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Abstract

A predator-prey model with disease amongst the prey and ratio-dependent func-
tional response for both infected and susceptible prey is proposed and its features
analysed. This work is based on previous mathematical models to analyse the
important ecosystem of the Salton Sea in Southern California and New Mexico
where birds (particularly pelicans) prey on fish (particularly tilapia). The dy-
namics of the system around each of the ecologically meaningful equilibria are
presented. Natural disease control is considered before studying the impact of
the disease in the absence of predators, the interaction of predators and healthy
prey and the disease effects on predators in the absence of healthy prey. Our
theoretical results are confirmed by numerical simulation.

Keywords: Epidemiology, ecology, differential equations, equilibrium, sta-
bility, Hopf bifurcation.

1 Introduction

The Salton Sea in the desert of Southern California, New Mexico is an impor-
tant eco-epidemiological system where birds (particularly pelicans) prey on fish
(particularly tilapia). Over the past few years there have been large-scale bird
mortalities at the sea with thousands of pelicans dying from avian botulism.
The vibrio class of bacteria is very common in salt water fish and those infected
with vibrio may have salt water present in their tissue. As the fish struggle
in their death process they tend to rise to the surface of the sea for oxygen.
When they do they become very attractive to fish-eating birds, specifically the
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pelicans. When pelicans and other fish-eating birds eat vibrio infected fish alive
a large number become infected with botulism and die off.

In this paper we shall study a predator-prey model where disease spreads
amongst the prey with (different) ratio-dependent functional responses for both
infected and susceptible prey. This work is based upon previous mathematical
models of the Salton Sea.

There is a large literature already existing on the subject of ecological sys-
tems under the influence of epidemiological factors. Anderson and May [1]
studied five prey-predator, parasite interactions where parasites infect either
the prey or the predator. Hadeler and Freedman [2] described a predator-prey
model where the prey is infected by a parasite and in turn infects the predator
with that parasite. Gulland [3] described a number of possible situations in
which predators may be affected by various diseases. Haque and Venturino [4]
proposed a predator-prey model with an epidemic spreading only among the
predators by contact between a well individual and an infected one.

There are two types of prey-predator interaction models in the literature:
the first is where prey eaten per predator per unit time is a function of the
prey density and in the second type (called predator-dependent functional re-
sponse) this is a function of both prey and predator. Ratio-dependent functional
response is a subtype of predator-dependent functional response and assumes
that the prey eaten per unit time is a function of the ratio of prey to predator.
Ratio-dependent predator-prey models are more appropriate for predator-prey
interaction where predation involves serious searching, for example, predator
animals searching for prey in Kuang [5]. It is also a fact that ratio-dependent
models are more flexible and versatile. Various field study and laboratory ex-
periments support ratio-dependent predator-prey models, for example [6], [7]
and [8].

Chattopadhyay and Bairagi [9], and Sarkar et al. [10] studied tilapia and
pelican interaction models for the Salton Sea. In both models the authors as-
sumed that due to infection, tilapia become weak and pelicans interact only
with infected tilapia. Later using the same viewpoint Greenhalgh and Haque
[11] described a ratio-dependent predator-prey interaction model where suscep-
tibles experienced no predation. This is unlikely to be realistic for most species.
Chattopadhyay et al. [12] modified the model discussed in [9] by introducing in-
teraction of pelicans with susceptible fish and assumed that feeding on infected
fish increases the death rate of the pelicans. Here we modify the ratio-dependent
model of [11] and consider that the susceptible and the infected populations are
exposed to the predator to varying degrees. However, the predator preys pref-
erentially on the most numerous prey type.

2 The Mathematical Model

We consider here a predator-prey model, in which an epidemic spreads in the
prey. We are thinking of predators being pelicans and prey tilapia. We assume
that the disease is transmitted by direct contact among the prey. In the presence
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of vibrio infection the prey population is divided into two classes, namely suscep-
tible tilapia, denoted by S(t), and infected tilapia, denoted by I(t). Therefore
at time t the total tilapia population is

X (t) = S (t) + I (t) .

We assume that only susceptible tilapia breed and that, in the absence of in-
fection, population growth is given by a logistic function with carrying capacity
k. Both susceptible and infected tilapia are subject to predation by the peli-
cans. The pelicans preferentially eat infected tilapia because the tilapia become
weak due to infection and rise to the surface of the sea for oxygen. As they
are relatively easy to catch, these infected tilapia become more attractive to
pelicans.

With the above assumptions the basic equations of the model are

dS

dt
= rS

(
1− S + I

k

)
− λSI − pY S

mY + S
,

dI

dt
= λSI − cY I

mY + I
− γI,

dY

dt
= δY

(
1− hY

I + S

)
.

Here the parameters are as follows:

r the species growth rate of tilapia in the breeding subpopulation,
λ the disease transmission coefficient,
γ the per capita death rate of infected prey,
p and c search rate of the pelicans towards susceptible and infected tilapia,

respectively,
δ the per capita growth rate of the pelicans,
h a constant relating to the density dependent mortality of the preda-

tor population,
m a strictly positive constant.

In order to reduce the number of parameters, we define τ = λt, r1 = r
λ ,

p1 = p
λ , γ1 = γ

λ , δ1 = δ
λ and c1 = c

λ . Then choosing the new parameters and
renaming τ as t, we find that the system is

dS

dt
= r1S

(
1− S + I

k

)
− SI − p1Y S

mY + S
,

dI

dt
= SI − c1Y I

mY + I
− γ1I,

dY

dt
= δ1Y

(
1− hY

I + S

)
.

(2.1)

It is straightforward to show that the solutions to these equations are always
positive.

3



We assume that all the parameters in the model are strictly positive and
that S(0) ≥ 0, I(0) ≥ 0 and Y (0) ≥ 0. As

0 ≤ S

mY + S
≤ 1, 0 <

p1Y S

mY + S
≤ p1Y.

Hence it is natural to interpret this item as zero when S = Y = 0. Similarly it
is natural to interpret the term

c1Y I

mY + I

as zero when Y = I = 0.
If I(0) = S(0) = 0 and Y (0) ≥ 0, then (2.1)(iii) is interpreted as implying

that Y (t) = 0 for all t. It is straightforward to show that the solution to these
equations are always positive and S(0) > 0 implies that S(t) > 0 for all t,
I(0) > 0 implies that I(t) > 0 for all t and Y (0) > 0 and at least one of S(0)
and I(0) are strictly positive implies that Y (t) > 0 for all t.

Leslie [13, 14] introduced the following mathematical model for a predator-
prey system where X is the prey and Y is the predator

dX

dt
= (r1 − bX)X − p(X)Y,

dY

dt
=
(
r2 −

a2Y

X

)
Y.

Y
X is the Leslie-Gower term which measures the loss in the predator population
due to the relative scarcity of the prey. p(X) corresponds to the per capita rate
at which predators consume prey and r1, r2, b and a2 are constants. Thus our
model is based on the Leslie-Gower model.

There are several previous papers concerning Leslie-Gower eco-epidemiological
models with ratio-dependent and prey-dependent functional response. Here we
shall list some of them and differences between our model and theirs. The study
of eco-epidemiology was started in 1999 by Chattopadhyay and Arino [15] who
studied the following system of differential equations:

dS

dt
= r(S + I)

(
1− S + I

k

)
− bSI − ηγ1(S)Y,

dI

dt
= bSI − γ(I)Y − cI,

dY

dt
= εγ(I) + ηεγ1(S)− d)Y,

where γ(I) and ηγ1(S) are the predator response functions, k is the carrying
capacity of the environment for prey and r, b, c and d are constants. This differs
from our model in that firstly both infected and susceptible prey contribute
to prey growth and secondly the predator equation is different. Haque and
Chattopadhyay [16] and later Jin and Haque [17] study an eco-epidemiological
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model for the Salton Sea with disease in the prey. This model differs from
ours in that the predator consumes only infected prey not both types of prey
and also the predator response function is not ratio-dependent. Also the disease
transmission term is a generalisation of ours to λIpSq where p and q are positive
integers and again the predator equation is different.

