to obtain numerical solutions without resorting to the approximations 

employed by Ibl. For example, both Cheh18,19  and Chin20,21 have derived more accurate 

solutions for unipolar and bipolar pulse plating and have also verified these results 

experimentally by comparing them with pulse limiting currents derived from transition time 
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measurements. Ibl8 initially found reasonable agreement between his and Cheh’s solution but 

Datta and Landolt9 subsequently found that this could be improved using the following revised 

expression for p: 

                                                           𝛿𝑝 = [
4

𝜋
𝐷𝑡𝑜𝑛(1 − 𝜃)]

1/2

                                                          (3) 

Using this modified equation, Datta and Landolt9 and later Chin and co-workers22 found that the 

agreement between the Ibl model and the more accurate expressions was typically 5 - 10% over 

a wide range of pulse parameters, lending credibility to the dual diffusion layer concept.  

 

In his 1996 paper Yin13 used a similar approach to Ibl8 to derive an expression for the pulse 

limiting current under pulse reverse conditions: 

                                                 𝑖𝑟𝑝𝐿𝐼𝑀 =

𝑛𝐹𝐷𝐶
𝛿𝑝

+ 𝑖𝑝
′ (1 − 𝜃) (

𝛿
𝛿𝑝

)

1 + 𝜃 (
𝛿
𝛿𝑝

− 1)
                                                         (4) 

where n is the number of electrons transferred, F is the Faraday constant and C is the bulk 

concentration of the reacting species. Note that by setting i’p = 0 equation 4 reduces to equation 

1 describing the unipolar case. In a 2008 publication Chang23 extended this treatment to the case 

of pulse reverse plating with a relaxation (i.e. zero current) period between the cathodic and 

anodic pulses. Despite these two studies, there has been no attempt to test these pulse reverse 

models either experimentally or against  numerical solutions and the applicability of Ibl’s model 

to the pulse reverse case is not known. Fortunately, Cheh19, Chin20,21 and Roy24 have provided 

accurate numerical solutions for the pulse reverse situations so that a means of evaluating the 

correctness of Yin’s proposal is available.  

 

3 Results and Discussion 

The main purpose of this paper is to evaluate the applicability of the duplex diffusion model to 

the case of pulse reverse plating by comparing Yin’s approximate expression for the pulse 

reverse limiting current, irpLIM, to that calculated from the more accurate numerical solution. In 
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the latter case we use an expression derived by Roy24 for the dimensionless pulse reverse 

limiting current, i*rpLIM: 
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                              (5) 

where λm= π2(m - 0.5)2,  m is a summation index, T*= DT/2 is the dimensionless pulse time and 

i’* = i’p/iLIM is the dimensionless pulse reverse current. As previously demonstrated by Roy24 

this equation is equivalent to those derived by Cheh18,19 and Chin.20,21 For the unipolar case the 

equation can be used with i’* = 0. Note that a positive sign convention is used for both the 

anodic and cathodic current in equations 4 and 5. In practice, the calculation of the pulse 

limiting current does not require the large (or infinite) series summation suggested by equation 

5. Typically, convergence is obtained for m < 10 but for small dimensionless times (e.g. T* < 

0.01) a summation to m =100 or higher was necessary.  Equation 1 can also be conveniently 

rewritten in dimensionless form as: 

                                            𝑖𝑝𝐿𝐼𝑀
∗ =  

𝑖𝑝𝐿𝐼𝑀

𝑖𝐿𝐼𝑀
=

1

𝛼(1 − 𝜃)1.5(𝜃𝑇∗)0.5 + 𝜃
                                          (6) 

The value of the coefficient  is √2 for Ibl’s original model and √4/𝜋 for the revised equation. 

 

In order to test the accuracy of the various mass transport models it is necessary to compare 

equations 4, 5 and 6 under a wide range of pulse conditions. For convenience it is useful to 

analyse these as plots of dimensionless pulse limiting current (i.e. i*rpLIM and i*pLIM) against the 

dimensionless pulse time, T* = DT/2. Pulse limiting currents were computed for T* ranging 

from 0.001 to 10. For a typical liquid phase diffusion coefficient of 5.0 × 10-6 cm2 s-1 and a 

diffusion layer thickness of  = 50 m this corresponds to pulse times of T = 5 ms – 50 s. The 

range of duty cycles (0.01 <  < 0.50) and dimensionless reverse currents (0 <  i’* < 5) 
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examined were based on an earlier analysis by Roy24 who determined the practical range of 

parameters during pulse reverse plating.  

