
NULL-SPACE PRECONDITIONERS FOR SADDLE POINT SYSTEMS

JENNIFER PESTANA∗, TYRONE REES†

Abstract. The null-space method is a technique that has been used for many years to reduce
a saddle point system to a smaller, easier to solve, symmetric positive-definite system. This method
can be understood as a block factorization of the system. Here we explore the use of preconditioners
based on incomplete versions of a particular null-space factorization, and compare their performance
with the equivalent Schur-complement based preconditioners. We also describe how to apply the non-
symmetric preconditioners proposed using the conjugate gradient method (CG) with a non-standard
inner product. This requires an exact solve with the (1,1) block, and the resulting algorithm is
applicable in other cases where Bramble-Pasciak CG is used. We verify the efficiency of the newly
proposed preconditioners on a number of test cases from a range of applications.

AMS subject classifications. 65F08, 65F10, 65F50

Key words. Preconditioning, saddle point systems, null-space method

1. Introduction. We consider the fast solution of saddle point systems of the
form

Aw =

[
A BT

B 0

] [
x
y

]
=

[
f
g

]
= b, (1.1)

where A ∈ Rn×n, B ∈ Rm×n, m ≤ n. We suppose that B is of full rank, and that A
is symmetric positive semi-definite, and positive definite on the kernel of B.

Solving systems with this structure is a vital component in numerous scientific
computing algorithms; for example, such systems arise naturally in constrained op-
timization problems [7, 13, 15, 25], Stokes and Navier-Stokes equations in fluid me-
chanics [5, 9, 16], time-harmonic Maxwell equations [26, 32], and the application of
Kirchhoff’s laws in circuit simulation [46, 50]. For an overview of solution methods,
see the survey article of Benzi, Golub and Liesen [4], and the references therein.

The null-space method is a technique for solving systems of the form (1.1). This
method requires a particular solution x̂ ∈ Rn such that Bx̂ = g, and a matrix Z
whose columns span the null-space of B. Then, since x = Zxn + x̂, we can solve (1.1)
by first finding xn from

ZTAZxn = ZT (f −Ax̂), (1.2)

and then recovering y from the overdetermined system BTy = f − Ax; see, e.g., [4,
Chapter 6] for more details. There exist many methods for obtaining a null-space
matrix Z but a common choice is the fundamental basis,

Zf :=

[
−B−11 B2

I

]
, (1.3)

where B = [B1 B2] and, without loss of generality, B1 ∈ Rm×m is nonsingular. Note
that because the rank of B is m, we can always permute B to obtain an invertible
B1.

∗University of Strathclyde, jennifer.pestana@strath.ac.uk. This work was completed at the Uni-
versity of Manchester, supported by Engineering and Physical Sciences Research Council grant
EP/I005293.
†STFC Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk. This

author was supported by Engineering and Physical Sciences Research Council grant EP/I013067/1.

1

Even for sparse A the symmetric positive definite matrix ZTAZ is often dense,
and forming it could be costly. For larger problems, therefore, it may be better
to solve (1.1) rather than (1.2). It is possible to write down a number of matrix
factorizations that are equivalent to the null-space method—recently Rees and Scott
gave an overview [44]. We can obtain one particular factorization of A which falls
into this category by taking a 3× 3 blocking of A as

A =

A11 A12 BT1
A21 A22 BT2
B1 B2 0

 ,
where B1 ∈ Rm×m is, as in (1.3), assumed to be nonsingular. Consider a permuted
version of A,

Â := ΠAΠT =

A11 BT1 A12

B1 0 B2

A21 BT2 A22

 =:

[
Â B̂T

B̂ A22

]
, Π =

Im Im
In−m

 , (1.4)

where Im is the identity matrix of dimension m. The matrix Â is invertible with
inverse

Â−1 =

[
0 B−11

B−T1 −B−T1 A11B
−1
1

]
.

Therefore we can apply the standard block-LDLT factorization for saddle point sys-
tems [4, Equation (3.1)], obtaining

Â =

[
I 0

B̂Â−1 I

][
Â 0

0 A22 − B̂Â−1B̂T

] [
I Â−1B̂T

0 I

]
. (1.5)

This factorization has a connection with standard Schur complement precondi-
tioners and the range-space method. However, because of the permutation, it is also
closely related to the null-space method with the fundamental basis since, using (1.3),
we can re-write (1.5) as

Â =

 I 0 0
0 I 0

BT2 B
−T
1 XB−11 I

A11 BT1 0
B1 0 0
0 0 N

I 0 B−11 B2

0 I B−T1 XT

0 0 I

 , (1.6)

where

X := ZTf

[
A11

A21

]
and N := ZTf AZf = A22 − B̂Â−1B̂T . (1.7)

Our assumption that A is positive definite on the null-space of B means that the null-
space matrix N is symmetric positive definite. The approach in Section 2 of Rees and
Scott [44] applied here shows that solving Â(Πw) = Πb is equivalent to the null-space
method with the fundamental null-space (1.3) and particular solution

x̂ =

[
B−11 g

0

]
. (1.8)

2

Applying the inverse permutations Π and ΠT in (1.4) to Â in (1.6) we can easily
recover A.

One interpretation of the null-space method is therefore that the null-space ma-
trix ZTf AZf is equivalent to the Schur complement of the sub-block Â in Â. Note
that when the block A is invertible, the null-space matrix is equivalent to the Schur
complement of the dual saddle point system[

A−1 Z
ZT 0

] [
w
xn

]
=

[
−x̂
−ZTf

]
of (1.1) [4, page 32].

In this paper we present four preconditioners based on incomplete or approxi-
mate versions of the factorization (1.6). Since these preconditioners are intimately
related to the Schur-complement decomposition we can apply them using conjugate
gradients in a non-standard inner product [10]. However, the usual application of
such preconditioners requires certain quantities to be symmetric positive definite, and
this is typically attained by scaling the blocks appropriately. In our case this is not
possible without destroying the structure that we exploit, since we assume that we
can solve with a certain submatrix of A exactly. Accordingly, we extend the current
theory of conjugate-gradients in a non-standard inner product to allow for the case
where one of the sub-block solves is exact.

The rest of this paper is as follows. In Section 2, we give an eigen-analysis of the
preconditioned systems and show that the eigenvalues of the preconditioned matrices
are clustered when a good approximation to the null-space matrix (1.7) is known.
We describe the non-standard inner product CG method in Section 3, and describe
how our constraint preconditioner can be used within a projected Krylov subspace
method. In Section 4, we compare our preconditioners to standard Schur-complement
based methods based on the factorization[

A BT

B −C

]
=

[
I 0

BA−1 I

] [
A 0
0 −S

] [
I A−1BT

0 I

]
, (1.9)

where S = C +BA−1BT is the Schur complement of A. Note that this factorization
can only be applied if A is invertible, whereas the null-space method may be applied
even when A is singular. The problems we consider range from academic to practi-
cal, and illustrate the merits and limitations of our preconditioners. We give some
conclusions in Section 5.

2. Null-space preconditioners. Taking incomplete versions of the block LDLT

factorization (1.9) has proved to be an effective way of constructing preconditioners
for saddle point problems—see, e.g., [7, 16, 27, 30, 31, 43, 51]. The key component
of such methods is an approximation of the matrix S, which is often dense. In the
following we present, and give theory for, preconditioners based on the alternative
decomposition (1.5). In particular, we use the null-space decomposition

A =

 I 0 0

BT2 B
−T
1 I XB−11

0 0 I

︸ ︷︷ ︸

L

A11 0 BT1
0 N 0
B1 0 0

︸ ︷︷ ︸

D

I B−11 B2 0
0 I 0

0 B−T1 XT I

︸ ︷︷ ︸

LT

, (2.1)

as the basis of our preconditioners; see [4, Equation 10.35], [44]. We replace N by a

symmetric positive definite approximation Ñ , and possibly drop one or both of L and
LT .

3

2.1. The central-null preconditioner. First, we consider the preconditioner
formed by dropping both the L and LT terms from the factorization (2.1),

Pcn =

A11 0 BT1
0 Ñ 0
B1 0 0

 ,
where Ñ ≈ N = ZTf AZf . This corresponds to the block diagonal preconditioner in

the decomposition (1.9), because ΠPcnΠT is block diagonal. Accordingly, the cost of

applying Pcn is a solve with each of B1, BT1 and Ñ , as well as a matrix-vector product
with A11. Note that in our numerical experiments we use the matrix Pcn rather than
ΠPcnΠT , but either could be implemented in practice. This comment also applies to
the other preconditioners we introduce.

First, we give an eigen-analysis of the preconditioned system.
Theorem 2.1. Let Ñ be a symmetric positive definite approximation to N . Then

the generalized eigenvalues λ ofA11 A12 BT1
A21 A22 BT2
B1 B2 0

x1

x2

y

 = λ

A11 0 BT1
0 Ñ 0
B1 0 0

x1

x2

y

 , (2.2)

satisfy λ = 1, or

λ =
µ+ σ ±

√
(σ + µ)2 − 4µ

2µ
, (2.3)

where σ = yTA22y/y
TNy and µ = yT Ñy/yTNy.

