
This version is available at https://strathprints.strath.ac.uk/56214/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Mast cells contribute to *Porphyromonas gingivalis* induced bone loss

Jennifer Malcolm\(^1\), Owain Millington\(^2\), Emma Millhouse\(^3\), Lauren Campbell\(^1\), Ana Adrados-Planell\(^1\), John Butcher\(^4\), Catherine Lawrence\(^2\), Kirsty Ross\(^2\), Gordon Ramage\(^3\), Iain McInnes\(^1\), and Shauna Culshaw\(^3\)

\(^1\)Institute of Infection, Immunity and Inflammation, \(^3\)Infection and Immunity Research Group, University of Glasgow Dental School, \(^1\&\(^3\) College of Medical, Veterinary and Life Sciences, University of Glasgow. \(^2\)Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow.

Abstract word count: 246

Total word count (Abstract to Acknowledgments): 3493

Total number of tables/figures: 4 figures

Number of references: 40

Keywords:

Periodontitis/inflammation/mucosal immunity/bone loss/cytokines/bacteria
ABSTRACT

Periodontitis is a chronic inflammatory and bone destructive disease. Development of periodontitis is associated with dysbiosis of the microbial community, which may be caused by periodontal bacteria, such as Porphyromonas gingivalis. Mast cells are sentinels at mucosal surfaces and are a potent source of inflammatory mediators, including TNF. The number of mast cells increases in the gingival tissues of patients with periodontal disease, although their role in the disease process remains to be elucidated. This study sought to determine the contribution of mast cells to local bone destruction following oral infection with P. gingivalis. Mast cell deficient mice (Kit\(^-sh/-sh\)) were protected from P. gingivalis induced alveolar bone loss, with a reduction in anti- P. gingivalis serum antibody titres compared with wild-type infected controls. Furthermore, mast cell deficient mice had reduced expression of Tnfa, Il6 and Il1b mRNA in gingival tissues compared with wild-type mice. Mast cell engrafted Kit\(^{W-sh/W-sh}\) mice infected with P. gingivalis demonstrated alveolar bone loss and serum anti- P. gingivalis antibody titres equivalent to wild-type infected mice. The expression of Tnfa mRNA in gingival tissues of Kit\(^{W-sh/W-sh}\) mice was elevated following the engraftment of mast cells, indicating that mast cells contributed to the Tnfa transcript in gingival tissues. In vitro, mast cells degranulated and released significant TNF in response to oral bacteria; and neutralizing TNF in vivo abrogated alveolar bone loss following P. gingivalis infection. These data indicate that mast cells, and TNF, contribute to the immunopathogenesis of periodontitis and may offer therapeutic targets.
INTRODUCTION
Periodontitis is a chronic inflammatory disease that destroys the alveolar bone and connective tissues supporting the teeth. Periodontitis is one of the most prevalent chronic infectious conditions of humans and is the leading cause of tooth loss among adults {Kassebaum, 2014 #1}. The ‘keystone’ pathogen, Porphyromonas gingivalis can trigger the microbial dysbiosis characteristic of periodontitis {Hajishengallis, 2011 #2}, in parallel, the responding cells and cytokine milieu are central to the tissue destruction {Hajishengallis, 2014 #4959; Cekici, 2014 #5147}.

Mast cells are sentinels at mucosal surfaces and as such, have a pivotal role in orchestrating both innate and adaptive immune responses against local microbial challenge {Gordon, 1990 #6}. In vivo studies have demonstrated that mast cells can bind to, phagocytose, and kill enterobacteria {Malaviya, 1994 #7}, and present bacterial antigens to T cells {Malaviya, 1996 #8}. Mast cells contain a vast array of mediators in their granules, including large amounts of TNF. In a model of acute septic peritonitis, TNF blockade suppressed the protective role of mast cells via reduced neutrophil influx {Malaviya, 1996 #10; Echtenacher, 1996 #11}.