Arino et al. [18] discuss a ratio-dependent predator-prey model with disease
in the prey. This has some similarities with our model but also some differences.
Firstly in the logistic term for the growth of the susceptible prey population only
deaths of susceptible prey are taken into account whereas in our model there are
deaths of both susceptible and infected prey. Secondly in the functional response
terms for both susceptible and infected prey the denominators in the model of
Arino et al. are of the form (using our notation) mY + S + I, whereas in our
model they are mY +S and mY +I respectively. Thirdly there are differences in
the predator growth equation which has predator growth terms corresponding
to consumption of susceptible and infected prey and a linear death term.

Kundu and Chattopadhyay [19] study a model for a predator-prey system
with disease amongst the prey which was similar to ours but the predator re-
sponse to infected prey is simply a function of the number of infected prey and
the predator growth equation is not a Leslie-Gower one.

Greenhalgh and Haque [11] study a ratio-dependent predator-prey model
with disease in the prey but this differs from the current model as follows:
Firstly the growth function of the susceptible prey is purely logistic, depending
only on the susceptible prey, whereas in the current model the infected prey
also indirectly affects the susceptible prey growth rate. Secondly in [11] the
predator preys only on infected prey whereas in the current model the predator
preys on both susceptible and infected prey. Thirdly the predator carrying
capacity depends only on the infected prey whereas in the current model it
depends on the total number of prey.

Xaio and Chen [20] also study a ratio-dependent predator-prey model with
disease in the prey but in their model the predators do not consume susceptible
prey and the predator growth equation is different and is not of Leslie-Gower
type.

Pal and Samanta [21] study a predator-prey model incorporating a prey
refuge with disease in the prey. The paper extends the model of Xaio and Chen
[20]. In a later paper, Pal and Samanta [22] they modify this model in an
arguably more realistic fashion by taking the prey disease transmission term to
be frequency dependent aSI

S+I rather than density dependent aSI. Thus in the
frequency dependent model the per capita disease contact rate is constant.

Wang and Feng [23] also extend the model of Xaio and Chen [20] including
stage structure into the predator population and a time delay due to the gesta-
tion of the predator into the system. However again in all three models unlike
our current model the predators do not consume infected prey and the predator
growth equation is not the same as ours.

Rahman and Chakravarty [24] discuss a predator-prey model with disease in
the prey in which the functional response to susceptible and infected prey are
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respectively c1SY
a+(S+I)Y and c2IY

a+(S+I)Y where a, c1 and c2 are constants. This is a
modification of a model studied by Cosner et al. [25]. This model differs from
ours in that both the per capita predation rates of susceptible and infected prey
have different functional forms and yet again the predator growth equation is
not of Leslie-Gower type.

There are many other papers which consider eco-epidemiological models with
disease in the prey (or the predator), for example Venturino [26, 27], Haque and
Venturino [4, 28], Chattopadhyay and Bairagi [9], Xaio and Chen [29, 30], Chat-
topadhyay, Srinivasu and Bairagi [12] and Mukhopadhyay and Bhattacharya [31]
amongst others but we believe that the models which we have surveyed above
are the most relevant to our study.

3 Boundedness Results

We have three results on the boundedness of the system (2.1). First of all, we
consider the prey.

Proposition 1 The prey are always bounded above.

Proof. If S(0) = 0 then the result is trivial. If S(0) > 0 then S(t) > 0 for all
t. On adding equations (2.1)(i) and (2.1)(ii), we get

dS

dt
+
dI

dt
≤ r1S

(
1− S + I

k

)
.

It follows then that lim supt→∞(S(t) + I(t)) ≤ k.

Proposition 2 The number of predators Y is always bounded above.

Proof. If Y (0) = 0 the result is obvious. If Y (0) > 0, then using equation
(2.1)(iii) we see that

dY

dt
< 0 if

hY

I + S
> 1.

Suppose that lim supt→∞ Y > k
h . i.e. lim supt→∞ Y > k+ε

h for some ε > 0.
Hence Y − k+ε

h > 0 in infinitely many disjoint intervals (t0, t1), (t2, t3), (t4, t5), . . .
and outside these intervals Y − k+ε

h ≤ 0.
As lim supt→∞(I + S) ≤ k without loss of generality we can assume that in

these intervals k+ε
h > I+S

h so dY
dt < 0 in these intervals. If one such interval is

(t2r, t2r+1), r an integer, then for t ∈ (t2r, t2r+1)

Y (t) ≤ Y (t2r) =
k + ε

h
.

Hence lim supt→∞ Y (t) ≤ k+ε
h . As ε > 0 is arbitrary we deduce that lim supt→∞ Y (t) ≤

k
h .

Proposition 3 The trajectories of system (2.1) are bounded.
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Proof. Define the function ` = S + I + Y and take its time derivative along
the solution of (2.1)

d`

dt
=
dS

dt
+
dI

dt
+
dY

dt
.

Now

d`

dt
+ q` = r1S − r1S

(
S + I

k

)
− p1Y S

mY + S
− c1Y I

mY + I

−γ1I + δ1Y −
δ1hY

2

I + S
+ qS + qI + qY,

= (q + r1)S + (q + δ1)Y − (γ1 − q)I − r1S

(
S + I

k

)
− p1Y S

mY + S
− c1Y I

mY + I
− δ1hY

2

I + S
,

where q is a positive constant. For q < γ1 given ε > 0 there exists t0 such that
for t ≥ t0

d`

dt
+ q` ≤ m+ ε

where m = (q + r1)k + (q + δ1) kh . Hence

d

dt
(`eqt) ≤ (m+ ε)eqt,

so
`(t) ≤ `(t0)e−q(t−t0) +

m+ ε

q

(
1− e−q(t−t0)

)
.

Letting t→∞, then letting ε→ 0

lim sup
t→∞

`(t) ≤ m

q

independently of the initial conditions.

4 The Equilibria

We now examine the equilibria of the system (2.1). We have the following
theorem:

Theorem 4 The ecologically meaningful possible equilibria of system (2.1) are

(i) Ē0 = (0, 0, 0), where all populations are extinct, which always exists.

(ii) Ē1 = (k, 0, 0) where there is only susceptible prey which always exists.

(iii) Ē2 = (hY2, 0, Y2) where Y2 =
(
r1 − p1

m+h

)
k
r1h

. In this equilibrium there
are only susceptible prey and predators. This equilibrium always exists if
r1 >

p1
m+h .

7



(iv) Ē3 =
(
γ1,

r1(k−γ1)
k+r1

, 0
)

. This equilibrium has only infected and susceptible
prey and no predators. It is possible if k > γ1.

(v) Up to two co-existence equilibria Ē4, Ē5. These are given by Ēi = ((h−
x̄i)ȳ, x̄iȳ, ȳ), for i = 4, 5 where x̄i is the ith root of the cubic equation

f(x) = a0x
3 + a1x

2 + a2x+ a3 = 0 (4.1)

in
[
0,min

[
h,m+ h− p1

r1

]]
where

a0 = k(r1 + γ1),
a1 = k(p1 + c1)− 2kr1h− γ1h(k − r1),

a2 = kr1(h2 −m2 − hm)− kp1(h−m)− c1[k(m+ h)− r1h]

− γ1km(m+ h)− γ1r1h
2,

a3 = (m+ h)r1h

(
km− c1 − γ1m−

p1mk

r1(m+ h)

)
.

Here

ȳ =
c1 + γ1(m+ xi)
(m+ xi)(h− xi)

, for i = 4, 5.

Define
∆ =

4
27
a3

2 −
1
27
a2

1a
2
2 +

4
27
a3

1a3 −
2
3
a1a2a3 + a2

3.

(a) For p1
r1
≥ m+ h, there are no feasible co-existence equilibria.