Proof. Since Π from (1.4) is orthogonal, the eigenvalues of P−1cn A are the same
as those of ΠP−1cn AΠT = (ΠPcnΠT)−1(ΠAΠT), and therefore the eigenvalues needed
are those of the generalized eigenvalue problem[

Â B̂T

B̂ A22

] [
x
y

]
= λ

[
Â

Ñ

] [
x
y

]
. (2.4)

The first block row of (2.4) gives B̂Ty = (λ− 1)Âx, which implies that λ = 1 or

x = Â−1B̂Ty/(λ− 1). The second block row of (2.4) gives B̂x +A22y = λÑy. If we
assume that λ 6= 1 then substituting for x gives that

B̂Â−1B̂Ty + (λ− 1)A22y = λ(λ− 1)Ñy.

Using (1.7) we have that (λA22 − N)y = λ(λ − 1)Ñy. Premultiplying by yT and

setting µ := yT Ñy/yTNy we get yTNy − λyTA22y = λ(1 − λ)µyTNy, and hence
λ2 − (1 + σ/µ)λ+ 1/µ = 0, where σ = yTA22y/y

TNy.
Thus,

λ =
1 + σ/µ±

√
(σ/µ)2 + (2σ − 4)/µ+ 1

2
=
µ+ σ ±

√
(σ + µ)2 − 4µ

2µ
,

as required.
We now present a few results that give a better understanding of the behaviour

of these eigenvalues.

4

Corollary 2.2. Suppose that λ is a real eigenvalue of the generalized eigenvalue
problem (2.2). Then

1

(µ+ σ)max
≤ λ < 1 + λmax(Ñ−1A22)

where 0 ≤ λmax(Ñ−1A22) is the largest eigenvalue of Ñ−1A22 and (µ+ σ)max is the
largest value of µ+ σ.

Proof. For λ to be real we must have that (µ + σ)2 ≥ 4µ. The larger of the
eigenvalues in (2.3), λ+, satisfies

λ+ =
1

2µ

(
µ+ σ +

√
(µ+ σ)2 − 4µ

)
<

1

2µ

(
µ+ σ +

√
(µ+ σ)2

)
= 1 +

σ

µ
.

Now, since σ/µ = yTA22y/y
T Ñy ≤ λmax(Ñ−1A22) we obtain the upper bound.

Now consider the smaller eigenvalue, λ−. Note that λ− = (γ−
√
γ2 − δ)/2, where

γ = 1 + σ/µ, δ = 4/µ and δ ≤ γ2. For any x ∈ [0, 1], 1−
√

1− x ≥ x/2, and so

λ− ≥
1

4

δ

γ
=

1

µ+ σ
≥ 1

(µ+ σ)max
.

It is clear from the lower bound that the real eigenvalues are positive.
Remark 2.3. In the ideal case where µmin = µmax = 1, which corresponds

to Ñ = N , the lower bound becomes λ− > 1
1+σmax

. Furthermore, in this case the
eigenvalues are all real if σmin ≥ 1.

Corollary 2.4. The complex eigenvalues of (2.2) with nonzero imaginary part
satisfy

1

2
≤ Re(λ) <

1
√
µmin

, |Im(λ)| < 1
√
µmin

.

Proof. Since the eigenvalues of N−1A22 are nonnegative, any complex eigenvalue
λ satisfies Re(λ) ≥ 1

2 . Furthermore, Re(λ) ≤ 1/2 (1 + σmax/µmin) < 1/
√
µmin, with

the last step holding since µ+σ < 2
√
µ⇒ (µ+σ)/2µ < 1/

√
µmin. Now, the imaginary

part satisfies

|Im(λ)|2 =
(σ + µ)2 − 4µ

4µ2
≤ (σ + µ)2

4µ2
<

1

µmin
.

Note that the bound on the real part only holds for eigenvalues with a non-trivial
imaginary part. For real eigenvalues there may be some λ < 0.5 if any eigenvalue of
N−1A22 is larger than 1.5. It is also worth remarking that complex eigenvalues can
be bounded independently of σ.

One final special case we wish to highlight is when A22 is zero and µmin = µmax =
1. Here the central-null preconditioned matrix has only three distinct eigenvalues,

{1, 1±
√
3i

2 }, and this guarantees fast convergence of certain Krylov subspace meth-
ods. (We could also obtain these same three eigenvalues in this special case by
Schur-complement based arguments, following approaches found in, e.g., [18, 38].)
An example of where this structure arises naturally is in the interior point method

5

Table 2.1: Extreme values of µ and σ for Ñ = I and for incomplete Cholesky (IC)
factorizations of N . The IC drop tolerance is given in parentheses.

AUG3CD MOSARQP1 STCQP2

I IC (10−3) IC (10−4) I IC (10−1) IC (10−2) I IC (10−1) IC (10−2)
µ [0.0029,0.5] [0.53,1.8] [0.93,1.1] [0.088,0.47] [0.33,1.6] [0.91,1.1] [0.0019,0.33] [0.23,4.7] [0.33,2.1]
σ [0.0058, 1] [0.21, 1] [1, 1]

for linear programs [54], where A22 approaches zero at convergence. Note that when

µmin ≈ 1 and µmax ≈ 1, that is, when we have a good approximation Ñ to N , the
above conclusions for the ideal case are approximately satisfied.

To conclude this section we examine the bounds in Corollaries 2.2 and 2.4 for
the matrices AUG3DC, MOSARQP1 and STCQP2 from the CUTEst test set (see
Section 4.2 for details). We first tabulate µ and σ (see Table 2.1) and find that, as

expected, µmin and µmax are close to 1 when Ñ is a good approximation of N , and are
often far from 1 otherwise. Note that if Ñ = N , then µmin = µmax = 1. In contrast,
σ depends only on the properties of A. For STCQP2, B2 = 0, and so A22 = N and
σmin = σmax = 1. However, σmin � 1 for AUG3DC or MOSARQP1. For all three
matrices σmax = 1 although this is not guaranteed in general.

In Figures 2.1–2.3 we examine the effect of µ and σ on the eigenvalues of P−1cn A
and the bounds in Corollories 2.2 and 2.4. We first note that real eigenvalues seem to
cluster near 1 when µmin and µmax are close to 1, but may be far from 1 when Ñ is not
a good approximation. For all three matrices, the lower bound on real eigenvalues in
Corollary 2.2 is about half the value of the smallest real eigenvalue, except when µmin

is much smaller than 1, i.e., when Ñ does not approximate N well. For AUG3DC
the upper bound is also approximately twice as big as the largest real eigenvalue,
while for MOSARQP1 it is up to four times as big. However, for STCQP2 (for which
σmin = σmax = 1) the upper bound is a fairly good approximation, and is particularly

descriptive when Ñ is not as good an approximation of N .

Our bounds for complex eigenvalues also indicate that a good approximation of
N ensures that the complex eigenvalues are bounded in a small region away from the
origin. For both AUG3DC and MOSARQP1, the bounds on the real part of complex
eigenvalues in Corollary 2.4 seems most descriptive when µmin is close to 1, and the
upper bound is particularly poor when Ñ = I. On the other hand, the upper bound
on the imaginary part of complex eigenvalues seems to be fairly descriptive even when
Ñ is a poor approximation to N . (Note that all eigenvalues of STCQP2 are real since
A22 = N .)

Overall, these results indicate that for these matrices the quality of Ñ has the
greatest effect on the location of eigenvalues, and that our bounds are reasonably
descriptive when Ñ is a reasonable approximation of N . However, the distribution of
eigenvalues within the region prescribed by the bounds is more difficult to ascertain
and is influenced by the eigenvalues of N−1A22. This eigenvalue distribution can
affect the convergence of Krylov methods for the central-null preconditioner, as we
will see in Section 4.

6

0 1 2 3
-2

-1

0

1

2

(a) N

0 5 10 15 20
-20

-10

0

10

20

(b) I

0 1 2 3
-2

-1

0

1

2

(c) IC (10−3)

0 1 2 3
-2

-1

0

1

2

(d) IC (10−4)

Fig. 2.1: AUG3DC: The eigenvalues (+) of P−1cn A and the bounds in Corollaries 2.2

and 2.4 for different choices of Ñ . The black crosses show the bounds on real eigen-
values and the red dashed lines show the bounds on complex eigenvalues with nonzero
imaginary part.

2.2. The lower-null and upper-null preconditioners. Next, we drop the
LT -term in (2.1) to form the preconditioner

Pln :=

A11 0 BT1
A21 Ñ BT2
B1 0 0

 . (2.5)

Since ΠPlnΠT corresponds to a block lower-triangular preconditioner we refer to this
as the lower-null preconditioner. Indeed, this preconditioner is ‘psychologically block-
lower triangular’, in that we can easily identify blocks with which we can solve this
system using a substitution method. As well as solves with B1, BT1 and Ñ , and a
matrix-vector product with A11, we require matrix-vector products with A21 and BT2 .

