
This version is available at https://strathprints.strath.ac.uk/56245/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Wave interference effects on two advancing ships

Zhi-Ming Yuan

Dep. of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Henry Dyer Building, G4 0LZ, Glasgow, UK
Zhiming.yuan@strath.ac.uk

Highlights

- Development of a method to predict the critical line between the quiescent and wake region.
- Validation of the theoretical estimation based on large amount of numerical calculations.
- Calculation of how much in percentage the wave interference effects are predicted.

Introduction

For a single marine vessel advancing in calm-water, the so-called Kelvin wake can be observed. It is set up by a ship in steady motion and to be confined within a wedge of semi-angle \(\sin^{-1}(1/3) \) in deep water, which indicates that the free surface can be divided into two regions by a critical line: wake region confined within the Kelvin angle and quiescent region outside the Kelvin angle. For the ships travelling in waves, except the Kelvin wave system, there exist two \((\eta > 0.25, \eta = \omega_0 u_0 / g, \omega_0\) is the encounter frequency, \(u_0\) is the forward speed, and \(g\) is the gravity acceleration) or three \((\eta < 0.25)\) unsteady wave systems due to the oscillation of the ship (Becker, 1958; Wehausen, 1960).

![Figure 1](image1.png)

Figure 1 Radiation wave pattern (real part) induced by unit heave motion of a Wigley III hull at \(F_n = 0.3, \eta = 1.32 \).

![Figure 2](image2.png)

Figure 2 Sketch of ship-to-ship with forward speed problem.

The main objective of the present study is to investigate theoretically and numerically how much in percentage the wave interference is expected. In practice, the ship-to-ship with forward speed problem can well demonstrate the wave interference effects. As shown in Figure 2 when Ship_a is advancing in waves, a critical line can be determined by the asymptotic expressions theoretically. It can be expected if Ship_b is entirely located in the quiescent region of Ship_a, no hydrodynamic interaction is expected. However, the theoretical asymptotic expressions of the far-field wave pattern is based on a single translation and oscillating source point. Due to the 3D effect and local non-radiation waves, the critical line could be different from that obtained theoretically. In order to obtain this real critical line, a massive numerical calculations are required to analyze several combinations of parameters, including oscillation frequency, forward speed and transverse distance between two ships.

Far-field wave patterns and semi-wedge angle

Before numerical calculations, a theoretical estimation should be established based on the asymptotic wave contour. In the present paper, we will use the Havelock form of Green function to investigate the far-field wave patterns generated by a translating and oscillating source in infinite water depth and then establish a rapid estimation of the critical line between the quiescent and wake region. The parametric equations with constant phase can be expressed as...
\[k_{x,y} = e^{\theta} \frac{2(\kappa_1 - \tau)^3 - \kappa_2}{(\kappa_1 - \tau)^3(\kappa_1 + \tau)} \]

\[k_{y} = \frac{1}{2\cos^2 \theta} \left[1 - 2\tau \cos \theta + (1 - 4\tau \cos \theta) \right] \]

where \(k_x, k_y \) denote the position vector of the field point on the free surface, \(\psi_0 \) is the phase, \(\tau = \omega_0 u / \omega, \kappa_1 = -k_2 \cos \theta \) and \(k_2 \) can be written as

The quiescent region in Figure 1 and Figure 2 then can be determined by the semi-angle \(\theta \), which may be referred as semi-wedge angle hereafter. At \(\tau < 0.25 \), this semi-angle \(\theta \) does not exist, since the ring waves could cover the entire computational domain. Therefore, we are only concerned with the case of \(\tau > 0.25 \) in the present study. The semi-wedge angles of ring waves and inner V waves can be written as (Yuan et al., 2015)

\[\theta_i = \tan^{-1} \left[\frac{-\sqrt{(v_5 - \tau)^2 - v_5^2}}{2v_5 - \tau - v_5} \right] \]

\[\theta_f = \tan^{-1} \left[\frac{-\sqrt{(v_f - \tau)^2 - v_f^2}}{2v_f - \tau - v_f} \right] \]