(b) For p1
r1
< m + h and km > c1 + γ1m + p1mk

r1(m+h) , the cubic equation (4.1)
has exactly one real root in the given interval.

(c) Suppose that p1
r1
< m+ h and km < c1 + γ1m+ p1mk

r1(m+h) .

For a2
1 > 3a0a2, a1 < 0, a2 > 0 and ∆ < 0, the cubic equation (4.1) has

two real positive turning points at α1, β1 (α1 < β1), the roots of

3a0x
2 + 2a1x+ a2 = 0.

If

α1 < min
[
h,m+ h− p1

r1

]
,

then there are two strictly positive real roots of (4.1) in the interval.

If either (i) a2
1 ≤ 3a0a2, (ii) a1 ≥ 0, (iii) a2 ≤ 0, (iv) ∆ > 0 or (v)

a2
1 > 3a0a2, a1 < 0 a2 > 0, ∆ ≥ 0 and

α1 ≥ min
[
h,m+ h− p1

r1

]
,
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then there are no strictly positive real roots of (4.1) in the interval.

If a2
1 > 3a0a2, a1 < 0, a2 > 0,∆ = 0 and

α1 < min
[
h,m+ h− p1

r1

]
then (4.1) has one strictly positive repeated real root in the interval.

(d) Suppose that p1
r1
< m+ h and km = c1 + γ1m+ p1mk

r1(m+h) .

For a2
1 > 3a0a2, a1 < 0, a2 > 0 and ∆ < 0 if

α1 < min
[
h,m+ h− p1

r1

]
then there is exactly one strictly positive real root of (4.1) in the interval(

0,min
[
h,m+ h− p1

r1

])
.

If either (i) a2
1 ≤ 3a0a2, (ii) a1 ≥ 0, (iii) a2 ≤ 0 or (iv) ∆ ≥ 0 then there

are no strictly positive real roots of (4.1) in this interval.

Ecological Interpretation of These Conditions.

The condition for the existence of Ē2 is r1 >
p1
m+h , equivalently r > p

m+h .
This means that both r, the per capita growth rate of the tilapia and h, the
density-dependent mortality constant are relatively large compared with p, the
search rate of the pelicans toward infected tilapia.

The condition for the existence of Ē3 is kλ > γ. This means that the
product of the carrying capacity k of the environment for prey and the disease
transmission coefficient λ exceeds γ the per capita death rate of infected prey.
Provided that r1 >

p1
m+h , the condition in Theorem 4(v)(b) for the existence of

one or more co-existence equilibria is(
1− p

(m+ h)r

)
λ >

1
mk

(c+ γm)

so the weighted sum of the search rate c of the pelicans towards infected tilapia
and the per capita death rate of infected tilapia γ is less than the disease trans-
mission coefficient λ multiplied by the carrying capacity of the environment for
prey, k, is less than a term that is related to how strongly the first condition

r1 >
p1

m+ h

is satisfied.

Proof. From equations (2.1) we see that (0,0,0) is always a solution. Moreover
for any feasible solution
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(1) Either S∗ = 0 or r1

(
1− S∗+I∗

k

)
− I∗ − p1Y

∗

mY ∗+S∗ = 0,

(2) Either I∗ = 0 or S∗ − c1Y
∗

mY ∗+I∗ − γ1 = 0,

(3) Either Y ∗ = 0 or I∗ + S∗ = hY ∗.

(i) If S∗ = 0 then I∗ = 0 and Y ∗ = 0.

(ii) and (iii) If S∗ 6= 0 and I∗ = 0, either (ii) Y ∗ = 0 which implies that S∗ = k, leading
to the equilibrium Ē1 or (iii) Y ∗ 6= 0 which implies that

r1 =
r1S
∗

k
+

p1Y
∗

mY ∗ + S∗
and S∗ = hY ∗.

Hence
r1 =

r1hY
∗

k
+

p1

m+ h
,

so

Y ∗ =
(
r1 −

p1

m+ h

)
k

r1h
, S∗ =

(
r1 −

p1

m+ h

)
k

r1
.

This equilibrium Ē2 will be feasible if r1(m+ h) > p1.

(iv) If S∗ 6= 0, I∗ 6= 0 and Y ∗ = 0 then S∗I∗ = γ1I
∗ so S∗ = γ1 which implies

that

r1

(
1− S∗ + I∗

k

)
− I∗ = 0,

I∗
(

1 +
r1

k

)
= r1

(
1− γ1

k

)
,

I∗ =
r1(k − γ1)
k + r1

.

Thus we have Ē3 which is feasible if k > γ1.

(v) Finally for a co-existence equilibrium we have S∗ 6= 0, I∗ 6= 0, Y ∗ 6= 0.
Hence

r1

(
1− S∗ + I∗

k

)
− I∗ − p1Y

∗

mY ∗ + S∗
= 0, (4.2)

S∗ − c1Y
∗

mY ∗ + I∗
− γ1 = 0,

I∗ + S∗ = hY ∗.

Write x∗Y ∗ = I∗

(h− x∗)Y ∗ =
c1Y

∗

mY ∗ + x∗Y ∗
+ γ1,

=
c1

m+ x∗
+ γ1,

=
c1 + γ1(m+ x∗)

m+ x∗
.
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So

Y ∗ =
(c1 + γ1m) + γ1x

∗

(h− x∗)(m+ x∗)
. (4.3)

Now from equation (4.2) we deduce that

r1

(
1− hY ∗

k

)
− x∗Y ∗ − p1

m+ h− x∗
= 0.

Thus

Y ∗ =
(
r1(m+ h− x∗)− p1

m+ h− x∗

)(
k

kx∗ + r1h

)
.

For a feasible equilibrium we need 0 < x∗ < h and x∗ <
(
m + h − p1

r1

)
also

(c1 + γ1m) + γ1x
∗

(h− x∗)(m+ x∗)
=
(
r1(m+ h− x∗)− p1

(m+ h− x∗)

)(
k

kx∗ + r1h

)
i.e.

−((c1 + γ1m) + γ1x
∗)(m+ h− x∗)(kx∗ + r1h)

+k(h− x∗)(m+ x∗)(r1(m+ h− x∗)− p1) = 0.
(4.4)

Expanding this expression we can see that it is the cubic (4.1)

a0x
∗3 + a1x

∗2 + a2x
∗ + a3 = 0

described earlier.

(a) Clearly for p1
r1
≥ m+ h there are no feasible co-existence equilibria.

(b) For km > c1 + γ1m+ p1mk
r1(m+h) , a3 > 0.

Using (4.4), f(h) = − ((c1 + γ1m) + γ1h)m(k + r1)h < 0.
If x = m + h − p1

r1
< h

(
note that m + h > p1

r1

)
, again using (4.4) we

deduce that

f

(
m+ h− p1

r1

)
= − ((c1 + γ1m) + γ1x)

p1

r1
(kx+ r1h) < 0.

Therefore f
(

min
[
h,m+ h− p1

r1

])
< 0. Hence the cubic equation (4.1)

has one or three real roots in the interval
[
0,min

[
h,m+ h− p1

r1

]]
. But

it has one real root in
[
min

[
h,m+ h− p1

r1

]
,∞
]
. Therefore it has exactly

one real root in the interval
[
0,min

[
h,m+ h− p1

r1

]]
in this case.
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(c) For p1
r1

< m + h and km < c1 + γ1m + p1mk
r1(m+h) , a3 < 0 and as above

f
(

min
[
h,m+ h− p1

r1

])
< 0. Hence the cubic equation (4.1) has either

zero or two positive real roots in the interval. The derivative of f(x) given
by (4.1) is

g(x) = 3a0x
2 + 2a1x+ a2.

