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Abstract: 

Marine phytoplankton are a taxonomically and functionally diverse group of organisms that are key 

players in the most important biogeochemical cycles. Phytoplankton taxa show different resource 

utilization strategies (e.g. nutrient uptake rates and cellular allocation) and traits. Therefore, 

acknowledging this diversity is crucial to understanding how elemental cycles operate, including the 

origin and dynamics of elemental ratios. In this paper, we focus on trait-based models as tools to study 

the role of phytoplankton diversity in the stoichiometric phenomenology observed in the laboratory and 

in the open ocean. We offer a compilation of known empirical results on stoichiometry, and summarize 

how trait-based approaches have attempted to replicate these results. By contrasting the different 

ecological and evolutionary approaches available in the literature, we explore the strengths and 

limitations of the existing models. We thus try to identify existing gaps and challenges, and point to 

potential new directions that can be explored in order to fill these gaps. We aim to highlight the 

potential of including diversity explicitly in our modelling approaches, which can help us gain 

important knowledge about changes in local and global stoichiometric patterns.  
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Introduction 

Phytoplankton play a crucial role in some of the most important biogeochemical cycles (A Sea of 

Microbes [Theme Issue] 2007): for instance, the carbon (C) cycle, by performing more than 50% of the 

global (terrestrial and marine) primary production; and the nitrogen (N), phosphorus (P), iron (Fe) and 

silicon (Si) cycles. Phytoplankton cells capture these resources, assimilate them, and use them for vital 

processes. Afterwards, these elements are introduced back into the environment as (particulate or 

dissolved) organic matter, which is either remineralized by heterotrophs and thus made available for 

other organisms, or sinks thus contributing to the elemental composition of deeper waters. Therefore, 

understanding how phytoplankton take up these nutrients and allocate the available resources in order 

to carry out key physiological processes — that is, changes in phytoplankton stoichiometry — is key to 

understanding the past, present, and future linkages of these important biogeochemical cycles.  

For decades, models and theoretical work remained within the Redfield ratio paradigm that marine 

phytoplankton stoichiometry (and thus the deep ocean elemental composition) is remarkably constant 

across environments (Redfield 1934, Redfield 1958). Initially set to 106:16:1 for C:N:P, it has been 

subsequently argued that other important elements such as Fe or Si should be included in this paradigm 

(Quigg et al. 2003). Today, we know that marine phytoplankton actually show a variety of 

stoichiometric patterns and strategies that vary across taxa and environmental conditions (see review in, 

e.g. (Geider & La Roche 2002)), and the proposed fixed ratios of such key elements comprise only one 

possibility within a wide distribution of possibilities (Klausmeier, Litchman, Daufresne & Levin 2004). 

Phytoplankton stoichiometry changes across taxa, and varies in time and space. 

Phytoplankton stoichiometry is determined by the relative elemental composition of the different 

macromolecules present in the cell. For instance, most of the cell’s N can be found in proteins, whereas 

most of the P is used for rRNA or phospholipids (Geider & La Roche 2002). Because different species 

show a different macromolecule distribution and availability, stoichiometry differs across species. In 

addition, size, a master trait for phytoplankton (Litchman & Klausmeier 2008), also influences 

stoichiometry indirectly, as bigger cells have vacuoles to store an additional amount of these elements. 

Due to these interspecific differences in elemental ratios, phytoplankton biogeography and community 

composition may be important drivers for spatial (local and global) patterns. Phytoplankton N:P ratios 

sampled in different parts of different oceans, for instance, revealed a strong latitudinal pattern by 

which the ratio of N and P is inversely correlated with latitude (Martiny et al. 2013) (see Fig.5A), a 

trend that has also been reported for terrestrial vegetation (Reich & Oleksyn 2004). Thus, the 



stoichiometry of a specific region depend largely on which species are present in such regions (Geider 

& La Roche 2002); in other words, phytoplankton diversity plays a key role in ultimately determining 

the observed stoichiometry.  

Additionally, local and global stoichiometries change with time. The composition of the community 

changes during the year due to changes in the availability of each of these nutrients, along with diurnal 

and seasonal variations in light, temperature, and predatory pressures. Moreover, phytoplankton can 

react to environmental changes by changing resource allocation to the different physiological 

processes, thus altering their stoichiometry. These acclimation responses are controlled by organismal 

traits and, in consequence, are shaped and constrained by evolution. Furthermore, because 

phytoplankton have short generation times, their populations are subject to rapid evolutionary events in 

response to quickly-changing and/or stressing environments; rapid evolution can, in turn, influence 

ecological interactions (Lennon & Martiny 2008, Litchman et al. 2012, Lomas et al. 2014). In 

consequence, ecological responses may be intertwined with evolutionary strategies. 

Therefore, emergent local and global stoichiometries are the highly dynamic, nontrivial result of 

interactions across spatial scales, and across temporal scales, in which diversity plays a crucial role. 

Thus, if we want to understand and replicate the different stoichiometric patterns that are observed in 

the open ocean, we need to devise empirical methods and theoretical models that go beyond assuming a 

constant ratio for C, N, and P, and acknowledge the changeable character of cell-level and population-

level stoichiometries, and the importance of diversity in determining the emerging stoichiometry of the 

community.  

