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Abstract 9 

Cod (Gadus morhua) are preyed upon by grey seals (Halichoerus grypus) and there is debate over 10 

the impact this has had on the decline of stocks and their prospects for recovery. We analysed a 11 

depleted stock to the West of Scotland and show that seal predation rate is consistent with a type II 12 

functional response. Forward projections of a model including the functional response under varying 13 

levels of fishing and seal population size suggest that stock recovery is possible under current 14 

conditions but there is a modest probability that the stock will decline further in both the short and 15 

long term. The potential recovery is fragile and sensitive to relatively small increases in either fishing 16 

or seal predation. Forward projection models that exclude the functional response estimate a lower 17 

probability of stock decline and may underestimate the risk to the stock. At low stock sizes and high 18 

fishing mortality rates functional response models project slower recovery but the opposite is true at 19 

low fishing mortality.  20 

  21 



3 
 

1. Introduction 22 

Fisheries for Altantic cod (Gadus morhua) have long existed and provide an important source of food 23 

as well as supporting valuable commercial trade (Kurlansky, 1997). Many cod stocks both in Europe 24 

and North America have declined  to low levels  (Cook et al.,1997; Myers et al. 1996) and the species 25 

is currently classified as “vulnerable” in the IUCN Red List (IUCN, 2014). Grey seals  (Halichoerus 26 

grypus), classified as “least concern” by the IUCN (IUCN 2014), are predators on cod (Prime & 27 

Hammond 1990; Hammond, Hall & Prime 1994; Hammond & Grellier 2006) and potentially compete 28 

with fisheries for the same resource. As a result there is controversy over the impact of seal 29 

predation on fisheries (Harwood 1984). Recent estimates of the mortality due to seal predation have 30 

suggested that it may be of sufficient magnitude to impair stock recovery both in Europe (Cook et al. 31 

2015) and Canada (Fu, Mohn & Fanning 2001; Trzcinski, Mohn & Bowen 2006; O’Boyle & Sinclair 32 

2012; Swain & Mohn, 2013; Swain & Benoit, 2015). By contrast, a report to the European Parliament 33 

Committee on Fisheries concluded that the effect of seal predation on fish stocks in Scottish waters 34 

was insignificant (Boyd & Hammond 2010).  35 

An impediment to the evaluation of the effects of seals on fish populations is that the estimation of 36 

predation rates presents considerable challenges because data on diet and quantities of fish eaten 37 

by seals are hard to acquire. Thus the study by Boyd and Hammond (2010) relied on estimates of 38 

fishing mortality rates and stock biomass that were made on the basis of fixed natural mortality 39 

rates which did not account for seal predation explicitly, making comparisons between fishing and 40 

separately estimated seal predation debatable. Similarly, performing stock assessments without 41 

accounting for seal predation (where it may be large) can lead to biassed estimates of fishing 42 

mortality that give a misleading impression of the ability of managers to influence stock biomass by 43 

controlling exploitation in the fishery. In order to avoid this problem it is necessary to estimate stock 44 

biomass, fishing mortality and seal predation as part of the same stock assessment so that the 45 

respective estimates are calculated on the same basis and are internally consistent.  46 
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Typically in the ICES area fish stock assessments only account for non-fishing mortality as a constant 47 

estimated externally to the assessment itself. This may include estimates of seal predation, as in 48 

some North Sea assessments, where natural mortality values used are derived from multispecies 49 

models that account for such predation (ICES 2014a). Nevertheless these are treated as fixed values 50 

in single species assessments and the resultant estimates of fishing mortality are not necessarily 51 

consistent with those derived from the multispecies analysis. In this paper we estimate seal 52 

predation and fishing mortality to show the importance of accounting for both these mortalities in a 53 

single assessment. We infer a relationship between the seal predation rate and stock biomass, and 54 

between stock biomass and subsequent cod recruitment. This allows a full population dynamics 55 

model to be constructed which we use to investigate stock trajectories under different scenarios of 56 

seal population size, seal predation rate and fishing mortality. 57 

The West of Scotland cod is taken as an example of where such an approach is feasible because 58 

samples exist of seal diet and cod consumed. Recent assessments by the International Council for 59 

the Exploration of the Sea (ICES) show a major decline in spawning stock biomass (ICES 2014b) with 60 

