
This version is available at https://strathprints.strath.ac.uk/56508/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

G. Wittiga, O. Kargera, A. Knetischa, Y. Xib, A. Dengb, J. B. Rosenzweigb, D.L. Bruhwilerc,d, J. Smithe, Z.-M. Shengf, D.A. Jaroszynskif, G.G. Manahanf, B. Hiddinga,f

aInstitute of Experimental Physics, University of Hamburg, 22761 Hamburg, Germany
bParticle Beam Physics Laboratory, UCLA, Los Angeles, California 90095, USA
cRadiusSoft LLC, Boulder, Colorado 80304, USA
dRadiaBeam Technologies LLC, USA
eTech-X UK Ltd. Daresbury, Cheshire WA4 4FS, UK
fPhysics Department, SUPA, University of Strathclyde, Glasgow G4 0NG, UK

Abstract

We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in a controlled injection. By changing the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

Keywords:

PACS: 52.40.Mj, 29.27.Ac, 52.50.Dg, 52.65.

1. Introduction

The dynamics of electron injection in plasma wakefield accelerators is a main focus of research in the plasma accelerator community, both experimentally and theoretically. The quality of the extracted witness bunches strongly depends on the process of trapping in the plasma wave. Several injection techniques have been proposed and have partially been demonstrated in LWFA as well as in PWFA such as [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] as well as in the form of hybrid Trojan Horse-type methods [17, 18, 19, 20, 21, 22]. The “plasma torch” technique, as recently introduced in [1], is a flexible and simple technique for injection and trapping of electron bunches into the accelerating phase of plasma wakefield accelerators (predominantly, for PWFA, but potentially also for LWFA) and exploits a combination of optically generated density transitions as well as ionization injection and localized blowout amplification effects.

Here, a focused laser pulse propagating perpendicularly (or at an arbitrary angle) to the driver beam axis (\(z\)) is used to ionize homogeneously distributed gas media in advance of the drive beam arrival, leading to a sharply spiked plasma density profile where the ionization threshold is exceeded by the electric field of the laser pulse. We refer to this region of optically excited, shapable plasma density volume as “plasma torch.” This optical torch also has potential application in shaping of plasma cell boundaries and in the realization of ultrafast electron bunch kickers [23]. The density elevation may be created on fs to many ps and up to ns time scale before the arrival of the electron-driven wakefield, using a modestly intense laser pulse, e.g. at the \(I \sim 10^{15}\text{W/cm}^2\) level in case of Ti:Sapphire laser pulses. The shape of the density profile is tunable by directly controlling parameters such as the energy and intensity profile of the laser pulse. Furthermore, this method does not require hydrodynamic expansion after optical excitation by a near-relativistic intense laser pulse, which is the prerequisite of the laser-driven (LWFA) scheme as discussed in Ref. [24, 25]. In the plasma torch scheme, the plasma density shape does not rely on motion of ions and is a direct imprint of the applied laser profile and intensity, therefore very steep density transitions can be created on fs time scales. For example also between driver-witness electron bunch pairs even if they have few micrometer-scale distances, which may be useful to separate the drive beam from the witness. The plasma density spikes generated by the torch have ultrafast (fs-scale) rise times, and decay times of the order of the recombination timescale. The electron beam drives the plasma wave which is based on a low ionization threshold (LIT) gas species, while another (or more) gas component, which needs a higher ionization threshold (HIT), is left unaffected.

Both using a laser pulse at LIT or HIT ionization threshold intensities can be used to manipulate the beam-plasma interaction, including triggering injection of electrons, but the purely
2. Trapping and acceleration of electron bunches for different plasma compositions and laser intensities

Three possible scenarios of electron bunch trapping via the plasma torch scheme, supported by three dimensional particle-in-cell VSim/VORPAL [26] simulations, are considered. The plasma torch approach requires — as all PWFA schemes — an electron beam that can create a high-gradient plasma wake to trap electrons, while its electric fields must not ionize the plasma component. This is experimentally possible using a large range of electron beams, including those generated in LWFA stages. Here we use a FACET-class electron beam [27], having the following parameters: charge $Q = 3$ nC, energy $E = 23$ GeV, energy spread $\Delta E/E = 2\%$, bunch length $\sigma_z = 27$ mm, transverse $\sigma_x = 8.5$ mm, and normalized emittance $\epsilon_0 = 2.25$ mm-mrad. A mixture of hydrogen and helium is implemented as the plasma source, where hydrogen with its low ionization energy is the LIT component and helium is the HIT component. Using the formula for the tunneling ADK rates [28], the peak field in the range of -90 GV/m is required to quickly ionize helium, which is hardly achievable even by a FACET-class electron beam. Therefore He will generally stay in the neutral state as long as the plasma torch does not ionize it purposely.

