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1. ABSTRACT

In recent years many new and exciting space con-
cepts have developed around spacecraft formation
flying. This form of distributed system has the
advantages of being extremely flexible and robust.
This paper considers the development of new control
methodologies based on the artificial potential func-
tion method and extends previous research in this
area by considering bifurcation theory as a means
of controlling the transition between different forma-
tions. For real, safety critical applications it is im-
portant to prove the stability of the system. This
paper therefore aims to replace algorithm validation
with mathematical proof through dynamical systems
theory. Finally we consider the transition of forma-
tions at the Sun-Earth Ly point.

2. INTRODUCTION

In recent years formation flying has emerged as
an important type of distributed satellite system
that enables a variety of missions that can improve
significantly the functionality of the system in
comparison with a large single satellite [1]. Gill
et al. [2] define formation flying “as a technology,
that includes two or more spacecraft in a tightly
controlled spatial configuration, whose operations
are closely synchronized”. This technology can then
be used to create a single virtual sensor much larger
than what could be achieved with a single satellite.

At present there are several formation flying
concepts that are being investigated. NASA, for
example, have been studying the use of formation
flying for interferometric/sparse aperture missions.
The Stellar Imager is an example of such a mission
that consists of a UV/Optical deep-space telescope
composed of approximately 30 one-meter array
elements [3]. Another example is ESA’s DARWIN
mission that will consist of 6 spacecraft equipped
with telescopes, searching for earth-like planets [4].

The distributed control of spacecraft flying in
formation can be divided into either centralised
or decentralised control. Landsat-7 and Earth
Observing-1 satellites are examples of a hierarchical
(leader-follower) centralised mission and is generally
considered the first real mission to demonstrate
formation flying. The two satellites in this formation
do not communicate with each other and are con-
trolled discretely by the ground. The limitation of
this system is that it is dependent upon the central
controller and is therefore susceptible to failure. As
the number of spacecraft increase, the workload
required to maintain a formation discretely will
increase significantly. A promising approach to
overcome this is to develop control architectures
based on an autonomous decentralised system in
which all spacecraft interact producing an emergent
behaviour. For example, McQuade et al. have
shown how this can be achieved in the autonomous
configuration of satellite formations [5] through the
use of an artificial potential function method.

The aim of this paper to develop new control
methodologies for formation flying missions, tak-
ing inspiration from the work done in behavioral
robotics. In addition it also considers increasing the
formation size (>10), being able to switch between
different formations through a simple parameter
change and verifying through dynamical systems
theory that desired behaviors will always occur.

Behavioural Robotics was first introduced in the
mid 1980’s by Brooks [6] who suggested that
although previous research had been dominated by
the ideas of a centralised control paradigm, a signif-
icant step forward would be to draw on inspiration
from nature and have a decentralised control system.

There are several different control architectures in
behavioral robotics with one of the most popular
being based on the superposition architecture [7]
such as the artificial potential function method used
throughout this paper. It has been used success-
fully, for example, by Reif and Wang as a form



of distributed behavioral control for autonomous
robots [8], by Badaway and McInnes in autonomous
structure assembly [9] and by McQuade [5] for
formation flying.

For real, safety critical applications it is essential
that the behaviour of the spacecraft be verified in
order to ensure that no unwanted behaviours will
occur. Winfield [10] has introduced the term ‘swarm
engineering’ to highlight the key issues that are in-
volved in real, safety critical applications as opposed
to those based on simulation. Through the use of
dynamical systems theory this paper aims to replace
algorithm validation with mathematical proof in
order to control spacecraft flying in formation. Bi-
furcation methods are employed to create a flexible
system that can allow for different configurations to
be formed through a simple parameter change.

The paper proceeds as follows. In the next section
we describe the model used and explain the artificial
function method and bifurcation theory. Section 3
considers the stability of the system and section 4
moves on to show the different formations that can
be achieved using the model. Section 5 considers the
deployment of a spacecraft formation flying at the
Sun-Earth Lagrangian Lo point.