The turning points are the roots α1, β1 of g(x) = 0 and ∆ = f(α1)f(β1)
[32]. If a2

1 > 3a0a2, a1 < 0, a2 > 0 and ∆ < 0, the cubic equation (4.1)
has two real turning points at α1, β1 where 0 ≤ α1 < β1. If

α1 < min
[
h,m+ h− p1

r1

]
,

then by considering the shape of f(x) we see that there are two strictly
positive real roots of (4.1) in the interval.

If a2
1 > 3a0a2, a1 < 0, a2 > 0,∆ = 0 and

α1 < min
[
h,m+ h− p1

r1

]
,

then f(x) has one repeated strictly positive real root in the interval. If
either a2

1 ≤ 3a0a2, or a1 ≥ 0 or a2 ≤ 0 or ∆ > 0 then f(x) has no strictly
positive real roots in the interval.

4.1 The Case p1 = 0

We can gain further insight into when what number of equilibria are possible
by considering the special case p1 = 0. When p1 = 0 we need 0 < x∗ < h for a
feasible equilibrium. The cubic (4.4) reduces to x∗ = m+ h (infeasible) or

−k(h− x∗)(m+ x∗)r1 + ((c1 + γ1m) + γ1x
∗) (kx∗ + r1h) = 0. (4.5)

This is a quadratic
`(x∗) = b0x

∗2 + b1x
∗ + b2 = 0 (4.6)

where

b0 = k(γ1 + r1),
b1 = k(c1 + γ1m) + r1hγ1 + kmr1 − khr1,

b2 = (c1 + γ1m)r1h− khr1m.

(i) Note that `(h) > 0. Hence if c1 + γ1m < km there is exactly one root of
`(x∗) = 0 in [0, h].

12



(ii) If c1 + γ1m > max[km, hr1] then b1 > 0, b2 > 0, so `(x∗) = 0 has no real
roots in [0, h].

(iii) To see that it is possible to have two feasible co-existence equilibria it
is sufficient to show that it is possible to have two positive real roots of
`(x∗) = 0 in [0, h]. Choose γ1 < k and c1 = (k − γ1)m+ ε where ε > 0 is
very small. Choose h very large so that

b1 = k[km+ ε] + r1hγ1 + kmr1 − khr1 < 0.

Then if h is large enough and ε is small enough b1 < 0, b2 > 0 and
b21 − 4b0b2 > 0. So the quadratic

`(x∗) = b0x
∗2 + b1x

∗ + b2

has two positive real roots and is minimised at

x∗ = − b1
2b0

> 0.

But recalling that h is very large and ε is very small

− b1
2b0
≈ r1h

2k
(k − γ1)
(γ1 + r1)

< h

as 2(γ1 + r1)k > r1(k− γ1). Therefore the quadratic has two real roots in
[0, h]. Hence it is possible for there to be either no, one or two co-existence
equilibria.

This concludes our equilibrium analysis of the predator-prey model with
disease. In the next section we shall look at the stability of these equilibria.

5 Stability

At a general equilibrium (S, I, Y ) the stability matrix or Jacobian of the system
is

J =


r1 − 2r1S

k − r1I
k − I −

mp1Y
2

(mY+S)2
−r1
k S − S −p1S2

(mY+S)2

I S − γ1 − c1mY
2

(mY+I)2
−c1I2

(mY+I)2

δ1hY
2

(I+S)2
δ1hY

2

(I+S)2 δ1

(
1− 2hY

I+S

)
 .

5.1 Dynamics of the System Around Ē0

The stability matrix is not well-defined at the equilibrium Ē0. To show that Ē0

is unstable it is sufficient to show that not all trajectories starting in a small
ball of radius ε > 0 approach Ē0. Consider a trajectory with Y0 = 0 and S0 > 0
then Y (t) = 0 and S(t) > 0 for all t.

13



Hence
1
S

dS

dt
= r1

(
1− S + I

k

)
− I > r1

2

if S and I are small enough. Hence S ≥ S0e
r1t
2 . So this trajectory cannot

approach Ē0 which is unstable.

5.2 Dynamics of the System Around Ē1

The stability matrix is also not well defined at the equilibrium Ē1. To show
that Ē1 is unstable suppose that Ē1 is locally asymptotically stable (LAS).
Now consider a trajectory with Y (0) > 0 and either I0 > 0, or S0 > 0, hence
either I(t) > 0 for all t or S(t) > 0 for all t. As this trajectory approaches the
equilibrium Ē1

dY

dt
→ δ1Y.

Hence if this trajectory approaches Ē1 there is a t0 such that for t ≥ t0

dY

dt
≥ δ1Y

2
.

Also Y (t0) > 0 as Y (0) > 0. So

Y (t) ≥ e
δ1(t−t0)

2

for t ≥ t0 which is a contradiction. Therefore Ē1 is unstable.

5.3 Dynamics of the System Around Ē2

At the equilibrium Ē2 one eigenvalue is J22 = k
r1

(
r1 − p1

m+h

)
− γ1 − c1

m . The
remaining eigenvalues satisfy the characteristic equation

det

(
−r1 + p1(m+2h)

(m+h)2 − ω − p1h
2

(m+h)2
δ1
h −δ1 − ω

)
= 0.

This is equivalent to
ω2 + a1ω + a2 = 0

where

a1 = δ1 + r1 −
p1(m+ 2h)
(m+ h)2

,

and
a2 =

δ1r1hY2

k
> 0.

Hence this equilibrium is stable if

γ1 +
c1
m

+
kp1

r1(m+ h)
> k (5.1)
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and

δ1 + r1 >
p1(m+ 2h)
(m+ h)2

. (5.2)

The equilibrium is unstable if either

k > γ1 +
c1
m

+
kp1

r1(m+ h)
(5.3)

or
p1(m+ 2h)
(m+ h)2

> δ1 + r1. (5.4)

We have already discussed the biological significance of the first of these
stability conditions (5.1). The second condition can be rewritten as

p

h

(
1−

(
h

m+ h

)2)
> δ + r.

So this condition will be satisfied if p, the search rate of the pelicans towards
susceptible tilapia is high, and h, the density-dependent mortality rate of the
pelicans is small compared with the sum of the per capita birth rates of the
pelicans and the tilapia.

5.4 Dynamics of the System Around Ē3

At the equilibrium Ē3 = (S3, I3, 0) the Jacobian is

J3 =

 − r1S3
k −

(
r1
k + 1

)
S3 −p1

I3 0 −c1
0 0 δ1

 .

One eigenvalue is clearly δ1 > 0 so this equilibrium is unstable. The other two
eigenvalues have negative real parts.

5.5 Dynamics of the System Around the Co-existence Equi-
libria Ē4 and Ē5

At the equilibria Ē4 and Ē5 = (S̄, Ī, Ȳ ) the Jacobian matrix is

J4 =

 −
r1S̄
k + p1Ȳ S̄

(mȲ+S̄)2
− r1S̄k − S̄ − p1S̄

2

(mȲ+S̄)2

Ī c1Ȳ Ī
(mȲ+Ī)2

− c1Ī
2

(mȲ+Ī)2
δ1
h

δ1
h −δ1


=

 −a11 + a12Ȳ − ω −a11 − S̄ −a12S̄
Ī A− ω −Āx∗
δ1
h

δ1
h −δ1 − ω

 (5.5)
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where

a11 =
r1S̄

k
, a12 =

p1S̄

(mȲ + S̄)2
and A =

c1Ȳ Ī

(mȲ + Ī)2
.

The characteristic equation associated with the possible equilibria Ē4 and Ē5

of this model is

(−δ1 − ω)(A− ω)(−a11 + a12Ȳ − ω) + δ1
h Ax

∗(a11 + S̄)− δ1
h Ia12S̄

+a12S̄
δ1
h (A− ω) + δ1

h Ax
∗(−a11 + a12Ȳ − ω)− (δ1 + ω)(a11 + S̄)I = 0.