The values of \(v_5, v_6 \) can be found in Noblesse and Hendrix (1992) as

\[v_{5,6} = \frac{-\sqrt{2(c + \sqrt{(1 - 2c)^2 + 48\tau^2}) / 2} \pm (\tau + \sqrt{1 + c / 2})}{2} \]

where

\[c = (16\tau^2 - 1)^{1/3} \left[(1 + 4\tau)^{1/3} + (1 - 4\tau)^{1/3} \right] / 2 \]

It should also be noted that as \(\kappa_1 \rightarrow -\tau \), the corresponding semi-wedge angle for the inner fan wave could be expressed as

\[\theta_i = \tan^{-1} \left[(1 - 1)^{1-1} \frac{1}{\sqrt{16\tau^2 - 1}} \right] \]

The semi-wedge angles defined by Eq. (3) and Eq. (6) are depicted in Figure 3. The semi-wedge angle of the outer V waves is also presented. When it refers to ship-to-ship problem, as shown in Figure 2, two values of \(\tau \) are of particular interest: \(\tau = 0.272 \) (the analytical expression is \(\tau = 2 \), which can be found in Chen (1998)) and \(\tau = 1.62 \). At \(\tau < 0.272 \), the semi-wedge angle \(\theta_i \) is not defined in Eq. (4). From Eq. (7), it can be seen that the dimensionless optimum spacing is only determined by \(\delta \) and \(\tau \).

As long as the semi-wedge angle is determined, From Figure 2, we can obtain the minimum spacing between two ships, at which no wave interference is expected. Let’s denote the length of the larger and smaller ships as \(L_a \) and \(L_b \) respectively, the minimum spacing between two ships can be written as

\[\frac{d}{L_a} = \frac{1}{2} \left[(1 + \delta) \sqrt{(v_5 - \tau)^2 - v_5^2} \right] / 2(\tau - v_5)^3 + v_5, \quad (0.272 < \tau < 1.62) \]

\[\frac{d}{L_a} = \frac{1}{2} (1 + \delta) \tan(19.47^\circ), \quad (\tau \geq 1.62) \]

where \(\delta = L_b / L_a \) is the ratio of the length of Ship_b to Ship_a, and \(v_5 \) is defined in Eq. (4). From Eq. (7), it can be seen that the dimensionless optimum spacing is only determined by \(\delta \) and \(\tau \).

The dimensionless minimum spacing between two advancing ships at \(\delta = 0.2, 0.6, 1, 2, \) and 4.

Wave interference diagram

In order to validate the above estimation of the semi-wedge angle, we used MHydro, which is based on 3-D Rankine source panel method, to calculate the hydrodynamic properties of two ship advancing in waves. A superposition method is adopted in the
boundary value problem. The total radiation velocity potential is composed of two components: ϕ^a, which is due to the motion of Ship_a while Ship_b is fixed; ϕ^b, which is due to the motion of Ship_b while Ship_a is fixed.

The hydrodynamic forces produced by the oscillatory motions of the vessel in the six degrees of freedom can be derived from the radiation potentials as given in the following

$$ F_{Ra} = \sum_{j=1}^{6} \left[a^2 \Delta R_{ij}^a + i\omega \Delta R_{ij}^b \right] \eta_j^a + \sum_{j=1}^{6} \left[a^2 \Delta R_{ij}^a + i\omega \Delta R_{ij}^b \right] \eta_j^b , \
i = 1, 2, \ldots, 6 $$

(8)

$$ F_{Rb} = \sum_{j=1}^{6} \left[a^2 \Delta R_{ij}^{ba} + i\omega \Delta R_{ij}^{bb} \right] \eta_j^a + \sum_{j=1}^{6} \left[a^2 \Delta R_{ij}^{ba} + i\omega \Delta R_{ij}^{bb} \right] \eta_j^b , \
i = 1, 2, \ldots, 6 $$