In this paper, we argue that trait-based models (TBM) are a powerful tool to this end. As discussed 

below, the formalism of TBM is specifically conceived to represent biodiversity in a simple yet reliable 

way. These models have been the focus of recent development for phytoplankton (Follows & 

Dutkiewicz 2011, Litchman & Klausmeier 2008), representing macroscopic patterns such as basic 

phytoplankton biogeography (Follows et al. 2007) to more sophisticated physiological aspects 

(Bruggeman & Kooijman 2007, Lomas et al. 2014). We will specifically center on N:P because this 

ratio has been the focus of intense research in the last few decades, but we will also offer some 

additional insight and results related to C:N and C:P. First, we collect some of the most important 

experimental results providing the key laboratory and field observations on phytoplankton N:P under a 

variety of environmental and growth conditions. Then, we provide a brief introduction to TBM, 

followed by a compilation of ecological and evolutionary TBM and applications to phytoplankton 



stoichiometry, at the local and the global levels. Finally, we propose future directions and outline the 

important challenges that lie ahead, and possible ways to tackle them. 

 

Quantifying stoichiometry  

Intraspecific variation 

There is a growing emphasis on the importance of intraspecific variation in community and food web 

ecology in general (Bolnick et al. 2011). The intraspecific variation in stoichiometry is a key aspect of 

this variation. Therefore, understanding the extent and the drivers of intraspecific stoichiometric 

variation, and its proper characterization, is important for our mechanistic understanding of food web 

dynamics and ecosystem functioning.  

Intraspecific variation in stoichiometry can originate from either differences in genotypes or plasticity 

of individual cells/colonies, even within a single genotype, or a combination of both phenomena.  

Phytoplankton have highly plastic macroelemental ratios (N:P, C:N and C:P) that depend on the 

nutrient supply ratio, light and temperature, and growth rate, among other factors ((Goldman et al. 

1979, Hall et al. 2005, Hillebrand et al. 2013, Rhee 1978, Yvon-Durocher et al. 2015); see Fig.4 for an 

illustration of some of these correlations). Nutrient supply ratio changes phytoplankton stoichiometry, 

so that at high N:P supply ratios phytoplankton N:P ratio increases and vice versa (Rhee 1978). 

However, phytoplankton stoichiometry usually does not match the N:P supply perfectly, especially at 

high growth rates (Bonachela et al. 2013, Goldman et al. 1979, Klausmeier et al. 2008, Klausmeier, 

Litchman & Levin 2004). Irradiance also affects stoichiometry of phytoplankton species: experiments 

with a diatom species showed that the C:N ratio in the stationary phase increased and C:P ratio 

decreased with increasing irradiance, while they did not change during the early exponential phase 

(Leonardos & Geider 2004). The C:N ratio in a different diatom species also increased under high light 

(Norici et al. 2011).  Less is known about how temperature may influence stoichiometry. A recent data 

compilation analysis shows that increasing temperature may increase N:P and C:P (Yvon-Durocher 

et al. 2015).This behavior may be due to a lower demand for P-rich ribosomes at higher temperatures, 

which may occur if the rate of biosynthesis increases with temperature more quickly than the rate of 

photosynthesis (Daines et al. 2014).  

In addition, it is likely that species or functional groups differ in the degree of plasticity of their 

stoichiometries (Klausmeier et al. 2008). For example, species with a high storage potential (e.g., large 



vacuole, (Litchman et al. 2009)) may have higher variability in N:P ratios.  The evolution and cost of 

plasticity is poorly understood but studying it could provide insights into the origin and maintenance of 

stoichiometric diversity. 

While the plasticity of an individual genotype stoichiometry in response to different environmental 

factors has been studied experimentally, much less is known about the genotypic differences in 

stoichiometry in phytoplankton. We know, however, that different genotypes can have significantly 

different growth rates (Rynearson & Armbrust 2004). Consequently, according to the Growth Rate 

Hypothesis (Sterner & Elser 2002), we may expect different C:P and N:P ratios, with faster growing 

genotypes potentially having higher P content and lower C:P and N:P ratios than the slower growing 

genotypes.  A recent study (Lind & Jeyasingh 2015) investigated two different genotypes of the green 

alga Chlamydomonas, a wild type and a mutant that lacks the psr1 gene that is involved in the 

responses to low P supply. The two genotypes had different C:P ratios and there was a significant 

genotype by P-level interaction. Interestingly, the two Chlamydomonas genotypes had different effects 

on the zooplankter Daphnia growth, highlighting the effects of intraspecific variation in producer 

stoichiometry on food web dynamics.   

Interspecific variation 

As stated above, there is ample evidence that elemental composition varies across phytoplankton 

species. Because stoichiometry is plastic within species, interspecific variation is necessarily quantified 

in different ways.  

Often, elemental content is measured for nutrient-replete, exponentially growing cultures. 

Stoichiometry under nutrient-replete growth is affected in part by nutrient storage and biochemical 

acclimation to high nutrient supply. Comparative analyses of nutrient-replete cultures have found that 

C:N, C:P, and N:P all vary substantially across species, although C:N varies less than N:P and C:P 

(Geider & La Roche 2002, Quigg et al. 2011). The average N:P across species may be less than the 

Redfield ratio of 16 (Geider & La Roche 2002) or slightly higher (Quigg et al. 2011), while C:N tends 

to be similar to the Redfield ratio of 6.625 (Geider & La Roche 2002, Quigg et al. 2011).  