This can be expressed as a cubic equation

ω3 + e1ω
2 + e2ω + e3 = 0, (5.6)

where

e1 = δ1 + a11 − a12Ȳ −A,

e2 = δ1(a11 − a12Ȳ −A)−A(a11 − a12Ȳ ) + a12
S̄δ1
h

+
δ1
h
Ax∗ + (a11 + S̄)Ī ,

e3 = −δ1A(a11 − a12Ȳ )− δ1
h
Ax∗(a11 + S̄) +

δ1
h
Īa12S̄ −

δ1
h
AS̄a12

+
δ1
h
Ax∗(a11 − a12Ȳ ) + δ1(a11 + S̄)Ī .

The Routh-Hurwitz conditions for the characteristic equation to have only roots
with strictly negative real parts and hence the co-existence equilibrium to be
LAS are e1 > 0, e3 > 0 and e1e2 > e3.

If we consider the special case where p1 = c1 = 0 then this implies that

e1 = δ1 + a11,

e2 = δ1a11 + (a11 + S̄)Ī ,
e3 = δ1(a11 + S̄)Ī ,

in this case. So the co-existence equilibrium is LAS when it exists.
Note that equation (4.1) and hence x∗ does not depend on δ1. Hence it is

natural to express e1, e2 and e3 in terms of δ1 and see what happens as δ1 varies.
In terms of δ1

e1 = δ1 + ξ1,

e2 = δ1ξ2 + ξ3,

e3 = δ1ξ4,

where

ξ1 = a11 − a12Ȳ −A,

ξ2 = a11 − a12

(
Ȳ − S̄

h

)
−A

(
1− x∗

h

)
, ξ2 > ξ1,

ξ3 = (a11 + S̄)Ī −A(a11 − a12Ȳ ),

ξ4 = −A(a11 − a12Ȳ )− AS̄x∗

h
+
Ia12S̄

h
− a12S̄A

h
− AȲ x∗a12

h
+ (a11 + S̄)Ī .
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If ξ4 < 0, the equilibrium is unstable for all δ1.
This situation is rather complicated to analyse so we consider the different

possibilities depending on the signs of ξ1, ξ2, ξ3 and ξ4. Examining the Routh-
Hurwitz conditions

e1 > 0, e3 > 0 and e1e2 > e3

in terms of δ1, the condition e1 > 0 is given by a straight line of slope one
intercept ξ1, the condition e3 > 0 by a straight line through the origin and
in general apart from degenerate parameter values e1e2 > e3 by a parabola.
Looking at these conditions graphically it is straightforward to show that:

(i) If ξ4 < 0 then any co-existence equilibrium is unstable for all δ1;

(ii) If ξ1 > 0, ξ3 > 0, ξ4 > 0 then any co-existence equilibrium is stable in a
range such as (0, δ0

1), (δ1
1 ,∞) (including always stable as a possibility);

(iii) If ξ1 ≤ 0, ξ2 > 0, ξ4 > 0 then a co-existence equilibrium is stable in a
range such as (δ0

1 ,∞);

(iv) If ξ1 ≤ 0, ξ2 < 0, ξ1ξ2 > ξ3, ξ4 > 0 then a co-existence equilibrium is
always unstable;

(v) If ξ1 ≤ 0, ξ2 < 0, ξ1ξ2 < ξ3, ξ4 > 0 then a co-existence equilibrium is
either (a) always unstable, or (b) stable in a range such as (δ1

0 , δ
1
1) and

unstable in (0, δ1
0) ∪ (δ1

1 ,∞).

5.5.1 k Very Large, (m+ h)r1 > p1

This case is covered by Theorem 4(v)(b) so there is a unique co-existence equi-
librium with susceptible prey, infected prey and predators present. From (4.4)
the limiting value of x∗ as k →∞ is the unique root of

(h− x∗)(m+ x∗)(r1(m+ h− x∗)− p1)− ((c1 + γ1m) + γ1x
∗)(m+ h− x∗)x∗

in the interval
[
0,min

[
h,m+ h− p1

r1

]]
. Hence

a11 =
r1

k
S̄ =

r1

k

(c1 + γ1m) + γ1x
∗

(m+ x∗)
→ 0 as k →∞.

So as k →∞ the limiting values of ξ1, ξ2, ξ3 and ξ4 are

ξ1 → −a12Ȳ −A < 0,

ξ2 → −
[
a12

(
Ȳ − S̄

h

)
+A

(
1− x∗

h

)]
,

= − [a12Ī +A(h− x∗)]
h

< 0,

ξ3 → S̄Ī +Aa12Ȳ > 0,

ξ4 → −Ax
∗S̄

h
+
ĪS̄a12

h
+ S̄Ī.
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To determine the sign of the limiting value of ξ4 as k →∞ we note that

Ī >
Ax∗

h
if and only if h >

c1x
∗Ȳ

(mȲ + Ī)2
,

if and only if hȲ >
c1x
∗

(m+ x∗)2
.

But this will always be true as

hȲ = Ȳ (h− x∗) + x∗Ȳ > Ȳ (h− x∗) > c1
m+ x∗

>
c1x
∗

(m+ x∗)2

using (4.3). So in this case limk→∞ ξ4 > 0 and by cases (iv) and (v) above
in general apart from degenerate parameter values the co-existence equilibrium
is either always unstable, or stable in a range such as (δ0

1 , δ
1
1) and unstable in

(0, δ1
0) ∪ (δ1

1 ,∞).

5.5.2 The Inequality ξ4 ≥ 0

Motivated by the example discussed above we may ask whether it is always
the case that ξ4 ≥ 0. However this is not always the case as the following
counterexample shows:

Counterexample 5 It is possible to have a co-existence equilibrium with ξ4 <
0.

Proof. Choose p1 = 0, km = c1 +γ1m+ε, where ε is very small. Also choose h
very large in comparison with m. Then again we are in case (v)(b) of Theorem
4 and there is a unique co-existence with susceptible prey, infected prey and
predators present. As a3 is proportional to ε it is very small, so x∗ is very small
and we have

x∗ ≈ 0, Ȳ ≈ c1 + γ1m

hm
(5.7)

by (4.3). As a12 = 0

ξ4 = a11(Ī −A) + S̄

(
Ī − Ax∗

h

)
,

=
r1S̄

k
(Ī −A) + S̄

(
Ī − Ax∗

h

)
,

=
r1S̄Ī

k

(
1− c1Ȳ

(mȲ + Ī)2

)
+ S̄Ī

(
1− c1x

∗Ȳ

h(mȲ + Ī)2

)
,

=
r1S̄Ī

k

(
1− c1

Ȳ (m+ x∗)2

)
+ S̄Ī

(
1− c1x

∗

hȲ (m+ x∗)2

)
.

Substituting in the approximate values of x∗ and Ȳ from (5.7) we deduce that

ξ4 ≈ S̄Ī
(
r1

k

(
1− c1h

(c1 + γ1m)m

)
+ 1
)
.

Hence ξ4 is negative if h is large in comparison with m. Therefore it is possible
to have a co-existence equilibrium with ξ4 < 0.
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6 Hopf Bifurcation Around the Possible Co-ex-
isting Equilibria Ē4 and Ē5

By considering the diagrams giving the stability of the co-existence equilibria
for various values of ξ1, ξ2, ξ3 and ξ4 as δ1 increases, we see that at points
where the stability changes (either from stable to unstable or from unstable to
stable) it is the constraint e1e2 > e3 that changes rather than e1 > 0 or e3 > 0.
To formalise this as a theorem:

Theorem 6 Recall that δ1 is the ratio of δ, the per capita growth rate of the
pelicans, to λ, the prey disease transmission coefficient. Suppose that ξ4 6= 0. As
δ1 increases the co-existence equilibrium can change stability only as δ1 passes
through a positive root of the quadratic equation in δ1

e1(δ1)e2(δ1)− e3(δ1) = 0. (6.1)

Proof. To prove this algebraically note that if ξ4 < 0 then a co-existence
equilibrium is always unstable so we can assume that ξ4 > 0 and the constraint
e3 > 0 is always satisfied.