high and relatively constant fishing mortality since the 1980s. The decline in biomass reflects similar 61 

trends in adjacent cod stocks in the Irish Sea and North Sea. Management advice is effectively to 62 

avoid all catches of cod (ICES 2014b). The stock is subject to a “recovery plan” that is intended to 63 

reduce fishing mortality and increase the biomass through fishing effort limitation, gear 64 

modifications, and landings limits (Kraak et al. 2013). The assessments assume fishing mortality is 65 

the principal cause of stock decline, with the implication that reducing fishing mortality will favour 66 

stock recovery. Cod may account for approximately 10% of the seal diet on the West of Scotland 67 

with an estimated comsumption amounting to three times the official landings in 2002 (Harris 2007), 68 

yet ICES assessments do not explicitly consider this mortality. This would suggest that a recovery 69 

plan based on assessments which exclude seal predation may be unreliable. The analysis presented 70 

here considers how seal predation affects the perception of stock recovery scenarios. 71 
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2. Methods 72 

Cook et al’s (2015) assessment model is used as the basis of the analysis but is extended to include 73 

the period after 2005 and considers the full dynamics of the cod population and the relationship 74 

between prey population biomass and seal predation.   75 

Our approach involved estimating historical values of the cod stock biomass and mortality rates and 76 

then projecting these forward under different assumptions about seal population size and fishing. 77 

The projections were done using a stochastic model that takes account of uncertainty in the model 78 

parameters and the structural relationship between stock size and recruitment (annual number of 79 

cod at age 1). 80 

We used standard fishery data reported in ICES (2014b) that comprise fishery catch at age and 81 

relative abundance estimates from research vessel surveys, and cover the period 1985-2013 as listed 82 

in Table 1. Although there are fisheries data prior to 1985 there are no seal diet data during this 83 

earlier period making estimates of seal predation problematic so we restricted the analysis to the 84 

more recent period when diet data are available.  In order to estimate seal predation rates we used 85 

data on cod length compositions in the seal diet, and total cod biomass eaten reported by Harris 86 

(2007). Seal population numbers estimated by the UK Sea Mammal Research Unit (SMRU) (SCOS 87 

2014) for the Hebrides were used as the population exploiting fish in the West of Scotland as it is 88 

predominantly these animals that forage in the area (Harris 2007). Over the time period considered 89 

the grey seal population in the area has increased from about 27,000 to 30,000 though in recent 90 

years it has remained stable. In contrast seal populations foraging in the North Sea have increased. 91 

Data on cod consumption by seals was only available for 1985 and 2002. The data were analysed 92 

using an age structured stock assessment model outlined below, which is fully documented in Cook 93 

et al (2015). The population of cod N at age a in year y decays exponentially as a result of a total 94 

mortality, Z; 95 
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1 Na+1,y+1 = Na,y exp(-Za,y) 

The total mortality is partitioned between fishing mortality F, natural mortality M and seal predation 96 

mortality P as: 97 

2 Za,y = Fa,y + Ma,y + Pa,y  

 98 

Fishing mortality is assumed to be the product of an age effect or selectivity, s, and a year effect 99 

(fishing effort), f ; 100 

3 Fa,y = sa,yfy 

Where the age and effort component follow an autoregressive process with variances 𝜎²f and 𝜎²s 101 

4 fy = fy-1 exp(εf,y),    εf,y ~ Normal(0, 𝜎²f), y≠1 

sa,y = sa,y-1 exp(εs,a,y),   εs,a,y ~ Normal(0,𝜎𝑠
2), y≠1 

Natural mortality M is assumed to be dependent on size and given by the Lorenzen (1996) equation: 102 

5 Ma,y = Aw̄a,y
B   

Where w̄ is the mean weight at age and A and B are constants. 103 

Seal predation mortality is modelled as the product of a size preference (or selectivity), sseal, and an 104 

“effort” component, qG, where q represents the annual per capita capacity of seals to prey on cod 105 

(the “predation rate”), and G is the abundance of seals. The seal predation mortality is thus: 106 

6 Pa,y = sseal,a,yqyGy 

The quantity q will depend on the ability of seals to find and catch cod, the time it takes to process 107 

prey items and the presence of other prey and may change over time. To avoid any structural 108 

assumptions between predation rate and prey abundance q is assumed to follow a simple 109 

autoregressive process with variance 𝜎²q: 110 

7 qy = qy-1exp(εy),   εy ~ Normal(0,𝜎²q) 
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    111 