 

Before investigating the pulse reverse model it is instructive to re-examine the simple unipolar 

case. Figure 3 shows the dimensionless limiting pulse current as a function of duty cycle 

calculated using equations 5 and 6. Equation 5 predicts values which are within 1% of the 

values calculated by Chin20-22 and also shows the correct limiting behaviour for extremely short 

pulses  i*pLIM (T* → 0) = 1/ and i*pLIM (T* → ) = 1  corresponding to infinitely large pulses 

(i.e. DC plating conditions). Also shown are the plots as dotted lines are the pulse limiting 

currents calculated using equation 6 with two different values of α. Once again, these results are 

essentially identical to those obtained by Landolt9 and Chin.22 Collectively they predict values 

of i*pLIM that are generally lower than for the more accurate numerical solution but the 

agreement is better as the duty cycle increases ( → 0.50). They also show larger deviations for 

long dimensionless pulse times. Note that while equation 6 correctly predicts i*pLIM (T* → 0) = 

1/  it incorrectly predicts i*pLIM (T* → ) = 0 and indeed the calculations often show that i*pLIM 

is less than unity for T* > 1.    

 

In summarising the unipolar results, we can say that Ibl’s original models agrees with the more 

accurate models to within 1 - 20% over the range 0.01 < T* < 1 and 0.01 <   < 0.50 with a 

mean error of 6%. In contrast, the revised model shows a much improved fit over the same 

parameter range with typical variations of 1 - 10% and a mean error 3%. These findings are in 

agreement with earlier studies9,22 and indicate that the revised model should always be used 

when the highest accuracy is desired.  

 

The results for the bipolar case are shown in Figures 4 and 5 and are summarised in Tables 1 

and 2. Figure 4 indicates the variation in the dimensionless pulse reverse limiting current as a 

function of the T* and i’* at a fixed duty cycle of  = 0.50. The solid lines indicate equation 5 
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while the dotted lines indicate the use of Yin’s equation using the two definitions of p. Once 

again the results obtained using equation 5 agree closely with those given by Chin for pulse 

reverse plating.20,21 The lowest curve represents the unipolar case (i’* = 0) and it can be seen 

that, at constant T*, higher values of the pulse reverse limiting current are obtained as i’* 

increases. This is expected as larger anodic current pulses will increase the concentration of the 

reacting ions at the surface (see Figure 2b). Therefore, in the subsequent cathodic pulse a larger 

current density will be required to reduce the surface concentration to zero at the end of the 

pulse.13,20  Figure 4 also indicates that Yin’s equation provides a reasonably good agreement 

with the more accurate solution over a wide range of T* values. As was found for the unipolar 

case, the agreement is worse for T* > 1 and in some cases gave rise to unphysical results (e.g. 

irpLIM < 1 or irpLIM < 0). 

 

Figure 5 shows the variation in the dimensionless pulse reverse limiting current as a function of 

T* at various values of  and for i’* = 2. The solid lines show the prediction of equation 5 and 

the dotted lines those calculated from Yin’s equation using the two definitions of p. These 

results are again essentially identical to those reported by Chin.20,21 It can also be seen that the 

approximate model agrees very well with the numerical solution. As was the case for unipolar 

pulses, the agreement is worse for low duty cycles and for large dimensionless pulse times, and 

the revised model is again more accurate than Ibl’s model under all conditions.  

 

An additional constraint on pulse reverse plating is the condition that the charge associated with 

the cathodic pulse must be larger than that associated with the anodic pulse if deposition is to be 

observed.20,24 This is reflected in the black dotted line in Figure 5 which defines the boundary 

between net deposition and dissolution. Notably, for   < 0.50 the region of practical deposition 

always occurs at T* < 1 and this is also the region where the duplex model shows the smallest 

deviations from the more accurate solutions. 
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The overall conclusions for the bipolar case are similar to those for the unipolar cases, in that 

the dual diffusion layer model employing Yin’s equation is capable of predicting the pulse 

limiting current over a wide range of pulse conditions.  For the original definition of p and the 

parameter space 0.001 < T* < 1, 0.01 <   < 0.50 and 0 <  i’*  <  5 the variation against the more 

accurate solution is 1 - 30% with a mean error of 12%. For the corresponding revised definition 

of p the range is 1 - 10% with a mean error of 4%. The latter result can be compared to a mean 

error of 3% in the unipolar case over a similar range of pulse conditions. 

 

The main limitation of the simplified Ibl model in pulse and pulse reverse plating is 

undoubtedly the inaccurate predictions of mass transfer characteristics for long pulse durations 

(i.e. T* > 1). This is not entirely unexpected as the distinction between the pulsing and 

stationary diffusion layers becomes less reasonable at long times where essentially steady-state 

conditions prevail. Generally this is not an issue as pulse times are usually of the order of 0.01  - 

1 s, but in some implementations of pulse reverse plating very long (i.e. 1 - 10 s) pulse cycles 

are employed.14,15 In these cases it would be more prudent to use Roy’s or Chin’s equation to 

calculate the pulse limiting current.  