(i) If ξ1 ≥ 0 then the constraint e1 > 0 is always satisfied so as δ1 increases
the stability of the co-existence equilibrium can change only as δ1 passes
through one of the (at most) two possible roots of (6.1).

(ii) If ξ1 < 0 then for δ1 < −ξ1 the co-existence equilibrium is unstable. At
δ1 = −ξ1,

e1(δ1)e2(δ1) = 0 < e3(δ1)

so the co-existence equilibrium is still unstable. For δ1 ≥ −ξ1 the co-
existence equilibrium will again change stability only as δ1 passes through
one of the at most two possible positive roots of (6.1) for δ1.

We investigate the Hopf bifurcation for the system (2.1), taking δ1 as the
bifurcation parameter. Suppose that ω(δ1) is an eigenvalue of the stability
matrix at a co-existence equilibrium Ē4 or Ē5. Then Hopf bifurcation will
occur if there exists a δ1 = δ̄1 such that

(i) e1(δ1)e2(δ1) = e3(δ1) with e1(δ1), e2(δ1), e3(δ1) > 0.

(ii) d
dδ1

(Re(ω(δ1)) |δ1=δ̄1 6= 0.

Clearly (5.6) has two purely imaginary roots if and only if e1e2 = e3 for some
value of δ1 (say δ1 = δ̄1) and e2(δ̄1) > 0. There are at most two positive values
of δ̄1 at which we have Hopf bifurcation. For δ1 = δ̄1 we have

(ω2 + e2)(ω + e1) = 0
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which has three roots

ω1 = i
√
e2, ω2 = −i

√
e2, ω3 = −e1.

Thus in a neighbourhood of δ̄1 the characteristic equation (5.5) cannot have real
positive roots. In such a neighbourhood the roots have the form

ω1(δ1) = u(δ1) + iv(δ1), ω2(δ1) = u(δ1)− iv(δ1), ω3(δ1) = −φ(δ1)

where φ(δ̄1) > 0.
To apply the Hopf Bifurcation Theorem we have to verify the transversality

condition
d

dt

(
Re
(
dωk
dδ1

))
δ1=δ̄1

6= 0, k = 1, 2.

Substituting ω1(δ1) = u(δ1) + iv(δ1) into (5.6), equating real and imaginary
parts and calculating the derivative, we get

R(δ1)u′(δ1)− S(δ1)v′(δ1) + T (δ1) = 0,
S(δ1)u′(δ1) +R(δ1)v′(δ1) + U(δ1) = 0,

where

R(δ1) = 3(u(δ1))2 + 2e1(δ1)u(δ1) + e2(δ1)− 3(v(δ1))2,

S(δ1) = 6u(δ1)v(δ1) + 2e1(δ1)v(δ1),

T (δ1) = u2(δ1)e′1(δ1) + e′2(δ1)u(δ1) + e′3(δ1)− e′1(δ1)(v(δ1))2,

U(δ1) = 2u(δ1)v(δ1)e′1(δ1) + e′2(δ1)v(δ1).

(6.2)

At δ1 = δ̄1, u(δ̄1) = 0 and v(δ̄1) 6= 0. If S = 0 then e1(δ̄1) = 0 which implies
that e3(δ̄1) = 0 which is a contradiction. Hence S 6= 0.

If SU +RT 6= 0 at δ1 = δ̄1, then

d

dt

(
Re
(
dωk
dδ1

))
δ1=δ̄1

= −SU +RT

R2 + S2


δ1=δ̄1

6= 0.

Now from equation (6.2) at δ = δ̄1,

SU +RT = 2e2(e1e
′
2 + e2e

′
1 − e′3),

= 2e2
d

dδ1
(e1e2 − e3).

Suppose that ξ2 6= 0. Write Q(δ) = e1e2 − e3. Then the equation Q(δ1) = 0
is the equation of a parabola. At δ̄1, e1e2 = e3 and so e2(δ̄1) > 0. The tangent
to the parabola

dQ

dδ1


δ1=δ̄1

will be either increasing or decreasing except at the vertex. Hence there will be
a Hopf bifurcation at δ1 = δ̄1, unless δ1 is a repeated root of Q(δ1) = 0.
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In the degenerate case ξ2 = 0 we must have ξ3 > 0 and ξ4 > 0 for a stable
equilibrium to be possible. If ξ3 6= ξ4 then Q(δ1) is a line with non-zero slope
and a root at

δ1 = δ̄1 =
ξ1ξ3
ξ4 − ξ3

.

Hence if ξ3, ξ4 and ξ1ξ3
ξ4−ξ3 are all strictly positive, there is a Hopf bifurcation.

If ξ3 = ξ4 then Q(δ1) is a constant, SU + RT = 0 and we cannot conclude
anything.

This completes our mathematical analysis of the general predator-prey dis-
ease system. In the next sections we shall look at some special cases of this
system. First of all we shall examine the system when there is no infection in
the prey and the predator interacts with the susceptible prey only. Next we es-
tablish a condition for disease to die out in the full system with susceptible and
infected prey and predators. Then we shall look at the system with disease in
the prey but no predators. Following this we look at disease effects on predators
in the absence of healthy prey. Next in Section 11 we shall verify some of our
theoretical results using numerical simulation with realistic parameter values.

7 Interaction of Healthy Prey with the Predator
in the Absence of Infected Prey

Putting I ≡ 0 in the system (2.1), we get

dS

dt
= r1S

(
1− S

k

)
− p1Y S

mY + S
,

dY

dt
= δ1Y

(
1− hY

S

)
.

As before the term p1Y S
mY+S is interpreted as zero at S = Y = 0.

Hence there are three equilibria, the origin Ẽ0 = (0, 0), Ẽ1 = (k, 0) and
Ẽ2 = (S̃, Ỹ ) where S̃ = hỸ and Ỹ = k

r1h
(r1 − p1

m+h ). The last equilibrium is
feasible only for r1 >

p1
m+h .

(i) Behaviour of the System around Ẽ0

The stability matrix is not well-defined at the trivial equilibrium Ẽ0. How-
ever, it is straightforward to show that this equilibrium is unstable as described
earlier in the paper.

(ii) Behaviour of the System around Ẽ1

The stability matrix of the system is given by(
−r1 −p1

0 δ1

)
.
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The characteristic equation has one positive root so Ẽ1 will be unstable.

(iii) Behaviour of the System around Ẽ2

The stability matrix of the system is given by(
p1h

(m+h)2
− r1S̃

k − p1h
2

(m+h)2

δ1
h −δ1

)
.

The equilibrium Ẽ2 is LAS if δ1 + r1 > p1(m+2h)
(m+h)2 and unstable if δ1 + r1 <

p1(m+2h)
(m+h)2 . Note that

(i) If S(0) = 0 then S(t) = Y (t) = 0 for all t so the system approaches Ẽ0.

(ii) If S(0) > 0 but Y (0) = 0 then Y (t) = 0 for all t and S(t) → k as t → ∞
so the system approaches Ẽ1.

It is tempting to conjecture:

Conjecture 7 If S(0) > 0 and Y (0) > 0 and δ1 + r1 > p1(m+2h)
(m+h)2 then the

system approaches Ẽ2 for large times, i.e. S(t)→ S̃ and Y (t)→ Ỹ .

8 Natural Disease Control

We may wish to naturally eliminate disease from the system. We note that the
infected prey will be wiped out from the ecosystem if γ, the per capita death
rate of the infected prey, exceeds kλ, where k is the carrying capacity of the
system. Under this condition the whole infected prey population disappears and
so the disease will also vanish.

Proposition 8 If kλ < γ then disease will disappear from the ecosystem.

Proof. Choose ε > 0 such that (k+ ε)λ < γ. By the proof of Proposition 1 ∃t0
such that S ≤ k + ε for t ≥ t0. Then for t ≥ t0

dI

dt
= I

(
λS − cY

mY + I
− γ
)
,

≤ I(λ(k + ε)− γ).