Mast cells are integral to anaphylaxis and other allergic disorders but are also implicated in chronic inflammatory diseases, such as rheumatoid arthritis {Lee, 2002 #12}. Within inflamed periodontal tissues, increases in both mast cell numbers and the proportion of degranulated cells in periodontal tissues, associated with severity of periodontitis {Huang, 2014 #14; Lagdive, 2013 #15; Huang, 2013 #16}. Oral mucosal mast cells contain TNF in their granules. In inflammation, Tnfa mRNA up-regulation, in parallel with mast cell degranulation and depletion of intracellular TNF, is consistent with continued TNF synthesis and release by mast cells {Walsh, 1995 #17}. Thus, mast cells may contribute to protection from potentially invasive bacteria, and to the local and systemic pathological inflammation associated with periodontitis.

We hypothesised that mast cells, with their armamentarium of inflammatory mediators, could contribute to the local and systemic pathology associated with periodontitis. We sought to determine the contribution of mast cells and TNF to local bone destruction following oral infection with P. gingivalis.

MATERIALS AND METHODS
Multi-species oral biofilm model
Overnight cultures of Streptococcus mitis NCTC 12261, Streptococcus intermedius NCTC 11324, Streptococcus oralis NCTC 11427, Aggregatibacter actinomycetemcomitans ATCC 43718, Veillonella dispar NCTC 11831, Actinomyces naeslundii ATCC 19039, Fusobacterium nucleatum ATCC 10953, F. nucleatum subspecies vincentii ATCC 49256, P.
gingivalis W83 and *Prevotella intermedia* ATCC 25611 were standardized in artificial saliva and added sequentially to Thermanox™ coverslips as previously described to generate a multi-species oral biofilm (Millhouse, 2014 #19).

Bone marrow derived mast cell culture

Bone marrow was obtained from C57BL/6 mice and bone marrow derived mast cell (BMMCs) generated as previously described (Kuehn, 2010 #20). After 4 weeks BMMCs were assessed by flow cytometry to determine purity and maturity. Cell suspensions were resuspended in Fc block (CD16/32, eBioscience) containing fluorochrome-labeled antibodies against FcεR1 and CD117, or similarly labeled isotype controls. Cells were analysed using a FACscalibur (BD Biosciences), and data analysed using Flowjo (Tree Star Inc., Oregon, USA). Cell viability, assessed by exclusion of 7-aminoactinomycin, was greater than 98%. All of the cultured cells were CD117 positive and > 90% were double positive for CD117 and FcεR1.

For co-culture experiments, mature BMMCs were seeded in 24-well plates at 5x10^5 cells/well Dulbecco’s modified eagle’s medium. BMMCs were cultured adjacent to the biofilm-covered coverslip attached to a cell culture insert hanging basket as previously described for 2 h at 37°C in 5% CO2.

Mast cell degranulation

β-hexosaminidase activity of cell culture supernatants and cell lysates was assessed as a proxy for mast cell degranulation using a previously described method (Kuehn, 2010 #20). The percentage degranulation for each condition was calculated: 100 x (total supernatant content)/(supernatant + lysate).

ELISA

The concentration of TNF and IL-6 in the BMMC supernatants following co-culture, and of mast cell protease 1 in mouse serum were measured by ELISA using paired antibodies (eBioscience) according to the manufacturer’s instructions.

Murine model of periodontal disease

Female BALB/c (Harlan, UK) or female and male C57BL/6 (bred in house at Strathclyde University) or age and sex-matched mast cell deficient C57BL/6 Kit^W-sh/W-sh^ mice (originally sourced from Jackson Laboratories, USA and subsequently bred in-house at University of Strathclyde (Grimbaldeston et al., 2005), were maintained before and during experiments in specific pathogen-free conditions with ad libitum food and water at the Universities of Strathclyde or Glasgow. All work was performed in accordance with UK Home Office regulations and after ethical approval from local research ethics committees and is reported according to ARRIVE guidelines. Mice were orally infected with 10^9 colony forming units (CFU) *P. gingivalis* W83 (ATCC, Middlesex, UK) in 2% carboxymethylcellulose (CMC) on 4 consecutive days as previously described (Baker, 1994 #22). Sham-infected control mice
received CMC alone. At six weeks post-infection (PI), serum, gingival tissues and maxillae were collected under terminal general anaesthesia. In other experiments, mice received 0.1mg/mouse of anti-TNF antibody or isotype control antibody (both BioLegend), administered i.p on days -3, 0, 7 and 14 PI. KitW-sh/W-sh mice received 5 x 10^5 mature BMMCs/mouse, administered by i.v. on days -28 and 0, as outlined in figure legends. The mast cells reconstitution was carried out based on previous studies. Following transfer, it takes 4 weeks to establish mast cells in the tissues, which remain readily detectable 12 weeks after transfer (Grimbaldeston et al).