  

4 Conclusions 

The application of Ibl’s duplex diffusion layer model to the modelling of mass transport effects 

in pulse reverse plating has been investigated. Specifically, we have tested the accuracy of the 

equations derived by Yin for the pulse reverse limiting current density against the more accurate 

numerical solution provided by Chin20-22 and Roy.24 It was found that the revised model could 

accurately predict the pulse reverse limiting current density over a wide range of pulse 

conditions. Deviations from the numerical solutions were of similar magnitude to those 

calculated for normal pulse plating, and were typically less than 10%. Additionally, the use of 

the revised definition of p substantially improved the agreement between Ibl and Yin’s simple 

model and the more accurate models. In general the model is most accurate at long duty cycles 
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( → 0.5), small dimensionless times (T* < 1) and for low values of the dimensionless pulse 

reverse current (i’* < 2). For longer pulse times the model becomes increasingly inaccurate and 

its use in these circumstances cannot be justified. 
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Dimensionless limiting pulse reverse current density, 

i*rpLIM 

 T* Numerical 

solution 

(equation 5) 

Approximate 

solution 

(equation 3 & 4) 

Approximate 

solution 

(equation 2 & 4) 

 

 

0.10 

0.001 25.63 25.36 24.77 

0.01 21.61 20.99 19.71 

0.1 14.16 13.28 11.59 

1.0 6.038 5.414 4.226 

10 1.221 0.821 0.295 

 

 

0.50 

0.001 3.887 3.895 3.869 

0.01 3.657 3.680 3.604 

0.1 3.034 3.092 2.904 

1.0 1.671 1.836 1.515 

10 1.000 0.155 -0.146 

 

 

Table 1: Comparison of the dimensionless pulse reverse limiting current density calculated 

from various models and with i’*
LIM = 2. 
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Dimensionless limiting pulse reverse current density, 

i*rpLIM,  

i’* T* Numerical 

solution 

 (equation 5) 

Approximate  

solution 

(equation 3 & 4) 

Approximate 

solution 

(equation 2 & 4) 

 

 

0 

(unipolar) 

0.001 1.962 1.965 1.956 

0.01 1.885 1.893 1.868 

0.1 1.678 1.697 1.635 

1.0 1.224 1.279 1.172 

10 1.000 0.718 0.618 

 

 

2 

0.001 3.887 3.895 3.869 

0.01 3.657 3.680 3.604 

0.1 3.034 3.092 2.904 

1.0 1.671 1.836 1.515 

10 1.000 0.155 -0.146 

 

 

 

Table 2: Comparison of the dimensionless pulse reverse limiting current density calculated  

from various models at a fixed duty cycle of  = 0.5. 
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Fig. 1: Pulse current waveforms and definitions for: (a) normal pulse plating and (b) pulse 

reverse plating.   
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Fig. 2: Schematic diagram of dual diffusion layer formed near the electrode surface according to 

Ibl8 and Yin.13 (a) normal pulse plating8 (b) pulse reverse plating.13 The black lines represent the 

concentration profile just at the start of the cathodic pulse. Solid red lines show the evolution of 

the concentration gradient during the pulse. Dotted red line corresponds to the attainment of the 

pulse limiting current. 
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Fig. 3: Plot of the dimensionless pulse limiting current versus the dimensionless pulse time for 

unipolar pulses at various duty cycles (a)  = 0.01 (b)  = 0.05 (c)  = 0.10 (d)   = 0.20 (e)  = 

0.50. The solid lines represent equation 5. Long dashed lines are plots of equation 6 with α =

√4/𝜋; short dashed lines are plots of equation 6 with α = √2. 
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Fig. 4: Plot of the dimensionless pulse reverse limiting current versus the dimensionless pulse 

time for bipolar and unipolar pulses at a fixed duty cycle of  = 0.50 and at various values of the  

pulse reverse limiting current (a) i’* = 5 (b) i’* = 2  (c) i’* = 1  (d)  i’* = 0. The solid lines 

represent equation 5. Long dashed lines are values derived from equation 4 and with p defined 

by equation 3. Short dashed lines are calculated from equation 4 and with p defined by 

equation 2.  
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Fig. 5: Plot of the dimensionless pulse reverse limiting current versus the dimensionless pulse 

time for bipolar pulses with i’* = 2 at various duty cycles (a)  = 0.05 (b)  = 0.10 (c)  = 0.20 

(d)  = 0.50. The solid lines represent equation 5. The long dashed lines are values derived from 

equation 4 and with p defined by equation 3. Short dashed lines are calculated from equation 4 

with p defined by equation 2.  

  

 