The following result holds for the eigenvalues.
Theorem 2.5. Let Ñ be an invertible approximation to N . Consider the gener-

alized eigenvalue problem Plnz = λAz. Then λ = 1 or λ is an eigenvalue of Ñ−1N .
Proof. As in the proof of Theorem 2.1, we use the fact that the required eigen-

values are the same as those of (ΠPlnΠT)−1ΠAΠT . Recalling (1.7) we have that

(ΠPlnΠT)−1ΠAΠ =

[
I Â−1B̂

0 Ñ−1(A22 − B̂Â−1B̂T)

]
=

[
I Â−1B̂

0 Ñ−1N

]
.

The result follows.

7

0 1 2 3
-2

-1

0

1

2

(a) N

0 2 4 6
-4

-2

0

2

4

(b) I

0 1 2 3
-2

-1

0

1

2

(c) IC (10−1)

0 1 2 3
-2

-1

0

1

2

(d) IC (10−2)

Fig. 2.2: MOSARQP1: The eigenvalues (+) of P−1cn A and the bounds in Corollar-

ies 2.2 and 2.4 for different choices of Ñ . The black crosses show the bounds on real
eigenvalues and the red dashed lines show the bounds on complex eigenvalues with
nonzero imaginary part.

An apparent drawback of this preconditioner is that Pln is a non-symmetric pre-
conditioner for a symmetric problem, and hence we have to use a non-symmetric
iterative method, such as GMRES [48] or BiCGStab [53]. However, Theorem 2.5

shows that if N = Ñ , GMRES applied to (1.1) with preconditioner Pln converges

in two steps. When Ñ 6= N the eigenvalues may not tell us everything about con-
vergence [24] although it is commonly observed that tightly clustered eigenvalues do
predict convergence of GMRES in non-pathological cases—see, e.g., Pestana and Wa-
then [40] for a discussion. An additional benefit of using Ñ within a preconditioner for
the whole matrix A, and not explicitly for the null-space matrix, is that, in principle,
all that is needed is (the action of the inverse of) an approximation, Ñ . We envisage
(as is often the case with standard Schur-complement preconditioning; see, e.g., [16])
applications where Ñ can be applied without explicitly performing the (often costly)
procedure of forming N . To give two examples, the matrix N is known as the system
flexibility matrix in structural analysis [28], and the reduced Hessian matrix in opti-
mization [37, Section 16.5]; in both these cases approximations to this matrix, which
will fit into this framework, have been proposed in the literature (see, e.g., [8, 19, 41]).
Finally, we note that in some cases B2 = 0, as is the case for the CUTEst test matrix
STCQP2 discussed at the end of Section 2.1. In this case N = A22, which is trivial to
compute. See [34] for the construction of ideal preconditioners for Schur complement
methods.

8

0 1 2 3
-1

-0.5

0

0.5

1

(a) N

0 200 400 600
-1

-0.5

0

0.5

1

(b) I

0 2 4 6
-1

-0.5

0

0.5

1

(c) IC (10−1)

0 1 2 3 4
-1

-0.5

0

0.5

1

(d) IC (10−2)

Fig. 2.3: STCQP2:The eigenvalues (+) of P−1cn A and the bounds in Corollaries 2.2

and 2.4 for different choices of Ñ . The black crosses show the bounds on real eigen-
values.

If we instead drop the L term from (2.1) we get

Pun :=

A11 A12 BT1
0 Ñ 0
B1 B2 0

 .
For reasons analogous to those given above we refer to this as the upper-null precon-
ditioner, and we have the following result.

Theorem 2.6. Let Ñ be an invertible approximation to N . Consider the gener-
alized eigenvalue problem Punz = λAz. Then λ = 1 or λ is an eigenvalue of Ñ−1N .

Proof. Since (ΠPunΠT)−1(ΠAΠT) is similar to (ΠAΠT)(ΠPunΠT)−1, a similar
argument to that in the proof of Theorem 2.5 gives the result.

The preconditioner Pun therefore has the same eigenvalues, with the same mul-
tiplicity, as Pln. In spite of possible effects of non-normality, in practice upper and
lower block triangular preconditioners often exhibit similar behaviour (see [39] and the
references therein), and this was our experience in the tests reported in Section 4. Ad-
ditionally, the cost of applying this preconditioner is the same as the cost of applying
Pln.

9

2.3. A constraint preconditioner. Now consider the preconditioner obtained
by replacing N by Ñ in (2.1) without dropping any terms, namely

Pcon =

A11 0 BT1
A21 Ñ BT2
B1 0 0

I B−11 B2 0
0 I 0

0 B−T1 XT I

 .
Note that this preconditioner is numerically the same as the preconditioner defined by
the GALAHAD [22] subroutine SBLS. The authors are not aware of an eigen-analysis
of this preconditioner in the literature.

Theorem 2.7. The preconditioner Pcon is a constraint preconditioner, i.e.,

Pcon =

[
G BT

B 0

]
for some matrix G.

Proof. Direct computation shows that

ΠPconΠT =

[
Â B̂T

B̂ A22 −N + Ñ

]
and Pcon =

A11 A12 BT1
A21 A22 −N + Ñ BT2
B1 B2 0

 . (2.6)

We can show the following result about the eigenvalues for the constraint precon-
ditioner here:

Theorem 2.8. Let Ñ be an invertible approximation to N . Consider the gener-
alized eigenvalue problem Az = λPconz. Then λ = 1 or λ is an eigenvalue of Ñ−1N .

Proof. As in previous sections, we can compute the eigenvalues of P−1conA by solv-
ing a generalized eigenvalue problem to find the eigenvalues of (ΠPconΠT)−1(ΠAΠT).
In particular, using (2.6), we have that[

Â B̂T

B̂ A22

] [
x
y

]
= λ

[
Â B̂T

B̂ A22 −N + Ñ

] [
x
y

]
.

The first equation shows that λ = 1 or that Âx+ B̂Ty = 0. Since Â is invertible,
in the latter case we have that x = −Â−1B̂Ty.

The second equation gives that (1− λ)B̂x+ (1− λ)A22y = λ(Ñ −N)y. If λ 6= 1
then after substituting for x we find that

−(1− λ)B̂Â−1B̂Ty + (1− λ)A22y = λ(Ñ −N)y.

Using (1.7) and simplifying shows that Ny = λÑy as required.
Comparison with Theorems 2.5 and 2.6 shows that all three preconditioned matri-

ces P−1ln A,P−1unA and P−1conA have the same eigenvalues, with the same multiplicities.
The constraint preconditioner benefits from certain advantages, as we discuss in Sec-
tions 2.4 and 3.4 below. However, this comes at a price, as Pcon is more expensive to
apply than Pln and Pun. To see this, first note that Pcon = PlnPr, where

Pr =

I B−11 B2 0
0 I 0

0 B−T1 XT I

 .
The additional cost of solving a system with Pcon, rather than Pln or Pun is thus one
solve with each of B1 and BT1 and a matrix-vector multiplication with each of B2,
A11 and A12.

10

2.4. Discussion. The preconditioners described above are the result of thinking
about the null-space method in terms of a matrix factorization. The preconditioners
Pln and Pun are particularly promising. They have the drawback that applying
them requires solves with B1 and BT1 , as well as the solve with Ñ and a number of
matrix-vector multiplications. It is also somewhat jarring that we are proposing non-
symmetric preconditioners for a symmetric problem (although a short-term recurrence
method in a non-standard inner product can be applied as discussed in Section 3.3).
Balancing these issues is the fact that the eigenvalue clustering is as good as possible.

The central null preconditioner is indefinite, which means that short-term recur-
rence methods cannot be straightforwardly applied. Additionally, the spectrum of
the preconditioned matrix depends on the eigenvalues of N−1A22 (or Ñ−1A22), and
we shall see in Section 4 that Pcn is most useful when these eigenvalues are tightly
clustered.

Constraint preconditioners possess favourable properties, such as the iterates stay-
ing on a certain manifold [47], which can be useful in certain applications. If such
properties are desired then Pcon provides them, even with an approximate Ñ , at the
expense of extra linear system solves with the matrices B1 and BT1 . This is in contrast
to the equivalent Schur-complement formulation [7], which gives an inexact constraint
preconditioner. As such, null-space preconditioners could be useful in optimization,
where solution methods that remain on the constraint manifold are often required;
see, e.g., [1]. Additionally, it is possible to use a projected CG or MINRES method
in this case, as described in Section 3.4. We envisage that this preconditioner will be
particularly useful in fields where many systems have to be solved with the same B
block, possibly with A changing; an important example that generates linear systems
with this structure is the interior point method in optimization [54].