Assessment of alveolar bone loss
The maxillae were separated from the skull and gingivae removed. Maxillae were defleshed and treated as previously described {Baker, 1994 #22}. Images were captured using an Olympus SZX7 stereo zoom microscope fitted with SC100 digital colour camera. Measurements of the distance between the cemento-enamel junction (CEJ) and the alveolar bone crest (ABC) were made using ImageJ software (National Institute of Health, Bethesda, MD, USA) to assess alveolar bone loss as previously described {Baker, 1994 #22}.

Anti- *P. gingivalis* ELISAs
Antibody titres to *P. gingivalis* in the serum samples were measured as previously described (Malcolm et al., 2015). Antibody titres were calculated as described previously {Gmur, 1986 #24}.

TaqMan® real-time PCR
RNA was extracted from periodontal tissues using the RNeasy® fibrous tissue kit (Qiagen), reverse transcribed with High Capacity RNA-to-cDNA (Applied Biosystems®, Life Technologies), then mRNA expression analysed by TaqMan® real-time PCR, using murine primers and fluorescent probe assays obtained from Applied Biosystems® (*Il6*: Mm00446190_m1, *Il1b*: Mm00434228_m1, *Tnfa*: Mm00443258_m1, *Il17*: Mm00439618_m1, *Mpo*: Mm01298424_m1, *Tpsab1*: Mm00491950_m1, *Mcpt4*: Mm00487636_g1). Analysis was performed in duplicate, gene expression normalised to 18S and relative expression of the gene of interest calculated by 2^−ΔΔCT. The data are presented as the fold change in expression of the gene of interest in the test population e.g. *P. gingivalis* infected test group normalized to the control (sham-infected) population.

Statistical analyzes
Data were analyzed by Student’s *t* test or ANOVA with Tukey comparison, as indicated in the figure legends, using GraphPad Prism 6 (La Jolla, CA, USA).
RESULTS

Mast cell deficient mice are protected from *P. gingivalis* mediated alveolar bone loss

To elucidate the role of mast cells in *P. gingivalis*-induced inflammatory bone loss, wild-type (WT) or mast cell deficient mice (Kit^{W-sh/W-sh}) were orally infected with *P. gingivalis* (experiment outline Figure 1A). In WT animals, alveolar bone loss was significantly greater following *P. gingivalis* infection compared with sham-infected controls (p<0.001). In contrast, *P. gingivalis* infection failed to elicit alveolar bone loss in Kit^{W-sh/W-sh} mice (Figure 1B [p<0.05 compared with *P. gingivalis*-infected WT]). Infection of WT mice with *P. gingivalis* induced a robust serum IgG anti-*P. gingivalis* antibody response (Figure 1Ci), which appeared dominated by IgG1. Anti-*P. gingivalis* IgG1 titres were significantly reduced in infected Kit^{W-sh/W-sh} compared with infected WT mice (p<0.05, Figure 1Cii). There was no statistically significant difference in the total IgG in serum of infected Kit^{W-sh/W-sh} compared with infected WT mice.

In the absence of infection, there was greater expression of *Tnfa* and *Il1b* in the gingival tissues of WT mice compared with Kit^{W-sh/W-sh}. *P. gingivalis* infection of WT mice resulted in increased expression of *Il6, Tnfa* and *Il1b* mRNA compared with WT sham-infected controls (Figure 1D); the difference was statistically significant for *Il6* only (Figure 1Dii). After infection with *P. gingivalis*, expression of *Il6* and *Tnfa* in the gingival tissues of Kit^{W-sh/W-sh} mice remained significantly reduced compared with *P. gingivalis*-infected WT mice (p<0.05). Overall, there appeared to be a reduction in the expression of *Tnfa, Il1b* and *Il6* in the gingival tissues from Kit^{W-sh/W-sh} mice compared with normal WT mice, suggesting that mast cells may be a significant source of the cytokine transcripts in gingival tissues in both health and disease. Expression of *Il17* was evaluated in the gingival tissues and no significant differences were found in any of the groups (data not shown).