Assuming seals prefer a size range of cod, their selectivity is modelled as function of mean fish 112 

length at age, l , using gamma shaped curve with constant parameters α and β (Millar & Fryer 1999): 113 

8 sseal,a,y=(la̅,y/[(α-1)β])(α-1)exp(α-1-la̅,y/β) 

 114 

We also calculated the “partial biomass” (PB) of cod available to seals as the sum of the biomass at 115 

age in the stock weighted by the size selectivity of the seals: 116 

9 PBy=∑
a
sseal,a,yw̄a,yNa,y  

 117 

We fitted the model using the Bayesian statistical package WinBUGS (Lunn et al. 2000) configured as 118 

described in Cook et al 2015 but with minor changes to include more recent catch data. Observed 119 

landings, discards, survey indices and total consumption of cod by seals were assumed to be 120 

lognormally distributed. The numbers of cod at length in the seal diet were assumed to be 121 

multinomially distributed. In the original assessment model catch data were split between observed 122 

cod landings and discards, with each data component fitted separately in the model with different 123 

observation errors. The model assumes fixed discard size selection over time. Catch data beyond 124 

2005, however, comprise almost entirely discards with a different pattern of discarding. Hence, in 125 

order to extend the model to 2013 we treated the catch data from 2006 onwards as an aggregate of 126 

landings and discards and fitted the model to the total catch at age with a new observation error 127 

distribution. This circumvents the need to estimate discard selection for this period. In all other 128 

respects the model was the same as the original.  We saved a random subset of 1000 samples from 129 

the Markov Chain Monte Carlo (MCMC) simulation for all model parameters for subsequent use in 130 

the projection model described below. 131 
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Since the ICES cod assessment is the recognised standard for fishery advice we compared our stock 132 

biomass and fishing mortality estimates to their most recent assessment (ICES 2014c) as a check of 133 

consistency. Since this assessment only gives a time series back to 1981 we also compared the 134 

estimates to the 2002 assessment (ICES 2002) as this provides stock estimates back to 1966, giving a 135 

longer perspective on changes to the biomass. Each of these assessments uses different values for 136 

natural mortality, M, which has the effect of rescaling the biomass estimates. Higher values of M 137 

give larger values of biomass. In order to compare trends across assessments we rescaled the 138 

biomass from the two ICES assessments to give the same mean biomass for the period 1985-2002 as 139 

our assessment. This is the period when all three series overlap.  140 

We used equations 1-6 and 8 as the basis for a stochastic forward projection model. The input 141 

quantities used are listed in Table 2.  Each realisation of the model was based on one of the MCMC 142 

samples. For each random draw we fitted Ricker (1954) and Beverton-Holt (1957) stock recruitment 143 

models by least squares to the sample time series of stock-recruitment pairs assuming lognormal 144 

errors. We estimated both parameters in each model and chose the model with the lowest AIC to 145 

forecast recruitment. Annual recruitment variability was then simulated by bootstrapping residuals 146 

from the fitted model.   147 

It is possible that annual recruitment residuals are correlated as the result, for example, of an 148 

environmental trend. We examined the residuals after fitting the Beverton-Holt model to the mean 149 

stock and recruitment values from the stock assessment model but found no evidence of a time 150 

trend (Figure S1.1, supplementary material) so treated the bootstrapped residuals in the simulation 151 

model as independent. 152 

In the case of seal predation we fitted a type II functional response (Holling 1959) to model the 153 

relationship between seal predation rate (q) and cod partial biomass of the form: 154 

10 qy=c/(1+cdPBy) 
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where c and d are constants. This relationship assumes that the biomass of other prey remains 155 

constant. 156 

Annual variability in qy was simulated by bootstrapping the residuals from the model fit. We 157 

examined the residuals after fitting the model to the mean partial biomass and qy values from the 158 

stock assessment model but found no evidence of a dependence on biomass (Figure S1.2, 159 

supplementary material) so treated the bootstrapped residuals in the simulation model as 160 

independent. 161 

The projection model differs from the stock assessment model in using structural functions to 162 

describe stock-recruitment and q-partial biomass relationships. While it is possible to fit these 163 

relationships within the assessment model doing so imposes a particular structural form on the 164 

model estimates, and in the case of the functional response in particular, there are very few data to 165 

adequately inform a parametric relationship. Estimating the recruitment values and qy values in the 166 

assessment model without an assumed functional form allows the exploration of a variety of 167 

structural relationships to be investigated in the projection phase. 168 

To test that the projection model using a type II response was consistent with the stock assessment 169 

trend we ran the projection model from a base population biomass estimated for 1985 forward to 170 