The use of a hydrogen/helium gas mixture allows for three qualitatively different possible main scenarios: (i) initially hydrogen does pre-ionize locally in the drive beam’s path. He is left in neutral state throughout the process; (ii) case (i), i.e. no general preionization but self-ionization by the drive beam, but the torch laser ionizes both hydrogen and helium locally; and (iii) hydrogen is completely preionized, for example by an on-axis laser pulse (focused by a lens, an axially symmetric or advanced diffractive optics), and the torch laser ionizes additional helium locally in the pathway of the drive beam. It shall be noted that by using diffractive optics, it may be possible to adjust the on-axis intensity profile of the preionization laser pulse such that an intensity spike is generated which then acts as a similar effect as an independently tunable plasma torch laser, albeit without its flexibility. In all selected simulations, a laser pulse propagates perpendicular to the electron beam and generates the plasma torch approximately 1 ps before the electron beam drives plasma wave — this is to save computational costs by keeping the simulation window sufficiently small. In reality, it does not matter much if the plasma torch laser pulse arrives few hundred femtoseconds or many picoseconds before the electron beam driven plasma wave, as long as neither combination effects nor ion and hydrodynamic motion sets in. This is advantageous because it means that the requirements put on the synchronization between electron beam driver and plasma torch laser pulse can be easily met. In the considered cases, the plasma torch laser pulse is based on a Ti:sapphire laser system, with central wavelength of $\lambda = 800$ nm and a pulse duration (FWHM) of $\tau = 64$ fs. The delay between the torch laser and the electron driver was carefully chosen in the simulation such that the optical plasma torch is allowed to build up before the arrival of the electron beam, while at the same time the simulation box window length is minimized. All given densities are free electron densities (when ionized), and atomic densities (when in neutral state), because only single ionization occurs both are equal. The actual parameters for the three cases are chosen based on analytical calculations of ionization levels and yields. All simulations of electron trapping triggered by optical plasma torches are compared with simulations without a plasma torch to confirm that the trapping is solely due to the plasma torch density perturbation. The combinations of laser waist w_0 and dimensionless amplitude α_0 have been chosen in all scenarios such that the torch width is equal or greater than the plasma wavelength $\lambda_D = 2\pi \sqrt{\rho_{min}/en^0}$ within the plasma torch, in order to allow for the plasma wave to interact at increased density at least over one $\lambda_D = (m,\epsilon,\nu_e,\eta_v)$ the electron mass, c speed of light in vacuum, ν_e electron charge, η_v the electron density, and ϵ_0 the vacuum permittivity). On the other hand, a compact torch allows for a rapid density transition. It is known that the downramp length should be shorter than the plasma skin depth $\delta = c/\omega_p$ [29] for electron bunch injection in PWFA. This criterion is fulfilled in each case.

Figure 1 shows the injection process of the first scenario, where neutral hydrogen is used and the torch laser is only ionizing hydrogen locally in the drive beam’s path. In this case, the drive beam has to self-ionize hydrogen outside of the plasma torch region in order to generate a plasma, which is only possible near the center of the bunch, where the peak fields are high enough to exceed the hydrogen ionization threshold. Consequently, further ahead in the drive bunch there is no plasma, because the electric fields are much lower due to the smaller density, and outside the plasma torch region, the front part of the drive beam is simply unused. The effective ionization front determines the beginning of the plasma wave, which is shifted rapidly to the front of the drive beam when entering the preionized region produced by the torch laser. Additionally, during the passage of the torch, the wakefield is significantly amplified, as now more drive beam current is contributing to the excitation. When the plasma torch volume is left and the drive beam exits the locally preionized hydrogen plasma region, the blowout shifts back again, since hydrogen once more needs to be self ionized by the drive beam. This snapping back of the plasma wave results in trapping of electrons very effectively. It is remarkable to note that neither the hydrogen gas density nor the plasma wavelength are changed during this process, which is a fundamental difference to gas density downramp injection. After $z \approx 5$ mm of propagation ($= 4.6$ mm behind the torch), the generated witness bunch with energies exceeding 100 MeV has normalized emittance of $\epsilon_0 = 3.5$ mm mrad, $Q = 34$ pC, mean energy of $E = 160$ MeV, energy spread $\sigma_E/E = 12.5\%$;
and a peak current of $I_{\text{peak}} = 2.0 \, \text{kA}$. Also evident in Figure 1 is the lensing effect of the plasma on the drive bunch which supports the wake’s acceleration field strength.