Null-space preconditioners require us to find an invertible subset of the constraint
matrix B, which is an additional computational cost that is not present in, for in-
stance, Schur-complement based approaches. However, there are a number of appli-
cations we are aware of where this is not problematic; we discuss a few of these in
more detail in Section 4.

We note that for problems with maximally rank-deficient A, i.e., problems for
which rank(A) = n − m, alternative block diagonal preconditioners were recently
proposed by Estrin and Greif [17] that rely on a matrix C whose columns span the null-
space of A. Estrin and Greif show that under certain conditions, the preconditioned
systems can be solved by (standard) conjugate gradients; otherwise a standard non-
symmetric Krylov method can be used.

3. Using conjugate gradients and MINRES with the null-space pre-
conditioners. As discussed in Section 2.4, although P−1ln A, P−1unA and P−1conA have

nice spectra when Ñ is a good approximation of N , the preconditioners are not sym-
metric positive definite. Accordingly, they cannot be used with standard MINRES
or CG. However, since Pcon is a constraint preconditioner, it can be used with the
projected conjugate gradient [20] or projected MINRES [21] methods. On the other
hand, although Pln is non-symmetric, it can be used in conjunction with the conjugate
gradient method in a non-standard inner product. We discuss both these approaches
in this section.

3.1. Non-standard inner products. In this section, we show that it is possible
to use the conjugate gradient method in a non-standard inner product to solve (1.1)

11

with the preconditioner (2.5). We consider general equations of the form[
A BT

B C

]
︸ ︷︷ ︸

A

[
u
v

]
=

[
c
d

]
(3.1)

where we assume that A is invertible, A ∈ Rn×n is symmetric and invertible, B ∈
Rm×n, m ≤ n, and C ∈ Rm×m is symmetric. We additionally assume that the Schur
complement C−BA−1BT is positive definite, although our results extend trivially to
the case where C − BA−1BT is negative definite. Note that the proceeding results
hold for A = Â, B = B̂, C = A22 in (1.4), as we show in Section 3.3, but are more
generally applicable.

Although the saddle point matrix A is indefinite, so that the standard conju-
gate gradient method cannot be reliably applied to solve (1.1), a judicious choice of
preconditioner can make A self-adjoint and positive definite with respect to a non-
standard inner product. A number of preconditioners that achieve this goal have
been proposed [6, 10, 14, 15, 33, 51]. Many, although not all, fall into the class of
preconditioners and inner products discussed by Krzyżanowski [30], who showed the
following:

Proposition 3.1 (Krzyżanowski [30], Proposition 2.1). Suppose we wish to solve
the system (3.1). Consider the preconditioner given by

P−1 =

[
I −dA−10 BT

0 I

] [
A−10 0

0 S−10

] [
I 0

−cBA−10 I

]
, (3.2)

for fixed scalars c, d, and where A0 and S0 are symmetric and nonsingular. Let
δ ∈ {−1,+1} and H be the block diagonal matrix

H = δ

[
A0 − cA 0

0 S0 + cdBA−10 BT − dC

]
. (3.3)

Then HP−1A is symmetric.
This means that, even though P−1A is non-symmetric, it is self-adjoint with

respect to the bilinear form 〈·, ·〉H, where 〈x,y〉H = yTHx. If A0, S0 and δ are
chosen so that H is symmetric positive definite, and inner products are understood
to be H-inner products, then we can apply CG to solve (1.1). Algorithm 1, adapted
from Algorithm 3.2 of Dollar, Gould, Stoll and Wathen [15], is one such method which
does this.

3.2. Semidefinite H. Although Pln is not block lower triangular, ΠPlnΠT is,
while Â = ΠAΠT is a generalized saddle point matrix of the form in (3.1). Ac-
cordingly, we can apply the results of Krzyżanowski to this permuted matrix and
preconditioner. Since the (1,1) block of ΠPlnΠT is identical to that of Â, we are in
the situation that c = 1, d = 0 and A0 = A in (3.2). This may indicate that Pln is
a good preconditioner but it also means that H in (3.3) is singular. Despite this, a
more careful examination of Algorithm 1 will reveal that this singularity causes no
difficulties for computing the solution of (3.1).

Accordingly, we will consider the case A0 = A, c = 1 and d = 0 in (3.2) and (3.3)
in more detail, which arises in our application, but also more widely when solving, e.g.,
problems in PDE constrained optimization [42, 45]. We assume that S0 is symmetric
positive definite, giving

H1,0 =

[
0 0
0 S0

]
, P1,0 =

[
A 0
B S0

]
. (3.4)

12

Given x0, set r0 = b−Ax0, z0 = P−1r0 and p0 = z0;
for k = 0, 1, . . . do

α =
zTkHzk

pTkHP−1Apk
;

xk+1 = xk + αpk;
rk+1 = rk − αApk;
zk+1 = P−1rk+1;

β =
zTk+1Hzk+1

zTkHzk
;

pk+1 = zk+1 + βpk;

end
Algorithm 1: CG in the scalar product defined by H.

Thus, the matrix H1,0 is semidefinite with rank m.

Letting each vector v in Algorithm 1 be decomposed as v =
[
(v(1))T (v(2))T

]T
,

v(1) ∈ Rn, it is straightforward to show that Algorithm 1 is equivalent to Algorithm 2.
However, it is not yet clear that the iterates generated by Algorithms 1 and 2 converge
to the solution of (3.1). To show that Algorithm 2 does indeed solve (3.1) we compare
Algorithm 2 to the preconditioned conjugate gradient method applied to the sys-
tem obtained from the range-space method, i.e, the method based on a factorization
like (1.9).

Given

x0 =

[
x

(1)
0

x
(2)
0

]
, set z0 =

[
A−1(c−BTx

(2)
0)− x

(1)
0

S−1
0 (d−BA−1c− (C −BA−1BT)x

(2)
0)

]
and p0 = z0;

for k = 0, 1, . . . do

α =
(z

(2)
k)TS0(z

(2)
k)

(p
(2)
k)T (C −BA−1BT)p

(2)
k

;[
x

(1)
k+1

x
(1)
k+1

]
=

[
x

(1)
k + αp

(1)
k

x
(2)
k + αp

(2)
k

]
;[

z
(1)
k+1

z
(2)
k+1

]
=

[
z
(1)
k − α(p

(1)
k +A−1BTp

(2)
k)

z
(2)
k − αS−1

0 (C −BA−1BT)p
(2)
k

]
;

β =
(z

(2)
k+1)

TS0(z
(2)
k+1)

(z
(2)
k)TS0(z

(2)
k)

;[
p
(1)
k+1

p
(2)
k+1

]
=

[
z
(1)
k+1 + βp

(1)
k

z
(2)
k+1 + βp

(2)
k

]
;

end
Algorithm 2: Simplified CG in the scalar product defined by H1,0.

The range-space method—which is equivalent to solving (3.1)—proceeds in two
stages; first we seek a solution to

(C −BA−1BT)v = d−BA−1c, (3.5)

before recovering u by solving

u = A−1(c−BTv). (3.6)

13

More details can be found in e.g., [4, Chapter 5].
Since C − BA−1BT is positive definite we can solve (3.5) by a preconditioned

conjugate gradient method with a symmetric positive definite preconditioner S0 as
in Algorithm 3. Note that when applied to (1.2), our Schur complement approach is
actually a null-space method, as we show in Section 3.3 (cf. Algorithm 2.1 in Gould,
Hribar and Nocedal [20]).

Given v0, set z0 = S−10 (d−BA−1c− (C −BA−1BT)v0) and p0 = z0;
for k = 0, 1, . . . do

α =
zTk S0zk

pTk (C −BA−1BT)pk
;

vk+1 = vk + αpk;

zk+1 = zk − αS−10 (C −BA−1BT)pk;

β =
zTk+1S0zk+1

zTk S0zk
;

pk+1 = zk+1 + βpk;

end
Algorithm 3: CG for the reduced system (3.5).

Comparison of Algorithms 2 and 3 show that whenever x
(2)
0 = v0, the vectors

z
(2)
0 and p

(2)
0 in Algorithm 2 are the same as z0 and p0 in Algorithm 3. Moreover,

since the scalars α and β in the two algorithms are equivalent, x
(2)
k , z

(2)
k and p

(2)
k in

Algorithm 2 are the same as vk, zk and pk in Algorithm 3 for all iterations k ≥ 0.

It follows from the convergence theory for Algorithm 3 that α, β, x
(2)
k , z

(2)
k and p

(2)
k

are all well defined and that the iterates x
(2)
k in Algorithm 2 are approximations of v.

However, Algorithm 2 also yields approximations of u as the next result shows.

Lemma 3.2. Let x
(1)
k , x

(2)
k and z

(1)
k be as in Algorithm 2, k ≥ 0. Additionally,

let

uk = A−1(c−BTx(2)
k). (3.7)

Then uk = x
(1)
k + z

(1)
k .