2013 and compared the median projected population to the population trajectory derived from the 171 

stock assessment model assuming the same historical time series of fishing mortality and seal 172 

population size.  173 

To investigate the conditions for recovery of the cod stock we projected the population forward for 174 

50 years from the base year of 2013 under a range of combinations of fishing mortality and seal 175 

population size. For fishing mortality we scaled the 2013 population estimate by values ranging from 176 

0.6 to 1.8, in increments of 0.1. This range corresponds to a larger interval compared to the 177 

observed range (0.74-1.64) from the stock assessment. In the case of the seal population we scaled 178 
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the estimated 2013 population by values ranging from 0.8 to 1.2, in increments of 0.1. This narrower 179 

range reflects an assumption that the seal population is unlikely to change substantially without 180 

human intervention. 181 

Since cod stock recovery is considered urgent we considered the probability of the cod spawning 182 

stock biomass increasing above the 2013 level by the fifth year of projection. We also assumed that 183 

by year 50 the population would be in equilibrium and calculated the median cod spawning biomass 184 

under the various scenarios. 185 

For comparison to a fixed natural mortality rate projection we ran the model assuming that the seal 186 

predation rate was independent of cod biomass by setting c=mean(qy) and d=0 in equation 10 and 187 

set the seal population multiplier at 1. This scenario therefore is equivalent to status quo seal 188 

numbers and will result in non-fishing mortalities that have a stationary mean over time and most 189 

closely resembles current practice when making forward projections for this stock. 190 

In order to test the sensitivity of the projections to the assumption of a type II functional response 191 

we also ran the model at constant seal population under two additional models for seal predation 192 

rate.  Firstly qy values were simply projected forward using the time series model (equation 7) from 193 

the base value estimate in 2013. This allows the seal predation rate to vary independently of prey 194 

biomass. Secondly we fitted a loess function to capture the relationship between qy and partial 195 

biomass rather than the parametric relationship in equation 10. This allows the MCMC samples to 196 

determine the shape the functional response relationship and potentially could allow a type III 197 

response to occur. 198 

3. Results 199 

The estimated trend in cod spawning stock biomass from the ICES assessments and the current 200 

analysis suggests that the biomass has declined from a value close to 80000 tonnes in the mid-1960s 201 

to around 11000 tonnes in recent years (Figure 1a). There is close agreement in the trend between 202 
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the assessments although the current analysis indicates higher values in recent years compared to 203 

the ICES assessment. The two ICES assessments show comparable trends in fishing mortality (Figure 204 

1b) though the 2002 assessment shows a sharp decline at the end of the time series. Our analysis 205 

shows a lower fishing mortality which declines over most of the period but an increasing trend in 206 

recent years. This difference is due to the fact that our model allocates an increasing proportion of 207 

the total mortality to seal predation rather than fishing. Both the ICES assessments and our 208 

assessment give similar estimates of total mortality and is the reason why the biomass estimates are 209 

alike (Cook et al. 2015). Full details showing the model fit to the observations are given in 210 

supplementary material (Figures S2.1 to S2.10). 211 

Figure 2a shows the relationship between cod spawning stock biomass and recruitment at age 1. The 212 

fitted model, based on the mean values from the stock assessment, is a Beverton-Holt relationship 213 

which was selected most frequently in the stochastic projections. Figure 2b shows the seal predation 214 

rate as a function of cod partial biomass. The predation rate, q, declines with increasing cod biomass 215 

and, in effect, results in a type II functional response. The fitted line (solid) is equivalent to the disc 216 

equation (Holling 1959). Also shown is the loess smoothed relationship (dashed line) which suggests 217 

that qy may decline at the lowest partial biomass and captures some elements of a type III response. 218 