Quigg et al. (2003, 2011) found that some of this interspecific variation can be explained by phylogeny, 

with members of the green plastid superfamily tending to have higher C:P and N:P than members of 

the red plastid superfamily. They also found differences in trace element stoichiometry that may reflect 

the origin of the plastids of these lineages through different endosymbiotic events. Bertilsson et al. 



(Bertilsson & Berglund 2003) found that Prochlorococcus and Synechococcus from the oligotrophic 

ocean tend to have relatively high C:P and N:P. The ratios for these species are higher than the 

Redfield ratios and, compared to the results of (Quigg et al. 2003), similar to those of prasinophytes 

and chlorophytes (green plastid superfamily).  

Measurements of stoichiometry in field populations also demonstrate interspecific variation. Martiny et 

al. (Martiny et al. 2013) found in the subtropical North Atlantic that Prochlorococcus had the highest 

C:P and N:P, and that small eukaryotes had the lowest ratios, with Synechococcus intermediate. Arrigo 

et al. (Arrigo 2002) found that Phaeocystis-dominated waters in the Ross Sea had C:P and N:P 

drawdown ratios higher than Redfield, while diatom-dominated waters had ratios lower than Redfield, 

and matter exported to sediment traps had C:P differences consistent with the differences in drawdown 

ratio. Twining et al. (Twining et al. 2004) found that flagellates had a C:P 30% lower than that of 

diatoms in the Southern Ocean. 

Species differences in N:P (or other potentially limiting nutrients) can also be quantified in terms of the 

cellular N:P at which growth switches from N- to P-limitation, which has been termed the ‘optimal’ 

(Rhee & Gotham 1980)  or ‘critical’ (Terry et al. 1985) N:P ratio. Under relatively low growth rates, 

this ratio is equal to the ratio of the minimum subsistence quotas (Qmin; (Droop 1968)) for N and P. For 

any growth rate, phytoplankton at the optimal ratio can match the environmental elemental ratio, and 

therefore grow by drawing down all the available resources. Models have provided additional insight 

on this switching point for higher growth rates, and possible interactions between the two nutrients 

around this point (see below). Compilations of lab experiments have found that the optimal N:P varies 

substantially across species (from ~6 to >100; (Edwards et al. 2012, Klausmeier, Litchman & Levin 

2004); Fig. 1), and that the median ratio is somewhat higher for freshwater (median = 27.2) than 

marine species (median = 16.9).  

In spite of this quantification of phytoplankton stoichiometric diversity observed in the laboratory and 

the field, we currently have relatively little understanding of the causes of this interspecific variation, 

either in terms of the underlying biochemistry or the evolutionary causes of these differences. Although 

genotypes can acclimate their biochemical composition to environmental conditions, for example by 

increasing chlorophyll content under low irradiance, there are still large differences between species in 

mean Chl:C across irradiances (Dubinsky & Stambler 2009). These differences presumably represent 

strategies adapted to different environmental conditions, in the face of underlying tradeoffs. Quigg et 

al. (Quigg et al. 2011) argue that stoichiometric differences among major lineages reflect differences 



over geological time in the oxidation state of the ocean, and the relative availability of different 

elements at the time when the lineages originated. However, if stoichiometric differences reflect 

ancient evolutionary events, the question remains why this stoichiometric diversity persists in the 

current ocean.  

In terms of ecological strategies, species may diverge in adapting to conditions of resource limitation 

vs. rapid growth. The low N:P content of ribosomes, relative to proteins for nutrient uptake and 

photosynthesis, may cause rapidly growing species to have low structural N:P (Klausmeier, Litchman 

& Levin 2004). There is some evidence that faster growth under low irradiance leads to a high N 

demand (low C:N) even when N (not light) is limiting growth (Edwards et al. 2015), which is 

consistent with a cost of investment in photosynthetic machinery. Strzepek and Harrison (Strzepek & 

Harrison 2004) found that an oceanic diatom reduced demand for iron, relative to a coastal congener, 

by reducing the content of iron-rich photosystem components. This led to faster growth under iron 

limitation, perhaps at the expense of tolerance to fluctuating irradiance.  

Ecosystem-level variation 

Stoichiometry also varies spatially and temporally at the ecosystem level, often quantified using 

elemental ratios of bulk particulate matter. In a global compilation, Martiny et al. (Martiny et al. 2013) 

found latitudinal trends in C:P and N:P, such that P content was lower than Redfield in warm, nutrient-

depleted, low latitude regions and higher than Redfield in cold, nutrient-rich, high latitude regions (see 

N:P case in Fig.5A). Sterner et al. (Sterner & Andersen 2008) found that within regions, samples with 

higher total biomass tended to have higher nutrient content (lower C:N and C:P). In the subtropical 

North Pacific, particulate N:P varies within years by 50-100% and tends to be higher in the summer-

fall, additionally showing a long term increase away from the Redfield 16:1 (Karl et al. 2001). The 

observation of some of these patterns also in terrestrial ecosystems (Reich & Oleksyn 2004) points to 

the existence of fundamental mechanisms beyond simple environmental factors that contribute to the 

emergence of such patterns. 