Proof. We show that z
(1)
k = uk − x

(1)
k by induction. First, since z

(1)
0 = A−1(c−

BTx
(2)
0) − x

(1)
0 , we see from (3.7) that z

(1)
0 = u0 − x

(1)
0 . Now assume that for some

j ≥ 0, z
(1)
j = uj − x

(1)
j . From the updates for x

(1)
j+1 and x

(2)
j+1 in Algorithm 2 we see

that αp
(1)
j = x

(1)
j+1−x

(1)
j and αp

(2)
j = x

(2)
j+1−x

(2)
j . Substituting these formulae into the

equation for z
(1)
j+1 and using (3.7) gives that z

(1)
j+1 = z

(1)
j +(x

(1)
j −x

(1)
j+1)+(uj+1−uj).

This shows that whenever z
(1)
j = uj − x

(1)
j holds, z

(1)
j+1 = uj+1 − x

(1)
j+1. Since z0 =

u0 + x
(1)
0 , the stated result is proved.

Now, because x
(2)
k approximates v, the vector x

(1)
k + z

(1)
k approximates u and so

we obtain approximations of both u and v from Algorithm 2. Thus, Algorithm 2 is
well defined and can be used to solve (3.1).

As a final point, since to solve (3.1) we only need uk = x
(1)
k + z

(1)
k and pk, it

is straightforward to show that nothing is lost in Algorithm 2 by setting p
(1)
k = 0,

k > 0, and that some computational savings are made by avoiding the vector update.

14

Additionally, in our experience such a step can be useful for reducing the effect of
rounding errors.

3.3. A non-standard conjugate gradient method for Pln. Now let us apply
the results of this section to our system (1.1) with preconditioner (2.5).

Letting

ΠHlnΠT =

[
0

Ñ

]
,

and recalling (1.4) and (2.5), we see that ΠHlnΠT , ΠPlnΠT and ΠAΠT are in the form
of H1,0 and P1,0 in (3.4) and A in (3.1). Accordingly, we can apply the non-standard
conjugate gradient method in Algorithm 2 to

Π(HlnPTlnA)ΠT (Πw) = ΠHlnPlnb, (3.8)

where w =
[
xT1 , xT2 , yT

]T
and b =

[
f1, f2, g

]T
, with x = [xT1 , xT2]T and f =

[fT1 , fT2]T and x1,f1 ∈ Rm. As shown in the previous section, this is equivalent to

applying preconditioned CG to the reduced system (3.5), given by Nv = d− B̂Â−1c
where, because of the permutation matrix Π, v = x2, d = f2 and c = [fT1 , gT]T .
The vector u in (3.6) is u = [xT1 , y

T]T .
Comparison with the null-space method shows that solving this reduced system is

the same as using the null-space method with the fundamental basis Zf and the par-
ticular solution (1.8). It follows that applying non-standard CG to (3.8) is equivalent
to applying the null-space method using the fundamental basis (1.3).

3.4. The constraint preconditioner, Pcn. Finally for this section, we mention
the preconditioner Pcn. As this is a constraint preconditioner, we can apply it with
projected conjugate gradients [20], provided that the (1,1) block is symmetric positive
definite on the nullspace of B. If A is indefinite, or if we require a method that
minimizes the residual, then we can still utilize a short-term recurrence method by
using projected MINRES [21]. Therefore standard methods work out-of-the-box, and
no extra theory is needed in this case.

4. Numerical Results. In this section we apply null-space preconditioners to
matrices arising in applications, each chosen to highlight a specific feature of the
proposed preconditioners. We compare their behaviour with the Schur-complement
based preconditioners

Pls :=

[
A 0
B −S0

]
, Pcs :=

[
A 0
0 S0

]
, Pcons :=

[
A BT

B BA−1BT − S0

]
, (4.1)

and use a similar approximation to the Schur complement and the null-space matrix
in each case. We also tested Pus and Pun, the transposes of Pls and Pln, but the
results were broadly the same as for Pls and Pln.

To apply Pls we must solve a system with A and another with S0, while Pln

additionally requires a matrix-vector product with B. Applying Pcon requires the
same operations as for Pln, as well as an extra matrix-vector product with BT and a
solve with A.

Unless otherwise stated we apply right-preconditioned GMRES or non-standard
CG, which we terminate when the relative residual satisfies ‖rk‖2/‖r0‖2 < 10−8, or
when min{n + m,maxit} iterations are reached, where maxit is specified for each
example below.

15

For some problems we approximate N and S by incomplete Cholesky factoriza-
tions. These we compute by the Matlab routine ichol with a default drop tolerance
of 10−2, which seemed suitable for most of our problems. If ichol fails we reduce the
drop tolerance by a factor of 10 until a factorization is computed. The smallest drop
tolerance used is 10−8. We point out that this factorization is rather costly to com-
pute, as it first involves forming N or S exactly. Moreover, the cost of the incomplete
Cholesky factorization depends on the size of N (or S), its sparsity pattern, and the
drop tolerance used; here we use larger drop tolerances where possible to reduce this
cost. However, these incomplete Cholesky preconditioners may be cheaper to apply
than N and S, and they may provide information about what to expect for reasonable
approximations to N and S.

4.1. Random saddle point matrices. Example 4.1. Consider the pseudo-
random sparse matrix generated by the Matlab code
A = sprandsym(n,0.1,1e-2,1);

B = sprand(m,n,0.5);

K = [A B’; B sparse(m,m)];

We take n = 100 and m = 10, 50, 90. For these problems maxit = 200.
In this example we test values of n −m that are small, moderate, and large in

comparison with n. We compare the null-space preconditioners Pcn and Pun, and
corresponding Schur complement preconditioners in (4.1). For our approximations to
the Schur complement and the null-space matrix we take the identity matrix of the
appropriate dimension. We apply these preconditioners using Matlab’s inbuilt GMRES
routine, and report the results in Figure 4.1. Note that the null-space preconditioners
Pun and Pcon give broadly the same behaviour as Pln, as does Pus and Pcons when
compared with Pls, and so for clarity those results are omitted from Figure 4.1.

Here, by choosing a weak approximation of the Schur complement and the null-
space matrix (namely, the identity matrix), convergence depends entirely on how
important this component piece is to the overall approximation. Therefore the null
space based preconditioners do well for small n − m, the Schur complement based
preconditioners do well for n−m close to n, and there is no clear winner in the inter-
mediate case when n = m/2. This suggests that null-space preconditioners may be a
better choice over Schur complement preconditioners if we have an application where
n−m is small, particularly if we do not have a good Schur complement approxima-
tion. We see that for both the Schur complement an null-space preconditioners, the
central approximations take roughly twice the number of iterations, but are cheaper
to apply. This phenomenon has been noted by others, see e.g. [18].

Example 4.2. Consider now the sparse matrix generated by the Matlab code
A = 10*speye(n,n);

B = sprand(m,n,0.5);

K = [A B’; B sparse(m,m)];

We take n = 100 and m = 10, 50, 90. In Example 4.2 we have the same B as
in Example 4.1, but instead take a scaled identity matrix for A. We test the same
preconditioners that we used in Example 4.1, namely using an identity matrix as
the Schur complement/null space approximation. We give the results in Figure 4.2.
Again, maxit = 200, and since Pun, (resp. Pus) differs only slightly from Pln and
Pcon (resp. Pus and Pcons), we report only the former.

Here, in contrast to Example 4.1, the null-space preconditioners perform well for
both large and small values of n−m. This is because the (1,1) block in A is a scaled
identity matrix here and, as a consequence of Theorem 2.1, the eigenvalues of P−1cn A

16

iterations

0 20 40 60 80 100

r
e
s
id
u
a
l

10
-10

10
0

lower-null

central-null

lower-schur

central-schur

(a) m = 10

iterations

0 20 40 60 80 100 120

r
e
s
id
u
a
l

10
-10

10
0

lower-null

central-null

lower-schur

central-schur

(b) m = 50

iterations

0 50 100 150 200

r
e
s
id
u
a
l

10
-10

10
0

lower-null

central-null

lower-schur

central-schur

(c) m = 90

Fig. 4.1: Comparison: Schur complement and null space preconditioners, pseudo-
random example from Example 4.1. Note that upper-null and constraint-null (and
the respective Schur complement preconditioners) give essentially the same behaviour
as lower-null or upper-schur (as appropriate), and so are omitted.

are well clustered. Again, the pattern that the central-based preconditioners take
about twice the iterations of the others is in evidence.

17

iterations

0 5 10 15 20 25

r
e
s
id
u
a
l

10
-10

10
0

lower-null

central-null

lower-schur

central-schur

(a) m = 10

iterations

0 20 40 60 80 100

r
e
s
id
u
a
l

10
-10

10
0

lower-null

central-null

lower-schur

central-schur

(b) m = 50

iterations

0 50 100 150 200

r
e
s
id
u
a
l

10
-10

10
0

lower-null

central-null

lower-schur

central-schur

(c) m = 90

Fig. 4.2: Comparison: Schur complement and null space preconditioners, pseudo-
random example from Example 4.2. Note that upper-null and constraint-null (and
the respective Schur complement preconditioners) give essentially the same behaviour
as lower-null or upper-schur (as appropriate), and so are omitted.