By applying the relationship in Figure 2b it is possible to calculate total mortality, Z, for combinations 219 

of partial biomass and fishing mortality. The resulting contour plot is shown in Figure 3 for the type II 220 

response (equation 10). Over-plotted in the figure are the observed values from the stock 221 

assessment. It can be seen that as the cod partial biomass and fishing mortality have declined over 222 

time the total mortality has changed little and followed the contour Z=1.2 throughout the recent 223 

history of the stock. It shows that despite reductions in fishing mortality, the simultaneous decline in 224 

biomass has meant that seal predation mortality has compensated for this reduction. 225 

The functional relationships shown in Figure 2 provide the basis of the forward projection model by 226 

forecasting recruitment and reflecting changes in seal predation rate as the biomass develops. The 227 
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projection model using equation 10 for the functional response is compared to the historical 228 

estimates of biomass in Figure 4.  The median projected biomass follows the observed values for the 229 

first 13 years but thereafter tends to increase while the observed values decline and level off. 230 

Although the projected values lie below the median, they remain within the 95% credible interval in 231 

the region of the 15th percentile. Other functional response models produced qualitatively similar 232 

results and are not plotted. 233 

The results of the short term projection which considers the probability of the spawning stock 234 

biomass in year 5 falling below the 2013 base value are shown in Figure 5a. At current rates of 235 

fishing and seal numbers the probability of further decline is around 0.17. At equilibrium, the 236 

probability that the stock is below the base value is higher at about 0.25 (Figure 5b). 237 

Figure 6 shows the median cod spawning stock biomass at equilibrium under different combinations 238 

of seal populations and fishing mortality. At the current rate of fishing and with the existing seal 239 

population, the median equilibrium spawning stock biomass would be close to 40000 tonnes. This 240 

represents an increase over the current biomass but is about half the biomass estimated in the mid 241 

1960s. To achieve the latter would require a reduction in fishing mortality of about 20% or a very 242 

much larger reduction in the seal population. 243 

The projections under stationary seal population size are summarised in Figure 7. For a constant seal 244 

predation rate the perceived risk of stock decline is lower under this assumption than a type II 245 

response both in the short and long term. The projected median biomass is almost identical to the 246 

full model for the five year projection but in the long term there are major differences. At low fishing 247 

mortality the stationary natural mortality scenario gives lower biomass values while the converse is 248 

true for high fishing mortalities. This shows that for a heavily exploited stock, if there is a predator 249 

type II functional response, there is a danger of underestimating the risks of stock decline and 250 

overestimating future biomass. 251 
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The sensitivity of the projected biomass to the functional response assumption can be seen in figure 252 

7 which shows probability of decline and spawning stock biomass for the time series model of qy and 253 

the loess smoothed qy-partial biomass relationship. For the five year projection the loess model gives 254 

the highest probability of stock decline at intermediate fishing mortality rates. The same model gives 255 

almost identical results to the type II response for probability of decline at year 50. The time series 256 

model gives a much higher long term risk to the biomass because it assumes the 2013 value (which 257 

is high) is propagated forward regardless of stock size. In general, the effects of the different 258 

assumptions on seal predation rate are largest at equilibrium due to the cumulative effects of 259 

predation, fishing and recruitment. The type II and loess models shows the greatest change in 260 

equilibrium spawning stock biomass as a function of fishing mortality as they assume a dynamic 261 

relationship between predation rate and prey biomass. The same models also suggest higher 262 

probability of stock decline in the short term than the fixed natural mortality model. 263 

 264 

4. Discussion 265 

Both the ICES and the current analysis, which includes seal predation, estimate a long term 266 

reduction in the cod spawning stock biomass. In recent years the decline has halted with perhaps a 267 

slight increase. Unlike the ICES assessment our analysis suggests the fall in biomass has occurred in 268 

the presence of diminishing fishing mortality but almost constant total mortality (Figure 3) indicating 269 

that other mortalities have compensated for reduced fishing. The compensation appears to be a 270 

result of the effect illustrated in Figure 2b that the seal predation rate increases as partial cod 271 

biomass decreases and is typical of a type II functional response. Such a response has been reported 272 

before for grey seals (Middlemas et al. 2006). Smout et al (2013) also estimated functional responses 273 

for seals but found evidence of prey switching based on data at a much finer spatial scale. Our 274 

analysis offers little evidence of prey avoidance at low biomass values as implied by predator 275 