(9)

where A and B are the added mass and damping respectively. The superscript ‘aa’ denotes self-induced radiation force (radiation force on Ship_a due to the motion of Ship_a itself); ‘ab’ denotes external-induced radiation force (radiation force on Ship_a due to the motion of Ship_b). $\eta_j (j=1,2,\ldots,6)$ is the corresponding motion amplitude. The wave elevation on the free surface then can be obtained from the dynamic free surface boundary condition in the form

$$ \zeta_j = \frac{i\omega}{g} (\eta_j^a \phi_j^a + \eta_j^b \phi_j^b) + \frac{1}{g} \nabla (\phi_j - u_0 x) \cdot \nabla (\eta_j^a \phi_j^a + \eta_j^b \phi_j^b) $$

$$ = \zeta_{ij}^a + i\omega \zeta_{ij}^b , \quad j = 0, 1, \ldots, 7 $$

(10)

where ζ_{ij}^a is the real part of j-th model, and ζ_{ij}^b is the imaginary part.

The factors which determine the hydrodynamic interaction include several combinations of parameters: frequency, forward speed and transverse distance between two ships. Let’s firstly examine the wave elevation produced by two travelling ships at $d/L = 1$. From Figure 4, we can find the assumption critical $r = 0.521$ estimated from the far-field asymptotic wave pattern. Theoretically, no hydrodynamic interactions are expected at $r > 0.521$. However, the numerical wave patterns in Figure 5 show the inconsistency with the asymptotic wave contour. In order to observe this inconsistency, we calculated the wave profiles in the portside and starboard of the lower ship in Figure 5. This is presented in Figure 6. According to the asymptotic expression, the wave interference effect diminishes at $r = 0.521$ and the wave profiles should be symmetrical. However, the calculated wave profiles violates the theoretical estimation. The identical wave profiles can only be found in the fore part of the ship, while the discrepancies become evident in the stern area.

The results in Figure 5 and Figure 6 indicate that the stationary phase method is not able to estimate accurately how the radiated waves propagate to the far-field and how much interactions are expected between two ships travelling in waves. Therefore, an accurate estimation of the critical line is desired, which requires numerous simulations varying Froude number, frequency and transverse distance. A similar approach which was adopted by Kashiwagi and Ohkusu (1991) to investigate the side-wall effects is introduced here to investigate ship-to-ship hydrodynamic interaction effects. In Kashiwagi and Ohkusu’s study (1991), the side-wall effects are estimated by the difference between the hydrodynamic coefficients with side-wall and in the open sea. In the present study, we used another parameter to estimate the hydrodynamic interaction effects. That is the external-induced hydrodynamic coefficient A_{ij}^b or B_{ij}^b. These components can directly reflect how much the hydrodynamic interactions are expected, since for the case of single ship, these components do not exist.
function of Froude number, frequency and transverse distance. Results are shown in Figure 8 where x-axis is the \(\sqrt{g/L/\omega_e} \) and y-axis is \(F_n \). The ratio of y to x is parameter \(\tau \). In the present numerical calculation, as the two ships are in the same length (\(\delta = 1 \)), for a given value of \(d/L \), the critical parameter \(\tau \) is unique. Therefore, the dashed lines in Figure 8 are linear and they represent the critical line estimated from the asymptotic far-field wave theory. The solid curves are the calculated critical lines, which approach the dotted lines at high frequency, where the wavelength is relatively small compared to the transverse distance between two ships and the theoretical estimation is valid. As the encounter frequency decreases, the discrepancies become evident and the range of hydrodynamic interaction effects expands. The difference between the dashed lines and solid curves is due to the effect of the near-field non-radiation local waves in the vicinity of the ships.

The permissible error can be various, for example, 1%. From Figure 7 it can be found the critical parameter \(\tau \) shifts to a smaller value and the discrepancies between the dashed lines and solid curves become small. However, the selection of the permissible error must be very careful. It should not be very large, for example 5%, otherwise the curves of the hydrodynamic coefficients will be subject to fluctuations before they tend to converge. On the other hand, the results of different components will be inconsistent and individual diagrams are require.