4.2. Optimization and interior point methods. Here we consider quadratic
programming problems of the form

min
1

2
xTHx + fTx

s.t. Bx = g,

x ≥ 0
¯
.

(4.2)

18

Table 4.1: Problem sizes, CUTEst set matrices from Example 4.2. Matrices for which
A is singular are denoted by an asterisk.

Matrix n m Matrix n m
AUG3DC 3873 1000 HUESTIS 10000 2
AUG3DCQP 3873 1000 LASER 1002 1000
CONT-050 2597 2401 LISWET1 10002 10000
CONT-100 10197 9801 MOSARQP1 2500 700
CONT-101 10197 10098 MOSARQP2 900 600
CONT-200 40397 39601 PRIMAL1 325 85
CVXQP3 S 100 75 QPCSTAIR 467 356
DTOC3 14999 9998 STCQP2 4097 2052
GOULDQP3 699 349 YAO 2002 2000
HUES-MOD 10000 2

If we solve such a problem using a primal-dual interior point method [54] then at
iteration k of the optimization algorithm we must solve a system of the form (1.1),
where A = H +X−1k Zk for diagonal matrices Xk, Zk.

In this context it is common to solve the linear system (1.1) by reducing it to
the null-space matrix N , which the optimization community refer to as the reduced
Hessian [8], [37, Section 16.2]. Since forming the matrix N is expensive, it is common
in optimization to approximate this, e.g., by missing out cross terms [12, 36].

In this setting we need to solve a sequence of linear systems as the interior point
method converges, but the ‘constraint’ blocks B do not change. Therefore we may
justify the cost of using a direct method such as LUSOL [49], say, to find a basis of
B, since we can reuse this basis over all interior point iterations. Although we do not
explore the possibility here, it is also possible to use the interior point method itself
to predict an invertible sub-block B1—see, e.g., Al-Jeiroudi, Gondzio, and Hall [2].
Note that, but using LUSOL to find a suitable B1, we can subsequently solve with
B1 without further factorization.

In these experiments, we solve for A11 in the null-space preconditioner case and
A in the Schur complement preconditioner case using a direct method (backslash).
In many of the examples here this matrices are diagonal, and so such a solve is not a
problem. If A is not diagonal, and a factorization is required, we note that this must
only be done once in the interior point method, and the factorization can then be
updated using, for example, CHOLMOD [11].

To give a flavour of how we can expect such methods to work we run through some
problems from the CUTEst test set [23], comparing standard Schur-complement pre-
conditioners and null-space preconditioners. These problems, and their dimensions,
are listed in Table 4.1. We highlight that, as described in a previous section, in op-
timization it is often important that the inexact solution of this subproblem remains
on the constraint manifold. This is a property afforded by constraint preconditioners,
and the only true constraint preconditioner tested here is Pcon.

In our experiments we choose Xk and Zk so that X−1k Zk = I, the identity matrix
of dimension n; a system of this form may be used in practice to find an initial guess
for the interior point method. Additionally, we set maxit = 1000.

Our first tests are for the ideal case where we take the exact matrices S or N
(see Table 4.2); these are not practical, but give an idea of the best we can expect the
respective method to work in practice. The fast convergence rates for both the Schur-
complement and null-space preconditioners, with the exception of the central-null

19

Table 4.2: Iteration counts for the Schur complement preconditioners with S0 = S
and the null-space preconditioners with N0 = N for the CUTEst set matrices from
Example 4.2. * stands for did not converge after 1000 iterations.

Matrix Pls Pcs Pcons Pls (NSCG) Pln Pcn Pconn Pln (NSCG)
AUG3DC 2 3 1 1 2 27 1 1
AUG3DCQP 2 3 1 1 2 27 1 1
CONT-050 2 3 1 1 2 20 1 1
CONT-100 2 3 1 1 2 23 1 1
CONT-101 4 5 1 1 4 30 2 *
CONT-200 4 5 1 1 8 25 1 1
CVXQP3 S 2 2 1 1 2 34 1 1
DTOC3 2 2 1 1 2 8 1 1
GOULDQP3 2 3 1 1 2 27 1 1
HUES-MOD 2 2 1 1 2 4 1 1
HUESTIS 2 2 1 1 3 4 2 2
LASER 2 2 1 1 2 3 1 1
LISWET1 4 3 1 2 2 4 1 1
MOSARQP1 2 3 1 1 2 21 1 1
MOSARQP2 2 3 1 1 2 19 1 1
PRIMAL1 2 2 1 1 2 22 1 1
QPCSTAIR 2 2 1 1 2 31 1 1
STCQP2 2 2 1 1 2 3 1 1
YAO 3 3 1 2 2 5 1 1

preconditioner, are to be expected from theoretical spectral results (see Theorems 2.5,
2.6 and 2.8 for the null space preconditioners and [29, 35] for the Schur complement
preconditioners). Note that the performance of the central-null preconditioner, in
contrast to the other null-space and Schur-complement preconditioners, depends on
the eigenvalues of N−1A22 (see Theorem 2.1), which are not necessarily clustered. We
find that iteration counts are slightly higher for CONT-101 and CONT-200 than the
theory predicts. However, for these matrices N and S are quite ill-conditioned.

In a further test we consider the simplest approximation to the matrices S and N ,
namely the identity matrix of appropriate size (see Table 4.3). Since the identity is
generally a poor approximation of S and N we find that, similarly to Example 4.1, the
size of n−m relative to m largely determines whether the null-space-based precondi-
tioners are more effective than the Schur-complement-based preconditioners. When
m is large the Schur-complement preconditioned iterative methods perform poorly, as
might be expected, and do not always converge to the desired tolerance within 1000
iterations. On the other hand, the null-space preconditioners can perform badly when
n−m is large, although these preconditioners do seem somewhat more robust.

Both the central-null and central-Schur preconditioners tend to require twice as
many iterations as the other preconditioners. The constraint preconditioner Pcon
seems to be generally less effective than Pcn when the approximation to the null-space
is poor. However, it does have the benefit of being an exact constraint preconditioner.
The non-standard inner product CG method can also require more iterations than
using the lower-, upper- or constraint-preconditioners with GMRES, but requires only
short-term recurrences.

Finally, we give results (Table 4.4) for the same tests with a more accurate ap-
proximation of S or N , namely the incomplete Cholesky factorization described at
the start of this section. Generally, using these better approximations of N and S
improves the iteration counts for the Schur-complement preconditioners and the null-

20

Table 4.3: Iteration counts for the Schur complement preconditioners with S0 = In
and the null-space preconditioners with N0 = In−m for the CUTEst set matrices from
Example 4.2. * stands for did not converge after 1000 iterations.

Matrix Pls Pcs Pcons Pls (NSCG) Pln Pcn Pconn Pln (NSCG)
AUG3DC 37 71 35 35 88 166 91 100
AUG3DCQP 38 73 36 36 88 166 91 100
CONT-050 * * * * 16 30 15 16
CONT-100 * * * * 21 41 21 21
CONT-101 * * * * 21 40 31 *
CONT-200 * * * * 56 55 28 29
CVXQP3 S 83 150 83 * 26 44 26 29
DTOC3 * * * * 5 10 6 7
GOULDQP3 21 39 19 19 40 71 41 38
HUES-MOD 4 4 3 2 3 4 9 2
HUESTIS 4 4 3 2 3 4 11 3
LASER 66 130 65 67 2 3 2 1
LISWET1 * * * * 3 5 4 2
MOSARQP1 467 927 464 550 15 29 15 14
MOSARQP2 447 889 444 614 17 38 17 15
PRIMAL1 79 154 77 137 41 79 41 71
QPCSTAIR 249 490 247 551 53 93 53 69
STCQP2 269 528 267 615 94 95 93 93
YAO * * * * 3 5 4 2

space preconditioners. Again, the null-space preconditioners are more robust than
their Schur-complement counterparts, and for no problems do we see the high itera-
tion counts that the Schur-complement preconditioners give for CONT-100, CONT-
101 and COND-200.

4.3. Analysis of computational costs for optimization and interior point
method matrices. Next we examine in greater detail the computational costs in-
volved in constructing and applying the null-space and Schur complement precon-
ditioners for the CUTEst matrices AUG3DC, MOSARQP1 and STCQP2 from Sec-
tion 4.2. These matrices were chosen because they exhibit the full range of behaviours
observed in the larger test set. The drop tolerances for the incomplete Cholesky pre-
conditioners for these problems are given in Table 4.5.