Hence I → 0 as t→∞.

The possible equilibria are Ē0 and Ē1, both of which are always unstable,
Ē2

(
which exists if r1 >

p1
m+h

)
, Ē4 and Ē5. If

(i) r1 >
p1

m+ h
,
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(ii) γ1 +
c1
m

+
kp1

r1(m+ h)
> k and

(iii) δ1 + r1 > p1
(m+ 2h)
(m+ h)2

then we conjecture that Ē2 is globally asymptotically stable (GAS).

Conjecture 9 If (i)-(iii) above are satisfied then the equilibrium Ē2 is GAS.

9 Impact of Disease on Prey in the Absence of
Predators

Putting Y ≡ 0 in the system (2.1), we get

dS

dt
= r1S

(
1− S + I

k

)
− SI,

dI

dt
= SI − γ1I,

(9.1)

where S denotes healthy prey and I denotes infected prey. There are three
ecologically meaningful equilibria for this system: Ê0 = (0, 0), Ê1 = (k, 0) and
Ê3 = (S̄, Ī), where S̄ = γ1 and Ī = r1(k−γ1)

k+r1
. Ê3 is a feasible equilibrium if and

only if k > γ1.
It is easily shown that the equilibrium Ê0 is unstable and the equilibrium

Ê1 is LAS if k < γ1 and unstable if k > γ1. If k = γ1, Ê1 is neutrally stable.
The stability matrix at Ê3 is given by

J =

 −r1S̄
k

−r1S̄
k − S̄

Ī S̄ − γ1

 .

This leads to the characteristic equation

ω2 +Hω + (H + S̄)Ī = 0, where H =
r1S̄

k
. (9.2)

Both roots of the characteristic equation (9.2) have negative real parts so Ê3 =
(S̄, Ī) is LAS when it exists.

It is tempting to conjecture that whatever the initial conditions the system
tends to Ê1 if k ≤ γ1 and to Ê3 if k > γ1.

Conjecture 10 Whatever the initial conditions of the system (9.1) where the
predators are absent tends to Ê1 if k ≤ γ1 and to Ê3 if k > γ1.
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10 Disease Effects on Predators in the Absence
of Healthy Prey

It is straightforward to show that if there are no healthy prey then both the
infected prey and predators die out.

Theorem 11 If there are no healthy prey then both the infected prey and the
predators die out so the system approaches E0.

Proof. On simplifying the system (2.1), by letting S ≡ 0, we get

dI

dt
= − c1Y I

mY + I
− γ1I,

dY

dt
= δ1Y

(
1− hY

I

)
.

Clearly I(t)→ 0 as t→∞. Hence given ε > 0 ∃t0 > 0 such that for t ≥ t0, I ≤
ε. For t ≥ t0

1
Y

dY

dt
≤ δ1

(
1− hY

ε

)
so if Y ≥ 2ε

h ,
dY
dt < −δ1. Hence there is t1 ≥ t0 such that for t ≥ t1, Y ≤ 2ε

h so
I → 0, Y → 0 as t→∞.

11 Numerical Work

We explored our theoretical result with numerical simulations. We took most
of our base parameter values from the study of an eco-epidemiological model of
pelicans at risk in the Salton Sea by Chattopadhyay et al. [12], r = 3.0 per day,
k = 45.0, λ = 0.006 per day, γ = 0.24 per day, c = 0.05 per day. Additionally
we take δ = 0.09 per day and p = 0.

For our first simulation we took parameters as above except m = 1.0 and h
= 0.2. With this set of parameter values the equilibria are

Ē0 = (0.0,0.0,0.0), Ē1 = (45.0,0.0,0.0), Ē2 = (45.0,0.0,225.0)
and Ē3 = (40.0,4.587,0.0).

Note that p1 = 0, c1 + γ1m > km and m > h. So in (4.6) b1 > 0 and b2 > 0,
so there is no co-existence equilibrium. As the conditions (5.1) and (5.2) are
satisfied Ē2 is LAS and the other equilibria are unstable. We performed a variety
of simulations and each time whatever the starting value the system tended to
Ē2 as time became large. Figure 1 shows a typical simulation with starting
values (S, I, Y ) = (60,40,300).

For the second simulation we took the same parameters except k = 75, h =
0.04 and m = 5.0. With these parameter values we find that Ē0 = (0.0,0.0,0.0),
Ē1 = (75.0,0.0,0.0), Ē2 = (75.0,0.0,1,875.0) and Ē3 = (40.0,30.435,0.0) are pos-
sible equilibria. For these parameters
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Figure 1: Simulation with r = 3 per day, k =45, λ = 0.006 per day, γ = 0.24 per day,
c = 0.05 per day, δ = 0.09 per day, h = 0.2, p = 0 and m = 1.0. Starting values S =
60, I = 40, Y = 300. System tends to Ē2.
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Figure 2: Simulation with parameter values as in Figure 1 except that k = 75, h =
0.04. Starting values S = 50, I = 15, Y = 1,400. System tends to unique co-existence
equilibrium Ē4. Susceptible and infected prey.

γ1 +
c1
m

+
kp1

r1(m+ h)
< k

so the above four equilibria (including Ē2) are all unstable. p1 = 0 and c1 +
γ1m < km so there is a unique co-existence equilibrium. We calculate the
unique root of equation (4.1) to be (approximately) x∗ = 0.0164 in this case and
the corresponding co-existence equilibrium to be (S̄, Ī, Ȳ ) = (41.7,29.0,1,766.0)
(working only to three significant figures). We performed simulations with a
range of starting values and found that whatever the initial value the system
seemed to tend to the unique co-existence equilibrium. Figures 2 and 3 show
a typical simulation with starting values (S, I, Y ) = (50,15,1,400). We have
presented the simulation on two graphs, the first representing the tilipia and
the second the pelicans.

To show that there could be two co-existence equilibria we took the parame-
ter values to be the same as in Figure 1 except that c = 0.150006 per day, h = 50
and m = 5.0. In this situation p =0, γ1 < k, c1+γ1m > km and b1 < 0. Also the
quadratic `(x) given by (4.6) has two real roots, x∗1 = 0.08573 and x∗2 = 0.01200
(to four significant figures) in [0, h]. There are two corresponding co-existence
equilibria Ē4 = (44.916,0.07715,0.8999) and Ē5 = (44.988,0.01080,0.9000).

To examine the existence of limit cycles arising by Hopf bifurcation we took
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Figure 3: Simulation with parameter values as in Figure 1 except that k = 75, h =
0.04. Starting values S = 50, I = 15, Y = 1,400. System tends to unique co-existence
equilibrium Ē4. Predators.
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Figure 4: Simulation with parameter values and initial values as detailed in the text (δ
= 0.09/day) showing the existence of stable limit cycles about the unique co-existence
equilibrium Ē4. Susceptible and infected prey.

r = 3.0/day, k = 2,000,000, λ = 0.006/day, γ = 0.24/day, p = 0, c = 0.05/day,
h = 0.04 and m = 5.0. Again we have p1 = 0 and c1 + γ1m < km so there is a
unique co-existence equilibrium (which is independent of δ).

With these parameters we found ξ1 = -0.00171432, ξ2 = 0.00948071, ξ3 =
20,826.79 and ξ4 = 20,826.34. Examining the Routh-Hurwitz conditions we find
that we expect the co-existence equilibrium to be unstable for δ ∈ [0, δ0) and
stable for δ > δ0 where δ0 = 0.24911435 to eight significant figures. Numerical
simulations confirmed these results and showed that in the region [0, δ0) stable
limit cycles existed.