3. FORMATION MODEL

3.1. Artificial Potential Functions and Bifur-
cation Theory

We consider a swarm of homogeneous autonomous
satellites (1 < ¢ < N) interacting via an artificial
potential function, U. The negative gradient of the
artificial potential defines a virtual force acting on
each spacecraft so the dynamics of each spacecraft
can be described by Eq. 1 and 2 with mass, m,
position, x;, and velocity, v;;
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From Eq. 2 it can be seen that the virtual force
experienced by each satellite is dependent upon the
gradient of two different artificial potential functions
and a dissipative term, where ¢ > 0 is a constant
that controls the amplitude of the dissipation. The
first term in Eq. 2 is the steering potential, U®,
whereas the second term in Eq. 2 is the repulsive
potential, UF.

The steering potential is based on the simple pitch-
fork bifurcation [11] as shown in the first two terms
of Eq. 3. The aim of this potential is to drive each
satellite to a goal distance, r, from the origin in the
x-y plane. The last term in Eq. 3 is to ensure that
the formation is created in the x-y plane, where the
constant « controls the amplitude of this quadratic
potential and x; = (2, v, 2;)7 .

Depending on the value of u, the steering potential
can have various forms. Fig. 1 shows how the poten-
tial bifurcates into the two local minima when p = 0
and Fig. 2 shows an example of the potential when
1 is negative and positive.
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Figure 2. Potential field: (i) p <0 and (%) p >0

The stability of the equilibrium state of the artificial
potential can be determined by reducing the equa-
tion to two variables, p; and z; as shown in Eq. 4,
where p; = (22 +y?)'/? and x; = (ps, 2:)"
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For a function consisting of two variables the stability
of the system is determined from the sign of D given
in Eq. 5 [12].
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The conditions for stability are as follows;

(i) D > 0, 9*°U/9p? > 0 = equilibrium point is a
stable minimum.

(ii) D > 0, 9?U/dp? < 0 => equilibrium point is a
unstable maximum.

(iii) D < 0 = equilibrium point is a saddle.

The equilibrium of the potential occurs whenever
OU/dp; = 0 and OU/0z; = 0. Therefore,
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If p < 0 equilibrium occurs when p; =r. If p > 0
equilibrium occurs when p; = r, r & /1. To deter-
mine whether the equilibrium is either a stable min-
imum or unstable maximum we have to consider the
sign of the second derivative of the potential shown
in Eq. 8 and Eq. 9.

U
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From Eq. 9 it can be seen that 9*U/dp;0z; = 0 and
as « is positive, 902U/9z? > 0.

From Eq. 8 it can be seen that 9?U/dp? = 0
depending on the values of p.  Therefore, the
properties of the equilibrium state p., are:

when p < 0 =
peq = 1, s0 ?U/Op? > 0 = pe, is a stable
minimum.

when p > 0=

Peq =T, s0 0?U/Op? < 0 => pe, is an unstable
maximum.

peq =7+ /H, so O*U/Op? > 0= p., Is a stable
minimum.

Peq =T — \/H, so O*U/Op? >0=> p., Iis a stable
minimum.

as can be seen in Fig. 1 and Fig. 2.

The repulsive potential is based on a generalized
Morse Potential [13] as shown in Eq. 10.

Ut = Z C, exp1xial/Er (10)
JJFi

Where the constants C, and L, represent the am-
plitude and range of repulsive potential respectively
and x;; = X; — X;. The total repulsive force on the
ith spacecraft is dependent upon the position of all
the other (N — 1) satellites in the swarm.

The repulsive potential is therefore used to ensure
that as the spacecraft are steered towards the goal
state they do not collide with each other. Once all
the spacecraft have been driven to the desired equi-
librium state the repulsive potential also ensures that
they are equally spaced in a ring.