Plasticity, within-species genetic variation, and variation in community composition likely play a role 

in these stoichiometric patterns, and causes of variation may include variation in the magnitude and 

ratio of nutrient supply as well as temperature (Yvon-Durocher et al. 2015). Regional variation in 

nutrient supply ratios may by driven by the differential lability of DON vs. DOP, regional variation in 

denitrification, and regional variation in nitrogen fixation (Deutsch & Weber 2012). Globally and over 

long timescales, N:P in the ocean is thought to be regulated by competition between diazotrophic 



cyanobacteria and non-diazotrophic phytoplankton (Redfield 1958, Tyrrell 1999). The removal of N 

from the ocean by microbial denitrification will tend to favor diazotrophs by making N scarce relative 

to P. At the same time, the metabolic and material costs of nitrogen fixation are thought to make 

diazotrophs poor competitors for other resources, such as phosphorus. Simple theoretical arguments 

also lead to the conclusion that this dynamic causes diazotrophs effectively to fertilize the ocean with N 

until N:P is high enough that they are almost competitive excluded (Tyrrell 1999). This scenario is, 

however, complicated by variation across regions and over geological eras in iron supply (which likely 

limits diazotrophs) and the magnitude denitrification, but mixing between regions may maintain a 

homeostatic N:P in the face of regional variation in the abundance of nitrogen fixers (Deutsch & Weber 

2012, Lenton & Klausmeier 2007). 

Thus, documenting the patterns above, and understanding the mechanisms underlying them, is still in 

the early stages. Models are proving to be an essential tool for the latter task. 

 

Modeling biodiversity and stoichiometry  

Modeling biodiversity 

Diversity exists at all organizational levels: behavioral and phenotypic plasticity within individuals, 

genetic variation within species, and species richness within communities. Aside from interest in its 

own right, diversity is important because it allows biological systems to respond to environmental 

changes. However, representing diversity is a challenging task. 

In phytoplankton ecology, the traditional way to implement the dynamics of plankton communities has 

been by means of the paradigmatic NPZD models, which keep track of the temporal changes in 

nutrients, phytoplankton, zooplankton, and detritus, using one single box with fixed trait values for 

each of the biotic components ((Franks 2002, Riley 1946); Fig. 2A). Such a simple setup is 

computationally economical, but does not capture the wide variety of phytoplankton characteristics and 

strategies that are observed in the ocean. 

To represent such diversity with NPZD approaches, every distinct species requires an additional 

dynamic equation, which in the case of phytoplankton can mean the need of hundreds of new 

equations. Incorporation of genetic diversity within species compounds the problem. In addition to the 

certain simulation slowdown, the main problem associated with such large (diverse) systems is that of 



parameterization: there are simply too many unknown parameters, leaving models hopelessly 

unconstrained. 

Similarly to the Lagrangian versus Eulerian conundrum (Hellweger & Bucci 2009), one suggested 

solution is the use of a “mesoscopic scale” or coarser representation in which the thousands of 

possibilities are grouped into functional groups attending to the distinct role of each of these groups in 

the biogeochemical cycles ((Follows & Dutkiewicz 2011, Litchman et al. 2006, Moore et al. 2002, 

Quéré et al. 2005); Fig. 2B). Thus, phytoplankton diversity can be represented by using a small number 

of functional groups with some common basic physiological features, which differ in specific abilities 

such as being motile and/or mixotrophs (dinoflagellates), silica sequestration (diatoms), or nitrogen 

fixation (diazotrophic cyanobacteria). All these functional groups share the same basic terms in their 

respective dynamic equations, but also have additional group-specific terms that capture the distinct 

strategies of each group. Still, these functional-group models omit much diversity and neglect the fact 

that, while they differ in mean traits, these groups often have overlapping trait distributions (Edwards 

et al. 2012, Edwards et al. 2015). 

Trait-based models (TBM) provide an alternative way to incorporate biodiversity into simulations of 

ecosystem dynamics (Follows & Dutkiewicz 2011, Litchman & Klausmeier 2008). TBM consider a 

universe of possible strategies (or, more generally, ecotypes) defined by a set of functional traits. 

Trade-offs between traits limit the spectrum of possible combinations among those traits, avoiding the 

curse of parametric dimensionality, and preventing non-plausible combination of traits from occurring, 

such as the so-called superspecies (or “superbugs”, unrealistic combination of traits so advantageous 

that could outcompete any other ecotype in the system) (Flynn et al. 2015, Follows & Dutkiewicz 

2011, Litchman & Klausmeier 2008). Allometries provide one relatively easy way to incorporate these 

trade-offs. Because size is one of the most important traits for phytoplankton, it is linked to many of the 

traits that are involved in the most important physiological processes such as growth or nutrient uptake 

(Litchman & Klausmeier 2008, Litchman et al. 2007). Therefore, known allometric relationships may 

be used to reduce the need for specific parameterizations.   

A variety of closely related TBM frameworks exist (Abrams 2001, Abrams 2005), differing in how 

they interpret diversity, where new strategies come from, and what approximations they make to reduce 

model complexity.  Many TBM frameworks do not specify at which hierarchical level trait variation 

occurs (intraspecific vs. interspecific).  This strategic approach has benefits (greater simplicity and 

generality) and costs (less realism). New strategies can arise from small mutation of existing ones 



(Adaptive Dynamics (Dercole & Rinaldi 2008, Geritz et al. 1998)) or invasion from a broader 

metacommunity (community assembly, e.g. (Louille & Loreau 2005), or be maintained as standing 

genetic variation (quantitative genetics, e.g. (Jiang et al. 2005)).   