BMMC engraftment restores alveolar bone loss in *P. gingivalis*-infected Kit-W mice

The Kit^{W-sh/W-sh} mice have compromised kit signalling. Kit (stem cell ligand) is essential for mast cell development but is also expressed on all hematopoietic stem cells. As a result, kit mutant mice have a number of immune alterations {Grimbaldeston, 2005 #21}. Although these are relatively mild in the Kit^{W-sh/W-sh} mice compared with other kit mutants, we sought to investigate whether the reduced alveolar bone loss observed in the Kit^{W-sh/W-sh} was mediated by mast cells and no other phenotypic abnormality of Kit^{W-sh/W-sh} mice. Mast cells were engrafted to reconstitute Kit^{W-sh/W-sh} mice with BMMCs prior to infection with *P. gingivalis* as outlined (Figure 2A). Engrafted BMMCs were greater than 90% double positive for CD117 (c-kit) and FcεR1 (Figure 2B). As indicators of mast cell engraftment, we assessed serum mast cell protease 1 (MCPT1), which was readily detectable in WT mice and undetectable in the serum of Kit^{W-sh/W-sh} mice but could be detected, albeit at a low level, in the serum of Kit^{W-sh/W-sh} mice engrafted with BMMCs, indicating some mast cell engraftment in Kit^{W-sh/W-sh} mice.
at 6 weeks post-BMMC transfer (Figure 2C). Next, we sought to determine whether mast cells were engrafted within the gingival tissues of Kit\(^{W-sh/W-sh}\) mice following BMMC transfer. Mast cell tryptase 1 (TPSAB1) and mast cell protease 4 (MCPT4) were expressed in WT mice but were either undetectable (TPSAB1) or at the limit of detection (MCPT4) in Kit\(^{W-sh/W-sh}\) mice (Figure 4Di and ii). In BMMC-engrafted Kit\(^{W-sh/W-sh}\) mice, both TPSAB1 and MCPT4 mRNA transcripts were detected in the gingival tissues indicating that mast cells had engrafted to the gingival tissues in these mice. Kit\(^{W-sh/W-sh}\) mice demonstrate neutrophilia {Grimbaldeston, 2005 #21}, and therefore we quantified the level of myeloperoxidase expression in gingival tissues as a surrogate measure of neutrophil infiltration. MPO mRNA was significantly elevated in the gingival tissues of Kit\(^{W-sh/W-sh}\) infected mice, compared with infected BMMC-engrafted Kit\(^{W-sh/W-sh}\) mice (Figure 2Diii). There was no difference in the level of MPO mRNA in the gingival tissues of BMMC transferred Kit\(^{W-sh/W-sh}\) mice compared with WT mice.

We next sought to investigate the alveolar bone loss in BMMC-engrafted Kit\(^{W-sh/W-sh}\) mice. As before, \(P.\ gingivalis\) infection of WT mice induced alveolar bone loss and this phenotype was attenuated in Kit\(^{W-sh/W-sh}\) infected mice (Figure 2E \([p<0.05]\)). The disease phenotype was recapitulated in BMMC-engrafted, \(P.\ gingivalis\)-infected Kit\(^{W-sh/W-sh}\) mice, with similar alveolar bone loss to that observed in WT-infected mice \((p<0.01 \text { [Figure 2E]}\). Similarly, the predominantly IgG1 serum antibody response to \(P.\ gingivalis\) was restored following BMMC engraftment of Kit\(^{W-sh/W-sh}\) infected mice (Figure 2F).