3.2. Cusp Catastrophe

A useful extension to the 1D pitchfork bifurcation is
to consider the 2D Cusp Catastrophe given in Eq.
11. Fig. 3 shows the variation of the equilibrium
position with the two parameters, x4 and v.

2
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Figure 8. Cusp catastrophe surface [14]



For the cusp potential, if we set v equal to zero
we have the usual pitchfork bifurcation equation as
shown in Fig. 4. If however, v > 0 and v < 0 the
system can be tipped into either the lower or upper
branch of the pitchfork equation as shown in Fig. 5.
Thus if the system was in the bi-stable state, con-
trol over the position of a single minima state can be
achieved through the variation of the 2D bifurcation
parameters.

Pi

Figure 4. Bi-stable state: two ringed formation v =
0, u<0
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Figure 5. Potential field: (i) v <0 and (i) v >0

3.3. Rotation of Formation

Recent work by McInnes [15] has shown how vor-
tex like swarming can be achieved through artificial
potential field methods. Eq. 1 and 2 are altered to
include an dissipative orientation term instead of the
velocity dependent dissipative term as shown in Eq.
12 and 13. Eq. 14 shows the orientation term that
dissipates energy whilst aligning the velocity vectors

of members of the swarm where C, and L, are con-
stants.
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The vortex like results can be seen through the con-
servation of angular momentum. Taking the cross
product of the Eq. 13 with the position vector, x;,
the conservation of angular momentum can be seen
since x; X x; = 0 by definition and the sum of x; x x;
vanishes since x; X x; = —(x; X x;) so that;

X; X _Ai = ZOO <Vij.(Xi XX T X X Xj)>
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The rate of change of angular momentum (H) can
therefore be shown to equal zero by summing over
all states as shown in Eq. 18, so that the system
conserves angular momentum.

. d
in Xmv; = E Z(Xl X sz‘)
dH
— =0 18
o (18)

The swarm therefore dissipates energy while conserv-
ing angular momentum and so relaxes into the rotat-
ing ring [15].



3.4. Orientation of Formation

So far the dynamical equations have been set up
in order for the formation to be created in the
x-y plane. It may however be required to create
the formation in a different plane and this can
be achieved through the direction cosine matrix
approach [16].

Rotating about the x-axis and y-axis by an angle of
« and  respectively we can achieve different orienta-
tions of the formation. The direction cosine matrix,
C, for each rotation about the x and y axis is shown
in Eq. 19 and 20.

1 0 0
C,= ( 0 Cosa Sina ) (19)
0

—Sina Cosa

Cos 0 —Sing
C,= < 0 1 0 ) (20)
Sing 0 Cosp

The new desired position vector, x|

i, is therefore
shown in Eq. 21.

=C,C,

| —
SRS

" ] (21)
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4. STABILITY

In order to use the methods developed in real, safety
critical applications it is important that the stability
of the system be determined to ensure that desired
behaviours will always occur. As real engineered sys-
tems are often subject to noise, it is important to
ensure that system will remain in the desired config-
uration even if it is perturbed. To determine the sta-
bility of our system we consider two methods; Lya-
punov’s Second Theorem and an eigenvalue analysis
of the linearized equations of motion.

4.1. Non-linear Stability

To determine the non-linear stability of the dynam-
ical system, Lyapunov’s Second Theorem can be
used as expressed by Kalman and Bertram [17][18];

“If the rate of change of dE(x)/dt of the energy
E(x) of an isolated physical system is negative for
every possible state x, except for a single equilibrium
state x., then the energy will continually decrease

until it finally assumes its minimum value E(x.)”

The aim of the steering potential is to drive the
spacecraft to the desired equilibrium position that
corresponds to the minimum of artificial potential.
Therefore, if Lyapunov’s Second Method can be
proved for the system, as time evolves the system
will relax into the minimum energy state.