Thus, although some TBMs include genetic dynamics (via e.g. Adaptive Dynamics or quantitative 

genetics), other TBMs do not implement genetic change at the level of the organism, relying on the 

assumption that the initial population represents all possible genetic variability and the environment 

selects which genotypes survive in each location (“everything is everywhere” paradigm (Baas-Becking 

1934, Follows & Dutkiewicz 2011)).; Local genotypic distributions can be, nonetheless, very dynamic 

with extinctions via competition but also innovation, that is, new genotypes, through genotype 

immigration from different regions of the system (Baas-Becking 1934, Follows & Dutkiewicz 2011). 

Ultimately, however, innovation is constrained to the initial genotype distribution and, therefore, 

genotypic resolution depends on the degree of exhaustiveness with which the initial condition or 

community composition samples the genotype space. 

One possible downside of both functional group and some TBM approaches is, precisely, the lack of 

clear indications as to what an optimal number of functional groups or ecotypes is for this initial 

distribution. The answer is probably question- and situation-specific. It is always tempting to use as 

many groups as the available computational power allows. However, doing so is not only arbitrary, but 

also may sometimes be unnecessary and ineffective as increasing the number of ecotypes may not 

result in any additional improvement or change in the outcome of the model (Follows & Dutkiewicz 

2011). In addition, representing diverse regional strategies for a group may require the use of multiple 

duplicate versions of such groups, properly parameterized using group-specific or ecotype-specific 

features specific of each region.  Some TBM frameworks (e.g. those incorporating evolutionary 

adaptation) allow diversity to emerge based on species interactions, providing a potential resolution to 

this conundrum. 

The most straightforward representation of diversity is a separate equation for each population’s 

density, either approximating a continuum of strategies (System of Infinite Diversity sensu 

(Bruggeman & Kooijman 2007); Fig. 2C) or a large number of randomly chosen strategies to sample a 

higher-dimensional trait space (the Darwin model (Follows et al. 2007)).  Moment-based methods 

((Norberg et al. 2001, Wirtz & Eckhardt 1996); Fig. 2D) reduce the dimensionality by following 

various moments of the trait distribution (total population size, mean traits, trait variance and 

covariances), while optimality methods (Smith et al. 2011) assume that traits instantaneously reach 



their optimal values.  At equilibrium, these differences may not matter, but in spatially and temporally 

variable environments they may affect trait dynamics and acclimation responses (Kremer & 

Klausmeier 2013, Norberg et al. 2001).   

Including acclimation responses offers, in turn, a realistic way to increase the spectrum of possible 

responses without increasing the number of groups or ecotypes. Phenotypic plasticity confers the 

organism with flexibility to react to various environmental changes without any genetic alteration. 

Therefore, including such responses allows the same functional group or ecotype to show a different 

phenotype, e.g. photosynthetic rate under different irradiance conditions, or different number of uptake 

proteins under different nutrient availabilities. These responses can be implemented by using 

phenomenological expressions that, based on data or field observations, link trait values to 

physiological observables (e.g. maximum photosynthetic rate to chlorophyll to carbon ratio, or 

maximum uptake rate –proportional to the number of nutrient-uptake proteins—to the internal content 

of the focal nutrient (Geider et al. 1998)); or more mechanistic approaches in which it is the changes in 

trait values that depend on those observables (i.e. the response itself is what is triggered by 

physiological changes, see e.g. (Bonachela et al. 2011, Klausmeier et al. 2007)). These 

ecophysiological models usually center on one single species; however, because the organism’s 

dynamics are mostly driven by the main traits of the cell in these models, they have the potential to 

capture diversity and be adapted to the TBM framework. Thus, we will consider these models 

indistinguishable from TBM henceforth. 

TBM have been used to explore a variety of phytoplankton-related aspects, from the specifics of 

nutrient-uptake kinetics and tradeoffs using one single ecotype (Fiksen et al. 2013), to evolution of 

optimal N:P stoichiometry or cell size under different environmental conditions (Daines et al. 2014, 

Klausmeier, Litchman, Daufresne & Levin 2004, Litchman et al. 2009),  to global biogeographic 

patterns (Follows et al. 2007) or regional community structure (Bruggeman & Kooijman 2007) using 

dozens of ecotypes. Theoretical issues that are yet to be resolved concern the maintenance of trait 

variation and whether trait distributions can become multimodal, invalidating some of the assumptions 

of moment-based and optimality methods.  Nonetheless, TBM are a powerful way to include diversity 

that can be combined with functional groups (for instance, by informing the trait initialization using 

group-specific values, and/or providing groups with a variety of intra-specific variability or ecotypes). 

In summary, including biodiversity in phytoplankton models is a non-trivial task that is receiving more 

and more attention due to its importance. Once a starting point for the implementation of a variety of 



distinct strategies has been identified in functional groups or ecotypes, and simple ways to initialize 

these groups (e.g., using allometries) have been found, now modelers are starting to include more 

mechanistic approaches to more sophisticated questions, such as the inclusion of acclimation responses, 

evolution, or dynamic changes in each of phytoplankton’s resource pools. 

 

Modeling stoichiometry 

The approaches with which modelers have tried to replicate the experimental observations of 

phytoplankton stoichiometry are diverse, but have some important points in common. All these models 

focus on a particular species and share, of course, the need for the internal content of the different 

nutrients that are resolved (typically N and P) to change with time. Therefore, these models leave 

behind the fixed Redfield stoichiometry paradigm and keep track of the dynamics of these quotas, using 

to this end simple balance equations in which the focal pools increase via nutrient uptake and decrease 

via assimilation. The main difference between the models below is how they approach the link between 

growth and these quotas. 