Table 4.6 shows the times required to compute the preconditioners N0 and S0 and
the number of nonzeros in the resulting factors. The cost of forming the full matrices
N and S depends on the cost of solving systems with B1 and A, respectively. For
STCPQ2, n−m ≈ m and in this case N is quicker to compute than S; this is likely
because N = A22 is much sparser than S1. However, m is significantly smaller than
n −m for the other matrices, and so it is unsurprising that N is more expensive to
form. The cost of the incomplete Cholesky factorizations, and number of nonzeros in
the factors, additionally depends on the drop tolerance and the nonzero pattern of N
and S, as discussed at the start of this section.

In Table 4.7 we examine the time to solve the linear system. We see that for both
STCQP2 and MOSARQP1 the timings are generally better for the null-space precon-
ditioners, while Schur-complement preconditioners perform better for AUG3DC. For
AUG3DC and STCQP2, this correlates with the number of iterations. However, for
STCQP2, fewer iterations are generally needed when Schur-complement based pre-

1We do not need to compute N = A22, but we do so here for comparison with other problems.

21

Table 4.4: Iteration counts for the Schur complement preconditioners and the null-
space preconditioners, with incomplete Cholesky preconditioners for S0 and N0, for
the CUTEst set matrices from Example 4.2. * stands for did not converge after 1000
iterations.

Matrix Pls Pcs Pcons Pls (NSCG) Pln Pcn Pconn Pln (NSCG)
AUG3DC 11 21 9 10 16 33 16 16
AUG3DCQP 11 21 9 9 16 33 16 16
CONT-050 86 170 85 86 18 34 17 17
CONT-100 377 752 376 417 40 59 39 44
CONT-101 419 837 418 536 26 48 25 *
CONT-200 * * * * 57 43 23 23
CVXQP3 S 9 14 7 7 6 33 5 5
DTOC3 9 12 6 7 5 10 5 4
GOULDQP3 7 13 6 6 7 27 6 6
HUES-MOD 2 2 1 1 7 9 7 7
HUESTIS 2 2 1 1 7 10 7 *
LASER 12 20 10 10 2 3 1 1
LISWET1 6 9 4 6 2 4 1 1
MOSARQP1 26 51 25 25 7 22 7 7
MOSARQP2 28 53 26 26 7 19 6 6
PRIMAL1 5 8 4 4 13 25 12 12
QPCSTAIR 11 20 10 10 20 40 19 20
STCQP2 16 26 13 13 21 22 20 20
YAO 5 9 4 4 2 5 1 1

Table 4.5: Drop tolerances for the incomplete Cholesky preconditioners used.

Matrix N0 S0

IC1 IC2 IC1 IC2
AUG3DC 10−3 10−4 10−1 10−2

MOSARQP1 10−1 10−2 10−3 10−5

STCQP2 10−1 10−2 10−4 10−5

conditioners are applied, which shows that the cost of applying the preconditioners is
important to consider. For STCQP2, N0 is much sparser than S which explains the
difference between iteration counts and timings.

Finally, we remark that σ = yTA22y/y
TNy in Theorem 2.1 appears to influence

the number of iterations of Pcn significantly. When σ is near 1, as for STCQP2, few
iterations are required. However, for AUG3DC and MOSARQP1, for which σmin � 1
(see Table 2.1), the number of iterations is quite a bit higher.

4.4. F−matrices. Let A be a saddle point matrix of the form (1.1) where A is
symmetric positive definite and B is a gradient matrix, i.e., B has at most two entries
per row, and if there are two entries they sum to zero; we call such a matrix A an
F−matrix [52]. Such matrices arise naturally in, e.g., discretizations of fluid-flow [3],
or in electrical networks [50].

Due to the special structure of B it is possible to find an invertible sub-block
B1 without performing any arithmetic—see, e.g., [44, 50]. This property makes
F−matrices an ideal candidate for null-space preconditioning. We test our precondi-
tioners for a number of F−matrices2, listed in Table 4.8. We set maxit = 1000.

2We would like to thank Miroslav Tůma for providing these test matrices.

22

Table 4.6: Time to compute N0 or S0, including the time to compute N or S when
incomplete Cholesky factorizations are used, and the number of nonzeros in N0 and
S0. For incomplete Cholesky preconditioners we report the number of nonzeros in
one factor.

Matrix N0 S0

N IC1 IC2 S IC1 IC2

Time

AUG3DC 0.0025 0.013 0.036 0.0008 0.00042 0.00059
MOSARQP1 0.39 0.39 0.39 0.013 0.015 0.016

STCQP2 0.00062 0.00076 0.0014 1.2 1.2 1.3

nnz

AUG3DC 7.8E4 1.1E5 2.7E5 6.3E3 1.8E3 6.9E3
MOSARQP1 5E3 1.8E3 2.2E3 8.6E3 1.4E4 3.1E4

STCQP2 1.4E4 2.5E3 1E4 6.1E5 1.2E5 2.4E5

Table 4.7: Time to compute the solution using preconditioned GMRES or precondi-
tioned nonstandard CG.

Matrix N0/S0 Pls Pcs Pcons Pls (NSCG) Pln Pcn Pconn Pln (NSCG)

AUG3DC

N 0.030 0.032 0.023 0.0078 0.046 0.27 0.034 0.024
I 0.047 0.099 0.057 0.018 0.12 0.65 0.23 0.066
IC1 0.070 0.10 0.096 0.020 0.076 0.18 0.066 0.14
IC2 0.026 0.046 0.039 0.010 0.073 0.21 0.053 0.22

MOSARQP1

N 0.029 0.032 0.027 0.0076 0.025 0.076 0.044 0.012
I 2.6 8.6 2.7 0.33 0.050 0.090 0.090 0.031
IC1 0.069 0.10 0.096 0.029 0.054 0.11 0.084 0.030
IC2 0.026 0.033 0.030 0.020 0.032 0.079 0.062 0.021

STCQP2

N 0.26 0.27 0.18 0.17 0.028 0.031 0.027 0.013
I 3.3 7.1 6.5 3.8 0.44 0.17 0.36 0.11
IC1 0.17 0.27 0.29 0.23 0.098 0.083 0.14 0.056
IC2 0.12 0.16 0.15 0.27 0.064 0.094 0.075 0.047

When we use the cheap, but inaccurate, approximations S0 = I and N0 = I (see
Table 4.9) the iteration counts can be quite high for all preconditioners. However,
the null-space based preconditioners consistently give lower iteration counts; this can
partly be explained by the dimensions of the problems, since in general n−m is sig-
nificantly smaller than m. As in the previous example, the non-standard CG method
with Pls or Pln seems to be less robust than right-preconditioned GMRES. Similarly
to other examples in this section, the central-Schur and central-null preconditioners
tend to take twice as many iterations as the other preconditioners. When Ñ and S
are replaced by incomplete Cholesky preconditioners, the iteration counts drop for
all preconditioners, but the same trends are evident. In particular, the null-space
preconditioners are particularly well-suited to these F−matrices.

5. Conclusion. We have presented novel preconditioners based on a null-space
factorization. By dropping, or approximating, different terms in the null-space fac-
torization, in a similar manner to standard Schur complement preconditioners, we
arrived at four different null-space preconditioners.

We have given eigenvalue bounds for these preconditioners, and have shown that
the eigenvalues of the upper-null, lower-null and constraint preconditioners are clus-
tered when a good approximation to the null-space matrix can be found. Additionally,
two of the preconditioners, although indefinite and non-symmetric, can be applied
with a Krylov method with a short term recurrence.

23

Table 4.8: Problem sizes, F-matrices in Example 4.4.

Matrix n m Matrix n m
DORT 13360 9607 M3P 2160 1584
DORT2 7515 5477 S3P 270 207
L3P 17280 12384 dan2 63750 46661

Table 4.9: Iteration counts for the Schur complement preconditioners with S0 = In
and the null-space preconditioners with N0 = In−m for the F-matrices in Example 4.4.
* stands for did not converge after 1000 iterations.

Matrix Pls Pcs Pcons Pls (NSCG) Pln Pcn Pconn Pln (NSCG)
DORT * * * * 763 * 750 *
DORT2 * * * * 481 946 473 *
L3P 360 717 373 375 223 441 217 288
M3P 205 407 224 207 91 177 89 108
S3P 114 225 126 115 36 65 36 34
dan2 * * * * * * * *

Finally, we investigated the effectiveness of these preconditioners at reducing the
number of iterations of Krylov subspace methods. We found that the preconditioners
were more robust than equivalent Schur-complement based preconditioners, and were
more effective when a reasonable approximation to the null-space matrix was available
or when the dimension of n−m was small.

Acknowledgements. The authors extend their thanks to Jennifer Scott and
Nick Gould for reading an earlier version of this manuscript, and for their valuable
comments and suggestions. We also thank two anonymous referees for their careful
reading and constructive comments.

REFERENCES

[1] G. Al-Jeiroudi and J. Gondzio, Convergence analysis of the inexact infeasible interior-point
method for linear optimization, Journal of Optimization Theory and Applications, 141
(2009), pp. 231–247.

[2] G. Al-Jeiroudi, J. Gondzio, and J. Hall, Preconditioning indefinite systems in interior
point methods for large scale linear optimisation, Optimisation Methods and Software, 23
(2008), pp. 345–363.