The expression of \(Tnfa\) mRNA was greater in the gingival tissues of infected Kit\(^{W-sh/W-sh}\) mice following BMMC engraftment compared with infected Kit\(^{W-sh/W-sh}\) that had not received mast cells \((p<0.05 \text { [Figure 2G]}\). These data indicate that mast cells are a significant source of \(Tnfa\) transcript in gingival tissues. We next examined the ability of BMMC to produce and release TNF protein in response to oral bacteria.

Mast cells release TNF and IL-6 in response to oral bacteria

In vitro exposure of BMMC to a periodontitis associated biofilm model induced significant mast cell degranulation \((p<0.05 \text { compared with media control [Figure 3A]}\), and significant TNF and IL-6 release \((p<0.001 \text {, compared with media control [Figure 3B and 3C]}\), demonstrating that mast cells can be stimulated to release TNF in response to oral bacteria.

Given that mast cells appear to be a significant source of the \(Tnfa\) transcript *in vivo*, we hypothesised that TNF release from mast cells may contribute to alveolar bone loss in the murine model of periodontitis. The role of TNF in periodontitis has long been recognised {Kinane, 2011 #54} and TNF blockade described in primates {Graves, 1998 #26}. We next sought to evaluate TNF blockade in this murine model of \(P.\ gingivalis\)-induced alveolar bone loss.

TNF blockade reduces the severity of \(P.\ gingivalis\)-induced alveolar bone loss
Anti-TNF or isotype control antibodies were administered to BALB/c mice orally infected with *P. gingivalis* (Figure 4A). *P. gingivalis*-infected isotype control-treated mice demonstrated significant alveolar bone loss compared with sham-infected controls (p<0.001, [Figure 4B]). Anti-TNF treatment significantly reduced the severity of alveolar bone loss in *P. gingivalis*-infected animals compared with infected isotype-control mice (p<0.05). However, this anti-TNF treatment regime failed to completely attenuate alveolar bone loss, which remained significantly greater than the sham-infected mice (p<0.05). A robust serum IgG anti-*P. gingivalis* antibody response was induced following infection with *P. gingivalis* (Figure 4C), and these were reduced in mice treated with anti-TNF antibody.
DISCUSSION

These data show that mast cell deficiency is associated with protection against the local tissue destruction of periodontitis. Mast cell deficient Kit^{W-sh/W-sh} mice were completely protected from *P. gingivalis*-induced periodontitis and mast cells contributed to the expression of *Tnfa* in gingival tissues.

To our knowledge, this is the first study to use a mast cell deficient mouse to investigate the role of mast cells in periodontitis. Previous studies have demonstrated changes in the mast cell number and degranulation using immunohistochemistry {Huang, 2013 #16; Huang, 2014 #14; Gemmell, 2004 #28}. Moreover, treatment of beagle dogs with lodoxamide ethyl, an inhibitor of mast cell degranulation reduced the level of alveolar bone loss compared with untreated controls over a 1 year period {Jeffcoat, 1985 #29}, suggesting therapeutic targeting of mast cells may be beneficial to prevent periodontal disease. Our data provide evidence that mast cells and their products are directly involved in periodontal destruction, further confirmed by engrafting cultured mast cells into Kit^{W-sh/W-sh} mice and restoring the disease phenotype.

Oral administration of *P. gingivalis* induced a robust serum anti-*P. gingivalis* antibody response in WT mice, dominated by Ig1, characteristic of a primarily Th2-mediated response {Spellberg, 2001 #49}. Th2 immunity is generally associated with mast cell degranulation, and mast cells have been shown to directly support B cell antibody class-switching {recently reviewed by Bulfone-Paus, 2015 #50}. Moreover, Kit^{W-sh/W-sh} show compromised IgG responses following challenge with mucosal adjuvants {Fang, 2010 #52}. Thus, whilst the trend to reduction in total IgG response and the significant reduction in the IgG1 and IgG2C anti-*P. gingivalis* antibody observed in Kit^{W-sh/W-sh} infected mice may be a failure of bacterial colonisation and invasion, data from other studies suggests an important role of mast cells in driving humoral immunity.