A first group of models use the quota (or Droop) model to represent cell growth (Droop 1968) in 

combination with Liebig’s law of the minimum; thus, cell or population growth depends in a 

hyperbolic way on the most limiting of the suite of possible resources (Legovic & Cruzado 1997). For 

instance, if N and P are the only limiting resources and  represents the population growth rate: 

)()(max PN QfQf   

where max is the maximum growth rate, and f  is a hyperbolic function that depends on the limiting 

resource; if the normalized version of the Droop model is considered, then (Flynn 2008): 
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where Qmin,i represents the maximum amount of nutrient i the cell can store, and Qmin,i, the minimum 

that the cell needs to survive. Thus, in these models the functional form associating growth rate with 

the most limiting nutrient is common to all possible limiting nutrients (note that we used the same 

function, f, for all the terms into the min function) and, therefore, is qualitatively similar among 



situations regardless of the specific resource that limits growth. Differences in growth introduced by 

specific nutrients are thus implemented through differences in the physiological limits for each of the 

nutrient quotas, Qmax and Qmin. These models are called threshold models, because the cell can be only 

limited by one resource at a time except for one specific threshold, the co-limitation point mentioned in 

the previous section, at which cell growth can be limited by multiple resources at the same time 

(Bougaran et al. 2010, Klausmeier, Litchman, Daufresne & Levin 2004, Klausmeier, Litchman & 

Levin 2004, Klausmeier et al. 2007, Legovic & Cruzado 1997).  

Another group of models detach themselves from the Droop model by constructing the growth rate 

using mechanistic arguments (Ågren 2004, Bonachela et al. 2013, Pahlow & Oschlies 2009). These 

models are arguably more mechanistic, although more parameter-expensive as well. In addition, all 

these models introduce in one way or another interactions among the limiting resources that may affect 

the growth rate. These models can replicate the same phenomenology that threshold models replicate, 

for instance the expected behavior of the cell’s N:P with respect to changes in growth rate or input N:P 

(see Fig.3); in addition, interactions among nutrients affect the conditions under which co-limitation 

occurs (generally transforming the co-limitation point intro a co-limitation region) and, in consequence, 

the competitive abilities of the focal organism (Bonachela et al. 2013) (see Fig.4). 

Among the model groups above, it is possible to find examples in which acclimation responses are 

included, either by using phenomenological expressions (e.g. (Pahlow & Oschlies 2009)) or explicit 

dynamic equations ((Bonachela et al. 2013, Klausmeier et al. 2007, Loladze & Elser 2011), see above). 

These responses necessarily introduce additional interactions between the two nutrients, either directly 

(for instance, with one nutrient limiting specific physiological responses linked to the alternative 

nutrient such as protein or ribosome synthesis (Bonachela et al. 2013, Pahlow & Oschlies 2009)) or 

indirectly (for instance, through the competition between the respective uptake proteins for space on 

the cell surface (Bonachela et al. 2013, Klausmeier et al. 2007)). These acclimation responses provide 

the cells with an additional flexibility that allows these models potentially to replicate highly dynamic 

growth conditions, as well as a wider spectrum of stationary possibilities. 

There are some remarkable differences between these approaches in key aspects such as the 

asymmetric response of the N and the P quotas to changes in growth rate, or the existence of an 

effective minimum value for quota (Qmin, quota such that =0, see above) that changes with the input 

elemental ratio. However, with the empirical information available, it is difficult to discern which 

group of models represents phytoplankton single or simultaneous limitation in a more realistic way. 



More experimental information is required in order to discern to what extent there exists an interaction 

between, e.g. N and P such that mutual limitation conditions growth under a diverse spectrum of 

environmental conditions. On the other hand, the choice of whether to include acclimation responses 

may be in this case a more subtle issue beyond resolving single-organism lifetime strategies as adding 

phenotypic plasticity may introduce, as explained above, potential interactions between resources. 

Importantly, all the ecophysiological models above can, in turn, potentially be used for the study of the 

diversity in phytoplankton stoichiometry, as they all highlight traits as main drivers of the cell’s 

stoichiometric dynamics. For example, threshold models have been used to show that the structural N:P 

that maximizes growth varies depending on whether resources are plentiful, or whether growth is 

limited by light, N, or P, showing that the optimal strategies for elemental ratios under diverse 

conditions differ from Redfield significantly (Klausmeier, Litchman, Daufresne & Levin 2004). 

 

Stoichiometry at a global scale 

Until very recently, global-level biogeochemical models relied on the Redfield paradigm to represent 

stoichiometry. A fixed ratio of the most important elements is a computationally helpful feature, 

because it allows the models to keep track of one single nutrient while the pools of the rest of the 

nutrients are calculated by means of this fixed number. This approach has been used successfully in the 

past to answer a variety of questions not directly related with phytoplankton stoichiometry (e.g. 

(Follows et al. 2007, Stock et al. 2014)).  