The Lyapunov function, L, is defined as the total
energy of the system, where U”(x;) and U%(x;;) are
defined in Eq. 3 and Eq. 10 respectively so that;

L= Z( vi4+ U5 (x )+UR(xij)) (22)

It should be noted that since the repulsive potential
is a pairwise force, the summation over the entire

system will vanish (}°, V,UR(x;;) = 0).

The rate of change of the Lyapunov function can be
expressed as;

dL oL\ . oL\ .
i <5Xi) X; + <5_Vl) Vi (23)

Then, substituting Eq. 2 into Eq. 23 it can be seen
that;

dL
—tz—zavfgo (24)

From [11] Lyapunov’s Second Theorem states that

if L is a positive definite and L is a negative defi-
nite the system will be uniformly stable. A problem
arises in the use of the superimposed artificial po-
tential function as L < 0. This implies that L could
equal zero in a position other than the goal minimum
suggesting that the system may become trapped in
a local minimum. In order to ensure that our system
is asymptotically stable at the desired goal state the
LaSalle principle [19] can be used. It extends the
above constraints to state that if L(0) = L(0) = 0
and the set {xl|L = 0} only occurs when x; = Xeq,
then the goal state is asymptotically stable. There-
fore, for the dynamic system considered in this pa-
per the LaSalle principle is valid. As we have a well
defined symmetric potential field, equilibrium only
occurs at the goal state so the local minima problem
can be avoided and the system will relax into the
desired goal configuration.



4.2. Linear Stability

The purpose of the linear stability analysis is to
determine the local behaviour of the system by
calculating its eigenvalue spectrum. Therefore, by
neglecting the repulsive potential, equilibrium of
Eq. 1 and 2 occurs when x; = v; =0, so v; = 0 and
VU?® = 0. This occurs when Peqg = 1 if < 0 and
Peq = 7,7 L/ if pp >0, with z¢q = 0.

By considering small displacements from the equilib-
rium points of the system, linearisation can be used
to predict the system behaviour such that;

(f) = (—ovi —ViiUS(x»)
(

f(xi,vi) ) (25)

9(xi,vi)

Let x, and v, denote fixed points with x; = v; =0
so that;

f(%x0,v5) =0 (26)

g(xo,vo) =0 (27)

Defining x; = x; — %, and 0v; = v; — v, and Taylor
Series expanding about the fixed points the eigenval-
ues of system can be found. As it is assumed that
0x; and dv; are small, we only consider the first order
terms of the expansion so that;

(w)=a() e

2 (f(xivi)) o= (f(xi Vi)
— o0x; v,
7= < a?ci (9(xi,v4)) v, (9(xi,vi)) )

0 0 1 0
0 0 0 1
= 9*U 9*U
9*U 9*U
Opi0z; 922 0 -

i X0,Vo

Substituting a trial exponential solution into Eq. 28

we find lhal;
5Xi 5XO
< (Svi > < (SVO )GME (31)

Therefore, the eigenvalues, A, of the system are found
when det(J — AI) = 0.

4.2.1. FEigenvalue Spectrum when u <0

As shown previously, if 4 < 0 equilibrium of the sys-
tem occurs when x,1 = (r,0) and v; = 0. Evaluating
the Jacobian matrix given in Eq. 30 we find that;

0 o0 1 0
0 o0 0 1

J, = L0 —o 0 (32)
0 —a 0 -0

The corresponding eigenvalue spectrum is therefore;

| 1/2(—0 £ /(0? — 4))
A= { 1/2(—0 4 /(02 + 4u)) (33)

Depending upon the values of the constants in the
dynamical system, the eigenvalues can be chosen to
obtain different classifications for the equilibrium.
For p < 0, if the constants o and « are chosen so that
0?4+ 4 < 0 and 02 — 4a < 0, the system will be in
an asymptotically stable spiral. If, however, u = 0,
the eigenvalues are; A = 1/2(—c + /(0% — 4«)) and
A = —0;0 so the system will be in a stable spiral
mode.