switching, perhaps because the spatial resolution in the assessment data is absent. 276 
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We were able to incorporate the seal functional response and the stock recruitment relationship 277 

into a cod stock projection model that generated biomass trajectories consistent with historically 278 

estimated values (Figure 4) and hence supported use of the model to project the stock beyond the 279 

current level. The 5 year ahead and long term projections indicate that there remains a risk that the 280 

biomass will not increase at current rates of fishing and seal population (Figure 5). However, the 281 

biomass is close to the lowest observed and this risk is large compared to the conventional 282 

probability of 0.05 used by ICES to determine rates of fishing that ensure the lowest spawning stock 283 

biomass is avoided. There is also some indication that the projection model may, if anything, be 284 

over-optimistic since the observed cod biomass lies near the lower range of 95% CI of the projected 285 

population (Figure 4). This may be the due to model misspecification of the seal functional response 286 

or to changes in biological factors such as cod maturation rates and fecundity which would change 287 

the estimated stock-recruitment relationship. There may also be a numerical response by predators 288 

to local abundance not accounted for in the model or arising from seal herds in the North Sea 289 

foraging in the West of Scotland. The latter seems less likely as fish stocks are at higher abundance in 290 

the North Sea and seal tracking data do not show this movement (McConnell et al 1999). 291 

The divergence between the observed stock biomass and the projected population from the 292 

simulation model in more recent years might be the result of an environmental effect on 293 

recruitment. In the adjacent North Sea area, for example, there is evidence of a negative 294 

temperature effect on cod recruitment (O’Brien et al 2000; Cook & Heath 2005). Rising temperature 295 

or a climatic trend could therefore explain weaker than expected recruitment in recent years which 296 

would contribute to a decline in the stock biomass. The recruitment residuals for the West of 297 

Scotland, however, show no time trend indicating that such an effect is difficult to detect. The 298 

relationship between stock size and recruitment appears to be able to explain much of the dynamics 299 

but will not capture environmental effects. 300 
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With status quo seal populations and current (2013) fishing mortality prevailing over the long term, 301 

median cod spawning stock biomass is projected to be higher than current levels but below the 302 

earliest observed values (Figure 6).  It suggests that in the long term current fishing rates, which are 303 

close to the historical minimum, should allow some stock recovery provided the stock-recruitment 304 

relationship holds in the future. However, an increase in the seal population of only 10% could 305 

reduce the long term median biomass from 40000 tonnes to little more than 30000 tonnes. Both the 306 

equilibrium analysis and the short term projection therefore indicate that the prospects of stock 307 

recovery under current conditions are fragile. Our stock assessment suggests that fishing mortality in 308 

recent years has tended to increase and, if sustained, would further compromise stock recovery. 309 

The SMRU estimates of the size of seal population in the West of Scotland indicate little change for a 310 

number of years (SCOS 2014) and if this continues there would be no change to the risk of recovery 311 

of the cod stock. Seal populations in Europe have a measure of protection under a variety of 312 

European and national legal instruments reflecting a public desire to conserve them.  European 313 

Union regulations (EU 2009), for example, restrict the trade in seal products effectively outlawing a 314 

market in Europe and hence removing any incentive to hunt seals. In the UK, legislation places 315 

restrictions on the killing of seals and methods of slaughter while allowing the shooting of seals 316 

under certain limited conditions (HMSO 1970). Although the protection is not absolute, no 317 

systematic hunting or large scale culling of grey seals in the UK has taken place since 1978 and  318 

populations around the British Isles have increased for a number of years (SCOS 2014) though the 319 

recent increase has taken place mainly in the North Sea. As human intervention to control seal 320 

population size is unlikely it means the cod recovery can only be enhanced by reducing fishing 321 

mortality. 322 

Our analysis implicitly assumes that the cod stock in the West of Scotland is well mixed and equally 323 

available to both seals and the fishery. This may not be the case. Studies in the Celtic Sea and North 324 

Sea suggest that seals forage in areas away from areas of high fishing activity (Matthiopoulos et al. 325 