As we stated above, however, phytoplankton stoichiometry is highly dynamic and diverse, and affects 

global biogeochemical cycles in a very nontrivial way. The constantly-changing inorganic elemental 

ratios and variable phytoplankton stoichiometry that occur in the oceans lead to dynamic feedbacks 

between phytoplankton and environment that will influence phytoplankton physiology and population 

growth, and can thus potentially cascade to the rest of trophic levels in the marine food web. Therefore, 

reliable biogeochemical models should include variable phytoplankton elemental pools in their 

description. One approach is to allow the stoichiometry of each functional group to vary, as determined 

by a quota model for each potentially limiting nutrient, and in addition a variable Chl:C ratio can be 

controlled by the supply of nitrogen and light (e.g. (Moore et al. 2002)). Using such an approach, Ayata 

et al. (Ayata et al. 2013)  found using a 1D ecosystem model of BATS to show that variable Chl:C and 

C:N allow the model to better represent the deep chlorophyll maximum and primary production over 



time, compared to models with either of the variable terms removed. Models with variable nutrient 

quotas and Chl:C are often formulated in terms of physiological acclimation and nutrient storage of a 

single phytoplankton population, but in reality there are likely different genotypes and species 

dominating at different depths and seasons, and this species turnover leads to variation in bulk Chl:C 

and C:N. Therefore, models of physiological acclimation may implicitly capture trait diversity across 

species and its consequences.  

Although there are extended NPZD marine ecosystem models that include N, P, and other pools for 

various phytoplankton functional groups at the regional level, only recently models have started to 

consider more mechanistically-grounded physiological models to include a flexible description of 

phytoplankton stoichiometry at a global level. One example is given by (Daines et al. 2014), a pool 

model reminiscent of the classic Shuter model (Shuter 1979) for phytoplankton physiology which in 

this case includes simple acclimation and genetic adaptation rules, coupled to a physical global 

circulation model. Although the C:N ratio for each compartment is fixed, the variable P pool and data-

inferred parameterization allow this mechanistic TBM to replicate the most important global patterns 

for phytoplankton N and P (see Fig.5B).  

Similarly, in (Arteaga et al. 2014), the dynamics of the phytoplankton component are provided by the 

so-called chain model, a mechanistic model for flexible quotas that includes interactions between 

nutrients at the growth-rate level, but also at the nutrient-uptake level by using a sequential limitation 

of processes by the different resources: P limits rRNA synthesis, which limits protein production, in 

turn limited by N availability, which may affect photosynthesis (Pahlow & Oschlies 2009). Although 

not strictly a TBM, it relies on optimality assumptions which, implicitly, necessarily take into account 

diversity in phytoplankton strategies. Acclimation responses are included using phenomenological 

expressions, which also account for interactions between the different resources. Instead of an 

underlying global circulation model, in this approach the global map is subdivided into cells in which 

stationary environmental conditions are imposed and informed from the World Ocean Atlas. Although 

the N:P ratios are far from observations, C:P ratios are closer to reality. Interestingly, this model points 

to the possibility of co-limitation as being much more extended than previously thought, with low 

latitudes mostly dominated by N-P co-limitation, whereas high latitudes would be mostly co-limited by 

light and N availability. 

Although most of the models above have included diversity in one way or another as a necessary 

ingredient, none have studied to what extent is diversity responsible for the observed stoichiometric 



patterns. To answer this question, TBM offer an unrivaled tool. For example, the Darwin model (see 

above and (Follows et al. 2007)) is specifically devised to represent diversity in an efficient way by 

using a stochastic trait initialization for ecotypes thus reducing substantially the information needed. In 

a recent modification, the Darwin model incorporated a one-nutrient version of the quota model 

focused on top-down controls of the phytoplankton community (Ward et al. 2013); thus, modifications 

to the Darwin that include additional, variable quota pools are potentially powerful ways to assess 

global stoichiometry. Current ongoing efforts, for example, attempt to bridge the different mechanistic 

models above by including phytoplankton acclimation responses to changes in nutrient availability 

(Bonachela et al. 2013) into the Darwin model.   

In summary, although phytoplankton stoichiometry has been the focus of intense experimental and 

theoretical research, only recently have empirical and theoretical approaches come together in a 

synergistic effort to replicate and predict global stoichiometric patterns. However, very few of those 

efforts consider the role of diversity in determining such patterns. Because we now have the necessary 

computational power, we need to assess and decide on the level of detail suitable for these global TBM, 

in terms of both physiological mechanisms and ecological interactions, and how much diversity in both 

would be required to properly describe regional and global patterns. Accommodating diversity, and 

providing a better link between the fluid dynamics and the biology, represent the greatest remaining 

challenges. But they are not the only ones. 

 

 

Future challenges and directions  

After decades of phytoplankton stoichiometry research, and according to the compilation presented 

above, much is known about phytoplankton stoichiometry at the organismal level. In consequence, 

current research is now shifting to understanding the ecological consequences of diversity in cellular 

stoichiometry under a diversity of environmental conditions. Although these aspects are of course 

important, we are still far from a complete understanding of key aspects of phytoplankton 

stoichiometry at many other levels. 

For instance, there is very little knowledge about the physiological ranges for the quotas of any element 

different from N, although they are a key part of the Droop model and, therefore, used in most TBM 

(see above). There is very little experimental work reporting well-defined values for, e.g., the 



maximum P quota. Furthermore, these physiological ranges will certainly be affected by the ratio of the 

available nutrients and/or the growth rate of the cell; for example, the vast majority of theoretical 

models available predict that the minimum quota at which growth can be sustained, or the quota at 

which the growth rate reaches its maximum (points normally used as reference to measure Qmin and 

Qmax, respectively), change when the input ratio is changed in a simulated chemostat. Thus, new 

experiments are needed that investigate systematically how growth and the pools of the different 

elements react to changes in environmental conditions; for example, changes in light and nutrient 

concentrations, but also temperature. 