Mast cells, although forming a relatively small proportion of the cellular infiltrate in health or disease, are widely distributed throughout tissues and constitutively express a broad spectrum of immune mediators. Based on the reduction in *Tnf*, *Il1* and *Il6* transcripts in healthy gingival tissue in kit-w mice compared with wild type, in these studies, mast cells may be speculated to constitutively generate some cytokines as previously documented {Okayama, 1995 #5155}, or respond to the commensal flora with a baseline elevation of cytokine profile. Rheumatoid arthritis shares similar immunopathogenesis with periodontitis {Culshaw, 2011 #53}. In vivo studies of mast cells in arthritis have revealed intriguing inconsistencies dependent on the nature of the mast cell deficiency and subtleties of the model of disease. Mast cells are redundant for the development of serum-induced arthritis in Kit^{W-sh/W-sh} mice {Zhou, 2007 #31}. This was confirmed using Cpa3^{Cre} mice which are mast cell deficient and have a reduction in the numbers of basophils but are otherwise
immunologically normal {Scholten, 2008 #33}. In other studies, mast cells were redundant in
the collagen-induced arthritis model in Kit^{W-sh/W-sh} {Pitman, 2011 #34} but Mcpt5Cre-iDTR mice
(another kit-independent model) were in part protected from collagen-induced arthritis
{Schubert, 2014 #35}. These data highlight the complexities of different models of disease
and different models of mast cell deficiency. It would, therefore, be useful to explore the
murine model of periodontitis in a mast cell deficient model that does not rely on impaired kit
signalling.

Although multiple cells implicated in periodontitis can release TNF in response to bacterial
stimulation, mast cells contain particularly abundant preformed TNF {Gordon, 1990 #6}. Our
observation of reduced \textit{Tnfa} in mast cell deficient tissues support the hypothesis that mast
cells in periodontal tissues likely contribute to elevated TNF. In periodontitis, TNF can play a
tissue destructive rather than anti-bacterial protective role: in a rat ligature model,
administration of human recombinant TNF exacerbated the inflammatory cell infiltrate and
alveolar bone resorption {Gaspersic, 2003 #36}. Local administration of neutralising anti-TNF
antibodies reduced alveolar bone loss in a primate model of periodontitis {Assuma, 1998
#37;Graves, 1998 #26}. Similarly, p55TNFR-1-KO mice demonstrated less severe bone loss
and reduced inflammation in periodontitis induced by \textit{Aggregatibacter actinomycetemcomitans}, although the bone loss was not fully ameliorated {Garlet, 2007
#38}. In the present study, we observed a significant reduction in the serum antibody
response to \textit{P. gingivalis} following anti-TNF treatment, possibly due to loss of TNF induction
of cell migration, as was reported in p55TNFR-1-KO mice. Alveolar bone loss was completely
abrogated in \textit{P. gingivalis}-infected mast cell deficient Kit^{W-sh/W-sh} mice, but neutralising TNF,
as in other studies {Garlet, 2007 #38}, only partially prevented the bone loss. Accurately
defining the contribution of mast cell derived TNF could be achieved by reconstitution of Kit^{W-
sh/W-sh} mice with TNF knock out mast cells. TNF has often been considered a master
regulator within the cytokine network. TNF also synergises with other cytokines, such as IL-
17, amplifying its impact on inflammation {Griffin, 2012 #5152}. In addition to TNF, mast cells
contain an array of pro-inflammatory cytokines in their granules, including IL-1\beta and IL-6
{Steinsvoll, 2004 #41}, both of which are elevated in periodontitis {Reis, 2014 #43} {Graves,
1998 #26;Graves, 2003 #44}. In the present study, there was marked release of both TNF
and IL-6 from mast cells in vitro following stimulation with periodontal bacteria. Moreover,
there was reduced expression of IL-1\beta and IL-6 in the gingival tissues of Kit^{W-sh/W-sh} mice.