16 
 

2004; Cronin et al. 2012). There are also likely to be areas where seals are able to forage where 326 

commercial fishing is not possible. Hence the fishery and seals may exploit different cod populations 327 

and avoid competition. If correct this would mean the estimated impact of seal predation in our 328 

analysis is too high. While cod are known to exhibit site fidelity many individuals migrate between 329 

spawning and feeding grounds or show dispersal behaviour (Robichaud & Rose 2004; Neuenfeld et 330 

al. 2013). A comprehensive analysis of genetic material in the Northeast Atlantic indicates that the 331 

West of Scotland population is indistinguishable from adjacent stocks (Heath et al. 2014). This 332 

suggests the population is well mixed and while seals and the fishery may operate in different areas 333 

they are probably not exploiting discrete populations. It seems that sufficient exchange is likely to 334 

occur to justify the modelling assumptions.  335 

An obvious weakness in the analysis is the paucity of seal consumption data to parameterise the 336 

functional response in the projection model. Only two years of data were available for analysis with 337 

the most recent observation made in 2002, more than a decade before the base year used for 338 

projections. However, the two samples come from years when the cod stock was in very different 339 

states providing considerable contrast in the data to inform the model. In both years the 340 

consumption of cod by seals was in the region of 6000 tonnes while the spawning stock biomass of 341 

cod reduced by approximately 60% over the same period. Sampling of seal diets around the British 342 

Isles occurred in 2010 and 2011 and preliminary estimates of consumption appear similar to the 343 

earlier years (Hammond, pers comm) and this is consistent with the estimated seal consumption for 344 

these years from our stock assessment model. 345 

Bias may arise in the estimates of seal predation if the scat samples on which the diet is determined 346 

do not adequately reflect true seal food intake. The samples themselves may not be truly random 347 

since they are collected at accessible haul out sites. Furthermore, if larger fish are only partially 348 

consumed, leaving the head uneaten, the otoliths on which the seal diet it determined will be absent 349 

leading to bias toward small fish in the estimated size range consumed.  If large fish are under-350 
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represented in the samples predation on younger fish will be over-estimated (and vice-versa for 351 

older fish). It could imply a greater impact on the cod spawning stock because total mortality on 352 

larger fish would be proportionately larger than currently estimated.  Clearly these are sources of 353 

potential bias and uncertainty that merit further investigation. 354 

The Lorenzen relationship used to account for other non-fishing mortalities (equation 5) assumes 355 

that all non-fishing mortality (including seal predation) is subsumed in the estimate which means 356 

that our estimates of seal predation may be biased low. However in fitting the stock assessment 357 

model we estimated the constants of the equation which allows the relationship to adjust 358 

downward in the presence of seal consumption data. On average, our estimates of natural mortality 359 

from the fitted Lorenzen equation were 25% lower than those from calculated the nominal values in 360 

Lorenzen (1996) which indicates bias may be accounted for in the model fit.  361 

The type II functional response assumed in the projection model implies that the predation rate by 362 

seals increases as the partial biomass of cod decreases. This means that for a fixed fishing mortality, 363 

if the biomass is in decline, the total mortality rate will increase and accelerate that decline. The 364 

converse of this effect is that total mortality will decrease if the cod biomass is increasing and will 365 

accelerate any recovery. For the West of Scotland cod, provided fishing mortality can be reduced to 366 

a level sufficient to bring about some biomass increase, seal predation should diminish and further 367 

aid stock recovery. These effects would be modified in the presence of a numerical response by 368 

seals, especially if the distribution of cod became more patchy when total abundance changes. 369 

The principal difference between the projection model developed here and those more usually 370 

applied to evaluate future stock development is that reductions in fishing mortality rate do not 371 

necessarily translate into reduced total mortality acting on the stock. Consequently a random 372 

fluctuation producing poor recruitment, for example, could reduce stock biomass and cause an 373 

increase in seal predation that negates a reduction in fishing mortality rate. At low stock biomass 374 
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such effects can increase the risk of further stock decline and predict lower biomass compared to 375 

models which assume seal predation rate is constant.  376 

The debate about the cod-seal interactions can be polarised with protagonists suggesting that the 377 

decline (or lack of recovery) in cod populations is either the result of fishing or that seal predation is 378 

responsible. If the “fishing” hypothesis is correct then the obvious solution is to reduce fishing, while 379 

if the “seals” hypothesis is true then cod recovery can only occur if predation can be reduced, 380 

essentially through a seal cull. From the perspective of the cod, death as a result of fishing or 381 

predation is equally unattractive. Its problem is that the total mortality, from whatever source, is 382 

high enough to either cause population decline or prevent recovery. Reducing that total mortality 383 

can be influenced by human intervention but how that intervention occurs will depend on the 384 

relative value of seals, cod and the fishery to society. 385 
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Table 1. Fishery data sets used in the assessment model. 493 