Similarly, a logical argument establishes that the N and P pools interact when N- and P-uptake 

transporters compete for space on the cell’s surface. On the other hand, N and P are classically non-

interchangeable resources for plants (Tilman 1982), and therefore are treated independently (e.g., using 

Liebig’s law of the minimum). Available data are not detailed enough to discern to what extent this 

interaction is important for the stoichiometric behavior of the cell and whether there is a co-limitation 

point in the input ratio axis, or a wide co-limitation range (with a single optimum, see above). 

On the other hand, the answers to these questions and the information and models presented in previous 

sections are based on the classic assumption that phytoplankton populations are clonal, with very little 

intraspecific variability. It would be very interesting to study to what extent that assumption is correct 

by characterizing intraspecific diversity in, for instance, elemental ratios.  

Furthermore, a (similar) exercise of scaling up population-level phenomena to the community level, 

while considering interspecific variability would benefit from a more precise way to assess what 

species (or ecotypes or functional groups) should be added, as opposed to including them as a number 

set by the available computational power or modelling method. For example, it is well known that there 

is a significant functional redundancy in the marine ecosystem that contributes to its stability; the 

existence of several ecotypes/species belonging to groups that play similar functions ensures that the 

focal function remains present in the ecosystem even if several of these species go extinct. However, 

introducing redundancy (several ecotypes with similar characteristics) may be seen as an unnecessary 

complication for the focal theoretical model or experiment.  

Similarly, some functional groups have also been exceedingly simplified in models so far. At the global 

scale, competition between diazotrophs and phytoplankton that do not fix nitrogen is the most 

prominent hypothesis for global regulation of N:P (Lenton & Klausmeier 2007, Redfield 1958, Tyrrell 

1999). Models that implicitly or explicitly include continuous trait variation of phytoplankton do not 



typically include diazotrophy, or the rate of diazotrophy, as a trait axis. However, diazotrophy could be 

incorporated into trait based models by using putative tradeoffs to describe the cost of N fixation, and 

then asking when diazotrophy can evolve or invade an ecosystem, as a function of environmental 

conditions such as nutrient supply ratios (e.g. (Dutkiewicz et al. 2014, Pahlow et al. 2013) are recent 

efforts in this direction).  

Finally, models are more and more concerned with including the structure of the lower trophic levels of 

the marine food web as a way to increase the precision of these models, thus highlighting  top-down 

regulation as an important control of, for instance, community structure (Ward et al. 2013). Similarly to 

the previous case, to include this structure in a reliable way we need to understand how to assess which 

are the keystone species or functional groups in these food webs, and which species contribute to the 

(functional or structural) redundancy of the trophic network. 
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Figure captions 

 

Fig. 1: Interspecific variation in N:P, measured as the ratio of the minimum subsistence quotas for N and P. A) 

marine species, B) freshwater species. After (Edwards et al. 2012), updated with data from Edwards et al. (in 

press).  

Fig. 2: (Color online). A comparison of plankton modeling approaches. A) In traditional NPZD models, there is 

one species per trophic level, with fixed traits.  B) Plankton Functional Group models represent functional 

groups as a single species, with fixed traits.  C) The System of Infinite Diversity (SID) approach considers a 

large number of species approximating a continuum.  D) Moment methods attempt to tame the complexity of 

SID models by reducing them to mean traits and their variances and covariances.  E) Evolutionary frameworks 

such as Quantitative Genetics and Adaptive Dynamics allow species traits to vary over time. 

Fig. 3: Expected outcome of simulated competition between hypothetical species A and B, resulting from 

threshold models (a) and models in which interactions between nutrients are considered (b), for the specific case 

of N and P potential limitation. In the upper panel, coexistence only occurs when each of the competitors is 

limited by a different nutrient. The latter models, however, show co-limitation in a wide range of environmental 

conditions, the spectrum of possibilities is larger than in the former case, and the outcome depends on the degree 

of co-limitation. In panels a-c, dashed lines indicate P limitation and solid lines, N limitation; the dashed line in 

panel d indicates N:P=[N]0:[P]0. Reproduced from (Bonachela et al. 2013) with permission from the authors. 

Fig. 4: (Color online).  Compilation of the qualitative behavior observed in stoichiometric experiments and 

replicated by models in the groups mentioned above. a) Growth rate shows a hyperbolic dependence on cell 

quota; b) N quota shows convexity or concavity dependence on growth rate depending on N availability; c) P 

quota shows a similar phenomenology, but there is an asymmetric response with respect to that observed for the 

N quota; d) the cell’s stoichiometry mimics the environmental elemental ratio, but this strategy can be prevented 

by the cell’s physiological limits. Adapted from (Bonachela et al. 2013) with permission from the authors. 

Fig. 5: (Color online).  Latitudinal N:P pattern found in (Martiny et al. 2013) (a) and global map representing 

phytoplankton N:P obtained with the trait-based model introduced in (Daines et al. 2014) after weighting using 

net primary productivity (b). The emergent ratios in this model reproduce the latitudinal pattern described in 

(Martiny et al. 2013). The asterisk in panel a) represents the lognormal average of the distribution, and n the 

number of sampling stations.  Reproduced from original article with permission from the authors. 
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