We can determine the critical lines showing the existence of the hydrodynamic interaction effects as a function of Froude number, frequency and transverse distance. Results are shown in Figure 8 where x-axis is the \(\sqrt{g/L/\omega_e} \) and y-axis is \(F_n \). The ratio of y to x is parameter \(\tau \). In the present numerical calculation, as the two ships are in the same length (\(\delta = 1 \)), for a given value of \(d/L \), the critical parameter \(\tau \) is unique. Therefore, the dashed lines in Figure 8 are linear and they represent the critical line estimated from the asymptotic far-field wave theory. The solid curves are the calculated critical lines, which approach the dotted lines at high frequency, where the wavelength is relatively small compared to the transverse distance between two ships and the theoretical estimation is valid. As the encounter frequency decreases, the discrepancies become evident and the range of hydrodynamic interaction effects expands. The difference between the dashed lines and solid curves is due to the effect of the near-field non-radiation local waves in the vicinity of the ships.

The permissible error can be various, for example, 1%. From Figure 7 it can be found the critical parameter \(\tau \) shifts to a smaller value and the discrepancies between the dashed lines and solid curves become small. However, the selection of the permissible error must be very careful. It should not be very large, for example 5%, otherwise the curves of the hydrodynamic coefficients will be subject to fluctuations before they tend to converge. On the other hand, the results of different components will be inconsistent and individual diagrams are require.

We can determine the critical lines showing the existence of the hydrodynamic interaction effects as a function of Froude number, frequency and transverse distance. Results are shown in Figure 8 where x-axis is the \(\sqrt{g/L/\omega_e} \) and y-axis is \(F_n \). The ratio of y to x is parameter \(\tau \). In the present numerical calculation, as the two ships are in the same length (\(\delta = 1 \)), for a given value of \(d/L \), the critical parameter \(\tau \) is unique. Therefore, the dashed lines in Figure 8 are linear and they represent the critical line estimated from the asymptotic far-field wave theory. The solid curves are the calculated critical lines, which approach the dotted lines at high frequency, where the wavelength is relatively small compared to the transverse distance between two ships and the theoretical estimation is valid. As the encounter frequency decreases, the discrepancies become evident and the range of hydrodynamic interaction effects expands. The difference between the dashed lines and solid curves is due to the effect of the near-field non-radiation local waves in the vicinity of the ships.

The permissible error can be various, for example, 1%. From Figure 7 it can be found the critical parameter \(\tau \) shifts to a smaller value and the discrepancies between the dashed lines and solid curves become small. However, the selection of the permissible error must be very careful. It should not be very large, for example 5%, otherwise the curves of the hydrodynamic coefficients will be subject to fluctuations before they tend to converge. On the other hand, the results of different components will be inconsistent and individual diagrams are require.

We can determine the critical lines showing the existence of the hydrodynamic interaction effects as a function of Froude number, frequency and transverse distance. Results are shown in Figure 8 where x-axis is the \(\sqrt{g/L/\omega_e} \) and y-axis is \(F_n \). The ratio of y to x is parameter \(\tau \). In the present numerical calculation, as the two ships are in the same length (\(\delta = 1 \)), for a given value of \(d/L \), the critical parameter \(\tau \) is unique. Therefore, the dashed lines in Figure 8 are linear and they represent the critical line estimated from the asymptotic far-field wave theory. The solid curves are the calculated critical lines, which approach the dotted lines at high frequency, where the wavelength is relatively small compared to the transverse distance between two ships and the theoretical estimation is valid. As the encounter frequency decreases, the discrepancies become evident and the range of hydrodynamic interaction effects expands. The difference between the dashed lines and solid curves is due to the effect of the near-field non-radiation local waves in the vicinity of the ships.

The permissible error can be various, for example, 1%. From Figure 7 it can be found the critical parameter \(\tau \) shifts to a smaller value and the discrepancies between the dashed lines and solid curves become small. However, the selection of the permissible error must be very careful. It should not be very large, for example 5%, otherwise the curves of the hydrodynamic coefficients will be subject to fluctuations before they tend to converge. On the other hand, the results of different components will be inconsistent and individual diagrams are require.