As an example consider a system with the following
parameters; p = —2.5, « = 2 and ¢ = 2. The cor-
responding eigenvalues are then; A\ = —1 + 2i and
—1 + 2.45i indicating that if a spacecraft was driven
to the equilibrium state and given a small perturba-
tion it would relax back into that equilibrium state.

4.2.2. Figenvalue Spectrum when p > 0

If 4 > 0 equilibrium of the system occurs when x,; =
(1,0), Xo2 = (1 + \/11,0) and x,3 = (r — \/11,0) with
v; = 0. The Jacobian matrix evaluated at the three
different equilibrium positions is given by Eq. 34, 35
and 36 respectively as;

0 o 1 0
0 o0 0 1

J, = L 0 —o 0 (34)
0 —aa 0 -0



0 0o 1 o0
0 0o 0 1
Te=| -3/ 0 - 0 (35)
0 —-a 0 -0
0 0o 1 o0
B 0 0o 0 1
Js=| u43/m 0 —o 0 (36)
0 —-a 0 -0

The eigenvalues for J; are;

N 1/2 (-0 £ /(0% — 4a) (37)
1/2 (-0 £ /(0% +4p)

Therefore, referring back to Fig.  2(ii) it can
be seen that when g > 0 and x,1 = (r,0) this
should correspond to an unstable position. For
this to be true the parameters in Eq. 37 have to
be chosen in order for the eigenvalues to be either
real and positive or complex with a positive real part.

The eigenvalues for Jo are;

N { 1/2 (—U:I: (02 — 4a)) (38)
1/2 (o + /(07 T dp— 12p))

Again referring back to Fig. 2(ii) it can be seen that
when p > 0 and X, = (r+ /11, 0) the system should
be in a stable equilibrium. To ensure that this is
the case the constants have to be chosen so that the
eigenvalues are either complex with negative real
part or real and negative.

Lastly the eigenvalues for J3 are;

- { 1/2 (—0 + /(02— 4a)) (39)
1/2 (=0 £ /(02 + 4+ 12\/0))

Again Fig. 2(ii) indicates that this point should be
stable, therefore by ensuring that the constants are
chosen so that the eigenvalues are either complex
with negative real part or real and negative the equi-
librium position will be linearly stable.

5. NUMERICAL RESULTS

5.1. Formation Patterns

Fig. 6 shows the three different satellite formations
that can be formed using the pitchfork bifurcation.
The system considered is for a swarm of 30 space-
craft with unit mass, where o and « are constant
throughout the simulation.
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Figure 6. Formation patterns: (i) ring (ii) two rings
(i) cluster

The first formation shows a ring corresponding to
= —2. The radius of the ring is determined by
the magnitude that the steering potential has been
moved along the x-axis (in this case r = 3). The sec-
ond formation consists of two rings, where the steer-
ing potential has been altered to the bi-stable state
with u = 2. The stable equilibrium point in the first
formation then becomes unstable and the system bi-
furcates into two rings. The final formation corre-
sponds to the case when y = —2 and » = 0. The
spacecraft are then driven towards the origin with
the repulsive potential causing a cluster to form.

5.2. Transition between Formations

Figures 7 shows the transition of a formation of
30 spacecraft in the x-y plane. As it can be seen



from Fig. 7, the system changes from a ring to
two rings to a cluster then back to a ring. This is
achieved through a very simple parameter change
and is one of the advantages of using the pitchfork
bifurcation equation as a basis for the artificial
potential function. Rather than controlling each
spacecraft individually the global pattern of the
formation can be manipulated by the bifurcation
parameter, p.

150

Ring

" Cluster

time

Two rings

Figure 7. Smooth transition between different forma-
tions: (i) formation of the pattern on the z-y plane
(i) evolution of system in z-y plane

5.3. Cusp Catastrophe Transitions

Figure 8 demonstrates how a 2D bifurcation can be
used to alter a spacecraft formation. As can be seen
if we start in the two ring case when v = 0 and vary v
therefore performing a bifurcation on the system we
can either tip the system into a large or small ring.