[3] M. Arioli and G. Manzini, A null space algorithm for mixed finite-element approximations
of Darcy’s equation, Communications in Numerical Methods in Engineering, 18 (2002),
pp. 645–657.

[4] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numerica, 14 (2005), pp. 1–137.

[5] M. Benzi and M. A. Olshanskii, An augmented Lagrangian-based approach to the Oseen
problem, SIAM Journal on Scientific Computing, 28 (2006), pp. 2095–2113.

[6] M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numerische
Mathematik, 103 (2006), pp. 173–196.

[7] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems in interior
point methods for optimization, Computational Optimization and Applications, 28 (2004),
pp. 149–171.

[8] L. T. Biegler, J. Nocedal, and C. Schmid, A reduced Hessian method for large-scale con-
strained optimization, SIAM Journal on Optimization, 5 (1995), pp. 314–347.

[9] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,
Cambridge University Press, 3rd ed., 2007.

24

Table 4.10: Iteration counts for the Schur complement preconditioners and the null-
space preconditioners, with incomplete Cholesky preconditioners for S0 and N0, for
the F-matrices in Example 4.4.

Matrix Pls Pcs Pcons Pls (NSCG) Pln Pcn Pconn Pln (NSCG)
DORT 121 237 120 125 14 32 12 12
DORT2 117 233 116 120 10 30 8 8
L3P 44 87 43 43 18 36 15 15
M3P 24 47 23 23 15 31 11 11
S3P 12 23 11 11 12 28 9 9
dan2 7 13 6 6 11 48 8 8

[10] J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting
from mixed approximations of elliptic problems, Mathematics of Computation, 50 (1988),
pp. 1–17.

[11] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: Cholmod, su-
pernodal sparse cholesky factorization and update/downdate, ACM Transactions on Math-
ematical Software (TOMS), 35 (2008), p. 22.

[12] T. F. Coleman and A. R. Conn, On the local convergence of a quasi-Newton method for
the nonlinear programming problem, SIAM Journal on Numerical Analysis, 21 (1984),
pp. 755–769.

[13] M. D’Apuzzo, V. De Simone, and D. di Serafino, On mutual impact of numerical linear
algebra and large-scale optimization with focus on interior point methods, Computational
Optimization and Applications, 45 (2010), pp. 283–310.

[14] C. R. Dohrmann and R. B. Lehoucq, A primal-based penalty preconditioner for elliptic saddle
point systems, SIAM Journal on Numerical Analysis, 44 (2006), pp. 270–282.

[15] H. S. Dollar, N. I. M. Gould, M. Stoll, and A. J. Wathen, Preconditioning saddle-
point systems with applications in optimization, SIAM Journal on Scientific Computing,
32 (2010), pp. 249–270.

[16] H. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative solvers: with
applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Com-
putation, Oxford University Press, Oxford, 2005.

[17] R. Estrin and C. Greif, On nonsingular saddle-point systems with a maximally rank-deficient
leading block, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 367–384.

[18] B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for
augmented systems, BIT Numerical Mathematics, 38 (1998), pp. 527–543.

[19] P. E. Gill and M. W. Leonard, Limited-memory reduced-hessian methods for large-scale
unconstrained optimization, SIAM Journal on Optimization, 14 (2003), pp. 380–401.

[20] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality constrained
quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001),
pp. 1376–1395.

[21] N. I. M. Gould, D. Orban, and T. Rees, Projected Krylov methods for saddle-point systems,
SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 1329–1343.

[22] N. I. M. Gould, D. Orban, and P. L. Toint, GALAHAD, a library of thread-safe Fortran
90 packages for large-scale nonlinear optimization, ACM Transactions on Mathematical
Software (TOMS), 29 (2003), pp. 353–372.

[23] , CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for
mathematical optimization, Computational Optimization and Applications, (2014), pp. 1–
13.

[24] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible
for GMRES, SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 465–469.

[25] C. Greif, E. Moulding, and D. Orban, Bounds on eigenvalues of matrices arising from
interior-point methods, SIAM Journal on Optimization, 24 (2014), pp. 49–83.

[26] C. Greif and D. Schötzau, Preconditioners for the discretized time-harmonic Maxwell equa-
tions in mixed form, Numerical Linear Algebra with Applications, 14 (2007), pp. 281–297.

[27] C. A. Hall and X. Ye, Construction of null bases for the divergence operator associated with
incompressible Navier-Stokes equations, Linear Algebra and Its Applications, 171 (1992),
pp. 9–52.

[28] M. T. Heath, R. J. Plemmons, and R. C. Ward, Sparse orthogonal schemes for structural

25

optimization using the force method, SIAM Journal on Scientific and Statistical Computing,
5 (1984), pp. 514–532.

[29] C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint preconditioning for indefinite
linear systems, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1300–
1317.

[30] P. Krzyżanowski, On block preconditioners for saddle point problems with singular or indef-
inite (1, 1) block, Numerical Linear Algebra with Applications, 18 (2011), pp. 123–140.

[31] S. Le Borne, Preconditioned nullspace method for the two-dimensional Oseen problem, SIAM
Journal on Scientific Computing, 31 (2009), pp. 2494–2509.

[32] D. Li, C. Greif, and D. Schötzau, Parallel numerical solution of the time-harmonic Maxwell
equations in mixed form, Numerical Linear Algebra with Applications, 19 (2012), pp. 525–
539.

[33] J. Liesen and B. N. Parlett, On nonsymmetric saddle point matrices that allow conjugate
gradient iterations, Numerische Mathematik, 108 (2008), pp. 605–624.

[34] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differ-
ential equations, Numerical Linear Algebra with Applications, 18 (2011), pp. 1–40.

[35] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite
linear systems, SIAM Journal on Scientific Computing, 21 (2000), pp. 1969–1972.

[36] J. Nocedal and M. L. Overton, Projected Hessian updating algorithms for nonlinearly con-
strained optimization, SIAM Journal on Numerical Analysis, 22 (1985), pp. 821–850.

[37] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999.
[38] Y. Notay, A new analysis of block preconditioners for saddle point problems, SIAM Journal

on Matrix Analysis and Applications, 35 (2014), pp. 143–173.
[39] J. Pestana, On the eigenvalues and eigenvectors of block triangular preconditioned block ma-

trices, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 517–525.
[40] J. Pestana and A. J. Wathen, On the choice of preconditioner for minimum residual methods

for non-Hermitian matrices, Journal of Computational and Applied Mathematics, 249
(2013), pp. 57–68.

[41] B. Peters and F. J. Herrmann, A sparse reduced hessian approximation for multi-parameter
wavefield reconstruction inversion, in SEG Technical Program Expanded Abstracts 2014,
Society of Exploration Geophysicists, 2014, pp. 1206–1210.

[42] M. Porcelli, V. Simoncini, and M. Tani, Preconditioning of active-set Newton methods for
PDE-constrained optimal control problems, arXiv preprint arXiv:1407.1144, (2014), pp. –.

[43] T. Rees, H. S. Dollar, and A. J. Wathen, Optimal solvers for PDE-constrained optimization,
SIAM Journal on Scientific Computing, 32 (2010), pp. 271–298.

[44] T. Rees and J. A. Scott, The null-space method and its relationship with matrix factoriza-
tions for sparse saddle point systems, Tech. Report RAL-TR-2014-016, STFC Rutherford
Appleton Laboratory, 2014.

[45] T. Rees and M. Stoll, Block triangular preconditioners for PDE-constrained optimization,
Numerical Linear Algebra with Applications, 17 (2010), pp. 977–996.

[46] J. Rommes and W. H. A. Schilders, Efficient methods for large resistor networks, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29 (2010),
pp. 28–39.

[47] M. Rozlozńık and V. Simoncini, Krylov subspace methods for saddle point problems with
indefinite preconditioning, SIAM Journal on Matrix Analysis and Applications, 24 (2002),
pp. 368–391.

[48] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7
(1986), pp. 856–869.

[49] M. Saunders, LUSOL: A basis package for constrained optimization, SOL, Stanford University,
(2013). http://web.stanford.edu/group/SOL/software/lusol/.

[50] W. H. Schilders, Solution of indefinite linear systems using an LQ decomposition for the
linear constraints, Linear Algebra and its Applications, 431 (2009), pp. 381–395.

[51] J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point prob-
lems with applications to PDE-constrained optimization problems, SIAM Journal on Matrix
Analysis and Applications, 29 (2007), pp. 752–773.

[52] M. Tůma, A note on the LDLT decomposition of matrices from saddle-point problems, SIAM
Journal on Matrix Analysis and Applications, 23 (2002), pp. 903–915.

[53] H. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems., SIAM Journal on Scientific and Statistical Com-
puting, 13 (1992), pp. 631–644.

[54] S. J. Wright, Primal-dual interior-point methods, vol. 54, SIAM, 1997.

26