Mast cell deficient mice reconstituted with mast cells demonstrated significantly elevated
\textit{Tnfa} in their gingival tissues. Surprisingly, the \textit{IL1b} and \textit{Il6} expression were not significantly
influenced by mast cells reconstitution. Whether the mast cell derived IL-1\beta and IL-6
functions downstream of the mast cell derived TNF remains to be determined. In rheumatoid
arthritis, mast cells expression of IL-17 has been documented in rheumatoid arthritis
{Hueber, 2010 #3917}. IL-17 drives neutrophil recruitment to the inflamed periodontium {Yu, 2007 #5051}{Eskan, 2012 #4709}. Surprisingly, there were no consistent changes in \textit{Il17} expression in the gingival tissues of irrespective of presence of mast cells or infection. Recently, mast cell derived CXCL1 has been implicated in neutrophil recruitment to sites of inflammation {Wezel, 2015 #5151}. In addition to cytokines and chemokines, mast cells exert their effects via serine proteases released from mast cell granules. In humans, mast cell tryptase expression correlated with the degree of inflammatory infiltrate and the severity of periodontal disease {Huang, 2013 #16}. These serine proteases are important for the recruitment of neutrophils to sites of infection {Huang, 1998 #45;Tani, 2000 #46}. This is particularly pertinent to periodontal diseases in which both hypo- and hyper-recruitment of neutrophils is associated with bone loss {Hajishengallis, 2014 #47}. Delineating the hierarchy of the neutrophil and mast cell responses is complex, particularly as mice with mutations in CD117, such as the Kit-W, show a tendency to neutrophilia {{Grimaldaston, 2005 #4077}}, and would therefore be more accurately investigated in models of inducible mast cell deficiency such as the Mcpt5^{Cre^{-}}-iDTR mice {Schubert, 2014 #35}.

Mast cell proteases are important during tissue repair but can also contribute directly to the destruction of extracellular matrix through degradation of fibrinogen and collagen and indirectly through the activation of host matrix metalloproteases (MMPs), leading to attachment loss, propagation of inflammation and exacerbation of bone loss {Steinsvoll, 2004 #41}. Mast cells present in gingival tissues are also reported to directly express MMPs {Naesse, 2003 #48}. Thus, mast cells have the ability to regulate cellular infiltration and tissue destruction in periodontal disease by numerous mechanisms.

Our results provide evidence to indicate that mast cells are a key cell type in the immunopathogenesis of PD, and these cells contribute to the expression of TNF, a key mediator in PD. These new data provide further basis for exploring strategies aimed at preventing and treating PD. Targeting mast cells is of particular interest given the breadth of existing therapies, targeting both mast cells and TNF, which are already in clinical use for treating a range of allergic and inflammatory conditions respectively.

ACKNOWLEDGEMENTS

The authors acknowledge the assistance of the University of Glasgow Flow Cytometry Core Facility. JM and this work funded by Chief Scientist Office SDC13, in addition by ‘Gums&Joints’ EUFP7 Health agreement number 261460, and currently by Arthritis Research UK 20823. AA was supported by the Marie Curie ITN ‘RAPID’ 290246. LC was supported by a Sir Jules Thorn Studentship. EM was supported by BBSRC CASE...
Studentship. KR was supported by Arthritis Research UK grant number 19487. SC was supported by the Scottish Funding Council Scottish Senior Clinical Fellowship Scheme. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.
REFERENCES

FIGURE LEGENDS

Figure 1: Mast cell deficient mice are protected from *P. gingivalis*-induced alveolar bone loss.

WT or Kit\(^{W-sh/W-sh}\) mice were orally infected with *P. gingivalis* (Pg) or vehicle only (Sham) and were euthanized 42 days post-infection. (A) Overview of experimental model. (B) Bone loss was measured on defleshed maxillae; values indicate alveolar bone level (ABL) in mice relative to sham-WT control. (C) Serum anti-*P. gingivalis* antibody was assessed by ELISA at the end of the experiment (i) total IgG, (ii) IgG1 isotype and (iii) IgG2c isotype. (D) RNA was extracted from gingival tissues of WT or Kit\(^{W-sh/W-sh}\) mice at the end of the experiment. Expression of (i) *Tnfa*, (ii) *Il6* and (iii) *Il1b* were assessed by real time PCR. Data shown are mean ± SD (n = 7-8 mice/group) * p < 0.05, ** p < 0.01 *** p < 0.001 by ANOVA with Tukey comparison.

Figure 2: BMMC engraftment restores alveolar bone loss in *P. gingivalis*-infected Kit\(^{W-sh/W-sh}\) mice.