Data type Years 
Landings by all fleets 1985-2005 
Discards by all fleets 1985-2005 
Combined landings and discards (total catch) 2006-2013 
Scottish quarter 1 survey 1985-2010 
Scottish quarter 4 survey 1996-2009 
Irish quarter 1 survey 2003-2013 
 494 

  495 
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Table 2. Input quantities for the simulation model drawn from MCMC samples saved after fitting the 496 

stock assessment model. 497 

Quantity Description Usage 

fy,2013 Fishing effort multiplier in base year Reference fishing effort 

𝜎²f Process error on fishing effort Noise added to fishing effort 

Na,2013 Population number at age in base year Base population for projections 

N1,y Recruitment at age 1 in all years Estimation of stock-recruitment parameters 

SSBy Spawning stock biomass in all years Estimation of stock-recruitment parameters 

PBy Partial biomass available to seals in all 

years 

Estimation of functional response 

parameters 

sa,2013 Fishery selectivity at age in base year Fixed fishery selectivity for projection 

qseal,y Seal predation rate in all years Estimation of functional response 

parameters 

α, β Parameters of the seal selectivity curve Calculation of seal selectivity 

A,B Parameters of the Lorenzen equation Estimation of natural mortality 

 498 

 499 

 500 

  501 

  502 
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Figure legends 503 

Figure 1. Stock trends in (a) cod spawning stock biomass and (b) fishing mortality from three stock 504 

assessments. The solid line is the estimated trend from the most recent ICES assessment in 2014. 505 

The dotted line shows the ICES assessment conducted in 2002 and the filled points are the estimates 506 

from the current analysis which includes seal predation. Open circles in (a) show the partial biomass 507 

available to seals estimated from the model. 508 

Figure 2. Relationships for SSB and recruitment, and seal predation rate and partial biomass. (a) The 509 

relationship between recruitment and spawning stock with a fitted Beverton-Holt model. (b) The 510 

relationship between seal predation rate and cod partial biomass with fitted functional response 511 

models. The grey dots are the MCMC samples. The black dots are the mean values of the MCMC 512 

samples and the solid line is the type II model fitted to the means to illustrate the form of the 513 

function used. The dashed line shows the loess model used in the sensitivity runs. 514 

Figure 3. The total mortality (Z) for combinations of fishing mortality (F) and cod partial biomass 515 

(PB). The solid lines are contours of equal Z. Over-plotted are the values of Z from the historical 516 

estimates of fishing mortality and partial biomass from the stock assessment model joined as a time 517 

series with a dotted line. Earlier years are in the top right and recent years in the lower left.  518 

Figure 4. The spawning stock biomass projected from 1985 using a type II functional response 519 

compared to the observed quantities from the stock assessment model. Lines show the percentiles 520 

ranging from 5 to 95% (dashed) from the projection model and points show the estimates from the 521 

stock assessment model. 522 

Figure 5. The probability that the cod spawning stock biomass is lower than the baseline value in (a) 523 

year 5, and (b) year 50, for relative changes in fishing effort and seal population size. Contours show 524 

the probability levels. The dot in position (1,1) shows the 2013 state. 525 
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Figure 6. The median cod spawning stock biomass at equilibrium for relative changes in fishing effort 526 

and seal population size. The dot in position (1,1) shows the 2013 state and implies an SSB of around 527 

40000 tonnes, higher than the 2013 estimate of about 11000 tonnes as estimated from the current 528 

analysis. 529 

Figure 7. Comparison of short and long term projections made with a type II functional response 530 

(solid line), constant seal predation rate (dashed line), auto-correlated predation rate (dotted line) 531 

and “loess” functional response (dots and line) on the probability of stock decline and median SBB. 532 

Projections were performed assuming a constant seal population corresponding to the most recent 533 

population size. 534 

 535 

536 
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Figure 1 537 
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Figure 2 539 
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Figure 3 542 
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Figure 4 545 
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Figure 5 548 
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Figure 6 550 
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Figure 7 554 
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