Figures 4 and 5 show the stable limit cycles for δ = 0.09/day in the suscep-
tible and infected prey (Figure 4) and the predator (Figure 5) and Figures 6
and 7 with δ = 100/day show that the numbers of susceptible and infected prey
(Figure 6) and the number of predators (Figure 7) tend to their steady-state
equilibrium values Ē4 = (41.654, 499.8646, 13, 537.98). In all of these figures
the initial values were S(0) = 17.28, I(0) = 463.13 and Y (0) = 13,433.79. For
the parameter values for which we were able to show the existence of Hopf bi-
furcation the approach of the solution to the equilibrium value was very slow
compared with the relatively fast transient oscillations. Hence it is not possible
to show both on the same timescale and Figures 6 and 7 show the envelope of
the solutions over a very long time which clearly shows that with this value of
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Figure 5: Simulation with parameter values and initial values as detailed in the text (δ
= 0.09/day) showing the existence of stable limit cycles about the unique co-existence
equilibrium Ē4. Predators.
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Figure 6: Simulation with parameter values and initial values as detailed in the text
(δ = 100.0/day) showing the system approaches the unique co-existence equilibrium
Ē4. Susceptible and infected prey.
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31



c (/day)
0.14998 0.14999 0.15   0.15001 0.15002 0.15003

I*

0

0.02

0.04

0.06

0.08

0.1

0.12
Bifurcation Diagram of I* against c

Figure 8: Bifurcation diagram of I∗ against c. Other parameters are as detailed in
the text. A solid line indicates stability, a dashed line instability.

δ the solutions approach the unique co-existence equilibrium value.
To investigate the bifurcation structure and stability when multiple endemic

equilibria exist we took c as a bifurcation parameter. We really need a four
dimensional bifurcation diagram but to understand the situation in a simple
way we plot only the bifurcation diagram of I∗ against c. Hence the equilibria
Ē0, Ē1 and Ē2 are all represented by I∗ = 0 on this bifurcation diagram. We
took as parameters r = 3.0/day, k = 45, λ = 0.006/day, γ = 0.24/day, p =0,
δ =0.09/day, h = 50.0 and m =5.0. With these parameters the unstable equi-
librium Ē3 is represented by a constant line at I∗ =4.5872. The susceptible
prey and predator equilibrium Ē2 is stable for c < 0.15/day and unstable if c >
0.15/day. For c < 0.15/day there is a unique co-existence equilibrium which is
stable. At c = 0.15/day an additional stable co-existence equilibrium bifurcates
in a forward direction from Ē2.

For 0.15/day < c < c0 where c0 is approximately 0.1500139262/day to eleven
significant figures there are two co-existence equilibria but at c = c0 they co-
alesce and disappear and for c > c0 there do not appear to be any co-existence
equilibria. Figure 8 shows the bifurcation diagram in the region 0.14998/day
< c < 0.15003/day.
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12 Summary and Discussion

In this paper we have proposed and analysed a three-species eco-epidemiological
model for the pelican-tilapia system in the Salton Sea. We modified the ratio-
dependent model of Greenhalgh and Haque [11] and considered that the suscep-
tible and infected populations of tilapia are exposed to the predator to varying
degrees for a more biologically realistic model. We showed that the system is
bounded and found six equilibria. The first Ē0 was where all populations are
extinct which is always unstable. The second Ē1 was where there is only suscep-
tible prey which is also unstable. The third Ē2 was where there is no infected
prey which exists if r1 >

p1
m+h . Conditions (5.1) to (5.4) for stability and insta-

bility of this equilibrium were derived. The fourth equilibrium Ē3 was where
there are no predators. This is possible if k > γ1 and is unstable. The fifth
and sixth equilibria Ē4 and Ē5 were co-existence equilibria where both suscep-
tible and infected prey co-existed with predators. We showed that for certain
parameter values there could be either zero, one or two co-existence equilibria.
Numerical simulations were used to confirm the analytical results. In addition
we carried out theoretical analysis of Hopf bifurcation around the co-existence
equilibria.

Next we moved on to some important special cases of the model where either
the susceptible or infected prey or the predator was not present. If infection
was not present in the prey then there were found to be three equilibria. The
first, Ẽ0, is trivial with neither susceptible prey or predators present and this
is found to be unstable. There was also an equilibrium Ẽ1 with the predator
absent, which was also found to be unstable. There was a unique equilibrium
Ẽ2 with both predator and susceptible prey present, and conditions for stability
of this equilibrium were found.

If the predators are not present then there are three equilibria present, Ê0,
with neither infected nor susceptible prey present, which is always unstable,
Ê1 with only susceptible prey present, which is LAS if k < γ1 and unstable if
k > γ1. If k > γ1 there is an additional equilibrium Ê3 with both susceptible and
infected prey present which is always LAS. For the model with susceptible prey
not present we showed that both the infected prey and the predators became
extinct.

The results are more interesting than those of the original model by Green-
halgh and Haque [11] because in our current model the predator can consume
susceptible prey as well as infected prey and both infected and susceptible prey
can contribute to the carrying capacity. Thus our model is more general and
realistic than the original model studied in [11]. As the model is more complex
than the original model the potential behaviour is correspondingly more rich,
diverse and interesting. For example an extra potential equilibrium Ē3 where
there are no predators just susceptible and infected prey is possible in our model
but not possible in the model studied in [11]. Additionally whilst the model of
[11] always had a unique co-existence equilibrium in the current model there
can be two co-existence equilibria simultaneously.

We have already discussed several other models of predator-prey systems
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with disease in the prey and pointed out the differences between them and our
model. In particular none of these models uses a Leslie-Gower type equation
for the predator growth.

Chattopadhyay and Arino [15] show that in their model the prey population
ultimately tends to its carrying capacity and there are four equilibria: one where
both the prey and the predator population have died out (like Ē0), one where
the prey population is at its carrying capacity and both the disease and the
predators have died out (like Ē1), one with both susceptible and infected prey
and no predators (like Ē3) and a unique co-existence equilibrium (like Ē4 and
Ē5). They discuss stability of the equilibria and show that limit cycles can
arise from the stable co-existence equilibrium by Hopf bifurcation and discuss
conditions for subcriticality and supercriticality.

The models discussed by Xaio and Chen [20], Haque and Chattopadhyay [16],
Jin and Haque [17] and Pal and Samanta [21, 22] have only the four possible
equilibria discussed above. Wang and Feng [23] discuss only the equilibrium
which corresponds to Ē1 and the unique co-existence equilibrium: they do not
establish whether other equilibria exist. All of these papers discuss conditions
of stability of the equilibria and show that limit cycles can arise from the unique
co-existence equilibrium by Hopf bifurcation.

The models of Arino et al. [18] and Kundu and Chattopadhyay [19] have
all of the above equilibria and additionally an equilibrium with no infected prey
only susceptible prey and predators. So also has the model of Rahman and
Chakravarty [24]. Arino et al. give only a set of sufficient conditions for the
co-existence equilibrium to exist and be unique, they do not discuss parame-
ter values which do not satisfy this sufficient set of conditions. In the model
of Kundu and Chattopadhyay [19] the general existence and uniqueness of the
co-existence equilibrium is not discussed. Moreover Rahman and Chakravarty
give two separate conditions for the uniqueness of each of (i) the equilibrium
with only susceptible prey and predators and (ii) the co-existence equilibrium.
They do not rule out multiple equilibria in either case if these conditions are not
satisfied but on the other hand they do not show explicitly that multiple equi-
libria of either of these types is possible. They also discuss stability of possible
equilibria and whether limit cycles can arise from the co-existence equilibrium
by Hopf bifurcation.

Thus our model differs from most of the other models surveyed above in that
the only one with a Leslie-Gower predator growth equation is Greenhalgh and
Haque [11]. Our results differ from the results of most of these models in that
in the majority of them the equilibrium corresponding to Ē2 does not exist and
the co-existence equilibrium (Ē4 or Ē5) is unique. The model of Rahman and
Chakravarty [24] does not either show uniqueness of the co-existence equilibrium
or demonstrate non-uniqueness. Thus our model is the first of these to explicitly
demonstrate non-uniqueness of the co-existence equilibrium.
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