BMMCs were engrafted into Kit\(^{W-sh/W-sh}\) mice orally infected with *P. gingivalis* (Pg) or vehicle only (Sham) and were euthanized 42 days post-infection. (A) Overview of experimental model. (B) Representative FACS plots showing surface expression of CD117 (c-kit) and FcεR1 of BMMCs used for engraftment into Kit\(^{W-sh/W-sh}\) mice. (C) Serum concentrations (pg/ml) of mast cell protease 1 (MCPT1) assessed by ELISA. (D) RNA was extracted from gingival tissues of WT or Kit\(^{W-sh/W-sh}\) mice at the end of the experiment and expression of (i) mast cell tryptase 1 (*Tpsab1*), (ii) mast cell protease 4 (*Mcpt4*) and (iii) myeloperoxidase assessed by real-time PCR. (E) Bone loss was measured on defleshed maxillae; values indicate alveolar bone level (ABL) in mice relative to sham-WT control. (F) Serum anti-*P. gingivalis* antibody was assessed by ELISA at the end of the experiment (i) total IgG, (ii) IgG1 isotype and (iii) IgG2c isotype. (G) Expression of (i) *Tnfa*, (ii) *Il6* and (iii) *Il1b* from the gingival tissues of Kit\(^{W-sh/W-sh}\) mice were assessed by real time PCR at the end of the experiment. Data shown are mean ± SD (n = 4-7 mice/group). *p < 0.05, **p < 0.01 ***p < 0.001 by ANOVA with Tukey comparison.

Figure 3: Mast cells undergo degranulation and TNFα release following co-culture with oral bacterial biofilms.

BMMC were cultured for 2 hours with biofilms of oral bacteria or medium only control. (A) *In vitro* mast cell degranulation by assessment of β-hexosaminidase activity of cell culture supernatants and cell lysates (B) TNFα and (C) IL-6 release into supernatants assessed by ELISA. Data were analysed by Student’s t test. *p<0.05, ***p<0.001.

Figure 4: TNFα blockade reduces the severity of *P. gingivalis*-induced periodontal bone loss.

BALB/c mice were orally infected with *P. gingivalis* (Pg) or vehicle only (Sham), and injected i.p. with 0.1 mg/ml anti-TNFα or isotype control antibody. Mice were euthanized 42 days post-infection. (A) Overview of experiment design. (B) Bone loss was measured on defleshed maxillae; values indicate alveolar bone level (ABL) in mice relative to sham-WT control. (C) Serum anti-*P. gingivalis* antibody was assessed by ELISA at the end of the experiment (i) total IgG, (ii) IgG1 isotype and (iii) IgG2c isotype. Data shown are mean ± SD (n = 5 mice/group). *p<0.05, **p<0.01 ***p<0.001 by ANOVA with Tukey comparison.
figure 1
1 figure 2

2
figure 3

A 25
 Degranulation (%)
 Media Oral biofilm

B 50
 TNF (pg/mL)
 Media Oral biofilm

C 600
 IL-6 (pg/mL)
 Media Oral biofilm

A
 antibiotics Infect * P. gingivalis
 -21 -10 -3 -2 -1 0 1 2 3 7 14 21 42
 * Anti-TNF

B 0.00
 Relative ABL (mm)
 Anti-TNF Isotype
 Sham Pg Pg Pg
 - - + -

C 1500
 IgG
 Anti-Pg IgG (EU)
 Sham Pg Pg Pg
 - - + -

C 600
II
 IgG1
 Anti-Pg IgG1 (EU)
 Sham Pg Pg Pg
 - - + -

C 1000
III
 IgG2c
 Anti-Pg IgG2c (EU)
 Sham Pg Pg Pg
 - - + -

Media Orh biofilm

Degranulation (%)

TNF (pg/mL)

IL-6 (pg/mL)

Relative ABL (mm)

IgG

IgG1

IgG2c

ABCD

Degranulation (%)

TNF (pg/mL)

IL-6 (pg/mL)

Relative ABL (mm)

IgG

IgG1

IgG2c

ABCD
figure 4