Inner ing

Quter ring

Two fings

e

Figure 8. Evolution of cusp catastrophe results

5.4. Rotation of the Formation

Figures 9 shows the rotation of the ring formation
using Eq. 14. The formation relaxes into to a single
ring and conserves angular momentum by rotating
about its centre of mass.

Figure 9. Time evolution of vortex ring

5.5. Orientation of the Formation

By defining the desired orientation angle different
orientations of the formation of spacecraft can be
achieved as shown in Fig. 10. The results show a
formation of spacecraft being formed at an angle a =
45° and @ = 30°.

Figure 10. Orientation of formation: o = 45° and
8 =30°

6. SUN-EARTH L, POINT

In this section we consider positioning a spacecraft
formation at the Sun-Earth Lo lagrange point. Us-
ing a similar convention to that set out by Wie [16]
the dynamics of this system are found by consider-
ing the circular restricted three body problem. It is



assumed that the motion of the Sun and Earth are
constrained to circular orbits about their barycenter
and that they rotate at a constant angular velocity
(w). Fig. 11 shows the circular restricted three body
problem in the rotating coordinate frame about the
barycenter for the Sun and Earth.

SATELLITE
FORMATION

Figure 11. Sun-Earth circular restricted three body
problem

For the Sun-Earth system there are five equi-
librium points in the system with the collinear
equilibrium  points  (Xy, Yy, Zp), occuring at
L1(—0.990026D,0,0), Lo(—1.01003D,0,0) and
L3(1D,0,0) where, D = Dy + D, = 1.5 x 10*'m.

From Wie [16] the linearized equations of motion
about the Lo equilibrium point are described by Eq.
40, 41 and 42 assuming unit mass for each spacecraft.

i — 2wy — (W? + 202, =0 (40)
Ji + 2w + (¢* — w?)y; = 0 (41)
2+ (%2 =0 (42)
where,
_ G(Mearth + Msun)
w = D3

= 1.9830 x 10~ "rad/s (43)

Mear —
(=——cath  _ 30037 x 106 (44)

Mearth + Msun

Using the linearized system centered on the Lo point
the equations of motion can be altered to include the
steering, repulsive and dissipative forces defined in
Eq. 2 so that the full linearized equations of motion
for each spacecraft described by Eq. 45, 46 and 47

are;

oUt
B 2w — 2 22 . = —of; —
& wy; — (w* 4+ 2¢°)x ox e
ou®
o (45)
R
Ji+ 2wi + (P — 0Py = —opi - aaii
ous
o (46)
out  ous

Figure 12 shows the evolution of the system of 30
spacecraft interacting and forming a single ring and
then through the pitchfork fork bifurcation method
altering to a cluster in the x-y plane.

z
[N ¥ N R S

Figure 12. Spacecraft formation at Lo: (i) initial
conditions (i) formation of a single ring (iii) bifur-
cation of system (i) formation of the cluster

7. CONCLUSION

We have shown that the control of spacecraft fly-
ing in formation can be achieved through the use of
the artificial potential function method. We have ex-
tended previous research in this area through the use
of bifurcation theory to demonstrate that through a
simple parameter change a formation of spacecraft
can be made to alter their configuration and shown
how 1D and 2D bifurcations can be used to this ef-
fect. An important step in real engineered systems
is to ensure that the formation can form reliably.
Through dynamical systems theory we have proved
the non-linear stability of the system and also the



linear stability of a spacecraft driven to the equi-

librium position.

To demonstrate the use of the

method developed here in space applications the for-
mation is established about the Sun-Earth L, point.
Through the use of linearized equation of motions we
have shown how a formation of spacecrafts could be
achieved in a real application.
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