In Figure 2 the second scenario is illustrated, similar to Figure 1. Here, the torch laser intensity is increased to $a_0 = 0.03$, in order to allow the local laser ionization of both helium and hydrogen. Obtained witness bunch parameters at $z \approx 5 \, \text{mm}$, counting electrons with energies exceeding 60 MeV are: normalized emittance $\epsilon_n = 1 \, \text{mm mrad}$; charge $Q = 274 \, \text{pC}$; mean energy $E = 118 \, \text{MeV}$; energy spread $\sigma_E/E = 12.0\%$; and a peak current at $I_{\text{peak}} = 11.1 \, \text{kA}$. Electrons of both elements are trapped and form the witness bunch. The total amount of trapped charge can be independently tuned via the helium gas density (up to beam loading levels) in contrast to scenario (i). In fact, here the accelerating field is lowered, compared to case (i), due to the much higher trapped charge and consequently the energy gain is decreased. In Figure 3 the last scenario is illustrated, which applies preionized hydrogen (LIT). Using the same plasma densities as in cases (i) and (ii), uncontrolled electron injection would occur due to strong electric fields of the blowout [10, 21, 15] that would partly ionize and trap helium. To mitigate this effect, reduced gas densities for hydrogen and helium are used: $n_H = 5 \times 10^{16} \, \text{cm}^{-3}$, and $n_{\text{He}} = 1 \times 10^{17} \, \text{cm}^{-3}$, since the longitudinal fields are proportional to the ambient plasma density $E_z \propto n^{1/2}$. The reduction of the plasma density decreases the electric field, avoiding dark current generation at the rear of the blowout. It shall be noted that alternatively, one may also use a weaker driver bunch but elevated hydrogen densities. This would generate smaller blowouts, but nevertheless small enough wakefields as required to avoid He ionization or, more importantly, dark current trap-
ping. In this scenario, electron bunch injection and trapping is because of the extension of the plasma wavelength when leaving the plasma torch, resulting in electron injection due to the plasma downramp at the end: a process similar to standard gas density downramp injection. Obtained witness bunch parameters after ≈ 7.7 mm of acceleration, counting electrons with energies exceeding 60 MeV are: normalized emittance \(\epsilon = 1.8 \text{ mm mrad} \); charge \(Q = 1.9 \text{nC} \); mean energy at \(E = 106 \text{ MeV} \); energy spread \(\sigma_E/E = 12.6\% \); and a peak current at \(I_{\text{peak}} = 22 \text{kA} \).

The technique presented in this paper can be experimentally realized for example in 90° geometry, as illustrated in Figure 4 and as used for the presented simulations. Spatial alignment of the order of the torch laser beam waist or the plasma blowout width, respectively, is comparably easily achieved. Temporal synchronization between the electron driver beam and plasma torch laser pulses, as mentioned above, is also easily satisfiable. An energy of the plasma torch laser of the order of a mJ at pulse durations of a few tens of fs can be sufficient, since such pulses can be focused to the intensities of \(10^{14}-10^{15} \text{W/cm}^2 \) at the interaction point. This is the intensity level for ionization of either hydrogen (case i) or hydrogen and helium (case ii and iii). For sce-

3. Experimental realization of the optical plasma torch

The technique presented in this paper can be experimentally realized for example in 90° geometry, as illustrated in Figure 4 and as used for the presented simulations. Spatial alignment of the order of the torch laser beam waist or the plasma blowout...
4. Summary

We have discussed a fully optically-steered method to generate tunable plasma density transitions. The torch width was chosen to exceed at least one plasma wavelength in order to allow the blowout to close within the torch volume. This defines the ability to trap electrons, e.g. for high torch densities the plasma wavelength within the torch is shorter, allowing for a smaller torch width. Different scenarios have been examined.

In scenario (i) injection occurs entirely due to the forward and backward shifting of the plasma cavity, due to the jumping ionization front position and amplification of the wake. In scenario (ii), where preionized hydrogen is used, the front of the wake field does not change with respect to the electron beam driver. Here electron injection occurs due to distortion of the plasma wavelength, which is similar to conventional downramp injection. Scenario (i) is a mixture of both, shifting the front of the wakefield combined with a change in the plasma wavelength.

In the optical plasma torch technique a large range of field strengths are covered by the accelerating electrons, which results in a rather large energy spread. However, by using a second component (scenario ii and iii) the amount of trapped charge and the bunch length can be controlled, as well as the trapping position. Therefore beam loading can be utilized, e.g. by adjusting the shape of the downramp, to lower the energy spread along with the possibility to trap very short bunches in the very rear of the blowout, leaving space for optimization of this technique. Additionally different laser profiles and intensities can be applied to create diverse plasma profiles and ramp lengths, to tune the current profile and length of the witness bunch and to further optimize the bunch quality. Asymmetric plasma torch profiles and multiple plasma torches may allow for further enhanced flexibility.

References:

