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Metabolomic profiling was carried out on 53 post-mortem brain samples from subjects diagnosed with schizo-
phrenia, depression, bipolar disorder (SDB), diabetes, and controls. Chromatography on a ZICpHILIC column
was used with detection by Orbitrap mass spectrometry. Data extraction was carried out with m/z Mine 2.14
withmetabolite searching against an in-house database. There was no clear discrimination between the controls
and the SDB samples on the basis of a principal components analysis (PCA) model of 755 identified or putatively
identifiedmetabolites. Orthogonal partial least square discriminant analysis (OPLSDA) produced clear separation
between 17 of the controls and 19 of the SDB samples (R2CUM 0.976, Q2 0.671, p-value of the cross-validated
ANOVA score 0.0024). The most important metabolites producing discrimination were the lipophilic amino
acids leucine/isoleucine, proline, methionine, phenylalanine, and tyrosine; the neurotransmitters GABA and
NAAG and sugar metabolites sorbitol, gluconic acid, xylitol, ribitol, arabinotol, and erythritol. Eight samples
from diabetic brains were analysed, six of which grouped with the SDB samples without compromising the
model (R2 CUM 0.850, Q2 CUM 0.534, p-value for cross-validated ANOVA score 0.00087). There appears on
the basis of this small sample set to be some commonality between metabolic perturbations resulting from
diabetes and from SDB.

© 2016 Zhang et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Mental illness,most commonly schizophrenia, depression, and bipo-
lar disorder (‘SDB’) is common: schizophrenia has a European preva-
lence of 0.2–2.6%, depression 3.1–10.1%, and bipolar disorder 0.2–1.1%
[1]. These conditions are a major burden on the health-care systems
and on the relatives of affected people. Clinically, such illnesses are het-
erogeneous and presentwith psychosis ormood state features that vary
over time and across individuals. Thus, it would be of great value to have
an objective means to assist in diagnosis and categorisation of such ill-
nesses and also give an insight into the best way to manage them [2].
Much diagnosis of mental illness remains subjective due to complex
and poorly defined mechanisms underlying these diseases; there are
no biomarkers and mental illness might be better viewed as a continu-
um rather than using absolute labelling [3].The significance of low-mo-
lecular-weight metabolites in driving or reflecting the aetiology of
psychiatric disease has been researched for many years using serum
).

on behalf of the ResearchNetwork of
samples that are a pragmatic choice for diagnostic testing and, addition-
ally, brain tissue to investigate the central pathologies [4,5]. In the past
10 years, mass spectrometry-based metabolomics has evolved as a
method for profiling awide range of low-molecular-weightmetabolites
[6,7]. Metabolomics is a natural fit with metabolite profiling in mental
illness where, for many years, targeted analysis was carried out in
order to profile, for instance, biogenic amines in order to determine
whether or not abnormalities in their levels might be causative [8,9].
There have been several studies which have carried out metabolomic
profiling inmental illness [10–17], but these have not been as extensive
as those into other diseases such as cancer.

There have been no untargeted metabolomics studies of human
post-mortem brain samples although there was a study which exam-
ined disturbed glucose metabolism in post-mortem brains from psy-
chotic patients [18]. In the current study, the availability of a unique
library of post-mortembrain sampleswith extensive associatedmedical
information allowed us to investigate whether or not these samples
might reveal any underlying pathology which could be related tometa-
bolic differences. Thus, we applied our established LC-MS-based
metabolomic profiling methods [19,20] to determine if it was possible
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to individually classify healthy control, depressive, schizophrenic, and
bipolar brains. The observation of ‘metabolic syndrome’-like features
in those diagnosed with mental illness [21,22] prompted us to deter-
minewhether or not therewas an overlap betweenmetabolic perturba-
tions inmental illness and diabetes. If such a link betweenmental illness
and diabetes could be established then this might give some rationale
for the evaluation of medicines used in the treatment of diabetes in
the treatment of mental illness.

2. Materials and Methods

2.1. Chemicals

HPLC-grade acetonitrilewas obtained fromFisher Scientific, UK. Am-
monium carbonate, ammonium hydroxide solution (28–30%), acetic
anhydride, pyridine, and methanol were purchased from Sigma–Al-
drich, UK. HPLC grade water was produced by a Direct-Q 3 Ultrapure
Water System fromMillipore, UK. The mixtures of metabolite authentic
standards were prepared as previously described [19,23] from stan-
dards obtained from Sigma–Aldrich, UK.

2.2. Post-Mortem Brain Samples

Post-mortem brain samples were obtained from the Sudden Death
Bank collection held in theMRC Edinburgh Brain and Tissue Banks. Psy-
chiatric diagnosis annotations for each sample were made by detailed
study of donor case notes by qualified psychiatrists. Full ethics permis-
sion has been granted to the Banks for collection of samples and distri-
bution to approved researchers (LREC 2003/8/37). The University of
Strathclyde Ethics Committee also approved the local study of this ma-
terial (UEC101123). Details of the brain samples are given in Table A1 in
the Appendix. The information regarding the brain samples is
summarised in Table 1.

2.3. Sample Extraction

The brain samples were thawed and then a sample of brain tissue
(50 mg) was homogenised in ice cold methanol/water (1:1, 1.5 ml)
using a handheld Lab Gen 7B homogeniser. The samples were then cen-
trifuged at 16,000g, 15 min 4 °C and the supernatant was removed and
the pellet reserved for further extraction to remove lipids. Lipids were
extracted from the pellet with chloroform/methanol (3:1, 1.6 ml). The
methanol/water extract was dried under a stream of nitrogen at 37 °C
and redissolved in acetonitrile/water (80:20, 200 μl), the sample was
centrifuged 16,000g, 15 min 4 °C to remove any insoluble material and
then analysed by ZICHILIC and ZICpHILIC chromatography. The chloro-
form/methanol extract was dried under a stream of nitrogen at 37 °C
and re-dissolved in either methanol/water (1:1, 200 μl) or methanol/
chloroform (1:1, 200 μl) prior to chromatography on either C18 column
or silica gel, respectively.

2.4. HILIC–HRMS Analysis

Sample analysis was carried out on an Accela 600 HPLC system com-
bined with an Exactive (Orbitrap) mass spectrometer (Thermo Fisher
Table 1
Summary information for the different groups of brain samples.

Group Number Male Age range Me

Control 21 18 26–74 47
Schizophrenic 11 10 25–69 44
Bipolar 6 1 48 –
Depressive 7 4 24–74 47
Diabetic 8 8 20–69 44
Scientific, UK). An aliquot of each sample solution (10 μl) was injected
onto a ZIC-pHILIC column (150 × 4.6 mm, 5 μm; HiChrom, Reading
UK) with mobile phase A: 20 mM ammonium carbonate in HPLC
grade water (pH 9.2), and B: HPLC grade acetonitrile. The LC and the
MS conditions were as described previously [19,20]. Samples were sub-
mitted in random order for LC-MS analysis, and pooled quality control
samples were injected at the beginning, middle, and end of the experi-
ment tomonitor the stability of the instrumentation. Standardmixtures
containing authentic standards for 220 compoundswere run in order to
calibrate the column. Further analysis of the polar extract and of the li-
pophilic extracts were carried out on a ZICHILIC column (150 × 4.6mm,
5 μm), ACE C18 column (150 × 3 mm, 3 μm), and an ACE silica gel
column according to our previously described methods [23,24].
2.5. Analysis of Sugar Acids and Polyols by GC-MS

The individual standards for the polyols (100 μg) were treated with
acetic anhydride/pyridine (1:1, 100 μl) for 30 min at 70 °C. The reagent
was removed under a stream of nitrogen and the sample was re-
dissolved in ethyl acetate 1 ml. The individual standards for the polyol
acids were treated with methanol containing 1% HCl for 30 min at
70 °C, the reagent was removed under a stream of nitrogen and the
sample was then treated as for the polyols. Brain tissue (200 mg) was
extracted with acetonitrile/water (1:1, 1 ml) containing 2 μg/ml of
pinitol internal standard, centrifuged and the supernatantwas removed
and evaporated to dryness with a stream of nitrogen at 70 °C and treat-
ed as for the polyol acids except that the residue was re-dissolved
in 0.2 ml of ethyl acetate. GC-MS analysis was carried out on a
DSQ GC-MS system (Thermo Fisher Scientific, UK) fitted with a
GL Sciences Inert Cap 1 MS column from Hichrom, Reading
UK(30 m × 0.25 mm × 0.25 μm film). The oven was programmed
from 100 °C to 320 °C at 5 °C/min. The MS was operated in EI mode at
70 eV. For quantification of the sugars in brains selected, ionmonitoring
was carried out for ions at m/z 217, 200, 187, 145, 142, and 140, which
are typical fragments of alditol acetates [25].
2.6. Data Extraction and Metabolite Identification

MZMine 2.14 [26] was used for peak extraction and alignment, as
previously described [19,20]. Putative identification of metabolites
was also conducted in MZMine by searching the accurate mass against
our in-house database [18,19,23]. Background peaks present in the
blank were removed in MZmine before transferring the data to an
Excel file. Manual editing of the data was carried out in order to remove
idiosyncratic peaks such as metabolites identified as drugs which were
presumably from patient treatments and also nicotine metabolites
which were particularly abundant in the brains of schizophrenic
patients because of their well-established tendency to smoke much
more than the general population [27] and ethyl sulphate which is
from alcohol metabolism. The GC-MS data were extracted by using
Sieve 1.3 (ThermoFisher Scientific UK), and the ions corresponding to
the retention time of the sugar standards were extracted in order to
build the OPLS-DA model.
an age ±RSD Female Age range Mean age ±RSD

.4 ± 29.5 3 42–60 50.7 ± 17.8

.4 ± 34.7 1 40 –
5 39–57 45.6 ± 16.2

.5 ± 49.1 3 20–57 60.3 ± 33.7

.9 ± 35.2 0 – –
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2.7. Multivariate and Univariate Analysis

All data processing, including data visualisation, biomarker identifi-
cation, diagnostics, and validation was implemented using SIMCA
software v.14 (Umetrics AB, Umeå, Sweden). Prior to multivariate anal-
ysis, data were pareto scaled where the responses for each variable are
centred by subtracting its mean value and then dividing by the square
root of its standard deviation [28,29]. Principal component analysis
(PCA) was used to provide an unsupervised model in order to explore
how variables clustered regardless Y class [30]. Orthogonal projections
to latent structures (OPLS) provides a supervisedmodel that can predict
Y from X and can separate variation in X that correlates to Y (predictive)
and variation in X that is uncorrelated to Y (orthogonal/systemic). OPLS-
DA is a discriminant analysis based on OPLS and employed to examine
the difference between groups while neglecting the systemic variation
[30]. The p-values of the biomarkers were evaluated for their signifi-
cance applying the false discovery rate statistic (FDR) [31]. Variable
importance in the projection (VIP) was employed in order to indicate
the contribution of each variable in the in a given model compared to
the rest of variables [32], the average VIP is equal to 1, based on that a
variable larger than 1 has more contribution in explaining y than the
average [33].

2.8. Diagnostics and Validation of Models

R2 and Q2 are diagnostic tools for supervised and unsupervised
models; R2 represents the percentage of variation explained by the
model (the goodness of fit), Q2 indicates the predictive ability of the
model [34–36], a large discrepancy between between R2 and Q2 indi-
cates overfitting of themodel. A permutations test can be applied to su-
pervised models to evaluate whether the specific grouping of the
observations in the two designated classes is significantly better than
any other random grouping in two arbitrary classes [34–36], and in
Simca P, this is carried out by repeatedly leaving out 1/7th of the data
an refitting the model, all the Q2 values for the refitted models should
be lower than the original Q2 value. The criteria for validity for
OPLSDA models tested via cross-validation are that all blue Q2-values
to the left are lower than the original points to the right or the blue re-
gression line of the Q2-points intersects the vertical axis (on the left) at,
or below zero. The R2 values always show some degree of optimism.
However,when all green R2-values to the left are lower than theoriginal
point to the right, this is also an indication for the validity of the original
model although this is not essential for the model to be valid. Model
validity is also assessed using cross-validated ANOVA (CV-ANOVA)
which corresponds to H0 hypothesis of equal cross-validated predictive
residuals of the supervised model in comparison with the variation
around the mean [37]. Univariate comparisons were carried out in
Excel.

3. Results

3.1. The Effect of the HPLC Column Used on the Results

The data produced from the analysis of the polar extracts on the
ZICHILIC column were less satisfactory for producing separation in the
sample sets than those produced on ZICpHILIC. There were similar
trends in someof themetabolites but the clear-cut differences described
belowwere not observed. This again supports our choice of ZICpHILIC as
the best method for analysis of polar metabolites in metabolomics
screens [13]. The ZICHILIC mobile phase produces a higher background
which includes abundant sodium formate cluster ions and thus ion-
suppression is potentiallymore of a problem. In addition, the chromato-
graphic peaks formanymetabolites arewide than omZICpHILIC and the
retention times from run to run are less stable which produces a greater
challenge for the peak extraction software. The lipid fractions were
analysed on silica gel and C18 columns and no major differences in
lipid profiles were observed between the controls and the SDB brains.
This may be due in part to the fact that the initial methanol/water ex-
traction also extractedmany of themore polar lipids. The chromatogra-
phy of lipids on the ZICpHILIC column is satisfactory but they are only
weakly retained on this column so there is no separation of isomeric
species.

3.2. Comparison of Control and Schizophrenic/Depressive/Bipolar/Diabetic
Brains using PCA

Metabolites were identified to MSI levels 2 or 3 [38] according to
either exact mass (b3 ppm deviation) or exact mass plus retention
time matching to a standard. After data filtering, 755 metabolites from
positive and negative ionmodeswere combined and used to build mul-
tivariatemodels. The sample setwas selected by our collaborators at the
sudden death brain and tissue bank to give us the best sample set avail-
able from samples in storage for making a comparison between con-
trols, mental illness, and diabetes. Since the uncontrolled factors are
highly variable in both control and affected samples, the expected result
might be that variation in the data would preclude statistical separation
unless the disease signature was very strong. In order to obtain a rea-
sonable sample size, we treated schizophrenic, depression, bipolar
(SDB), and diabetic (DI) samples as one group to compare against con-
trols. Comparison of the data from schizophrenic, depression, bipolar
(SDB), and diabetic (DI) samples and controls using PCA did not yield
a clear separation of these diagnostic categories (Fig. 1). In order to
rule out variation in level of technical precision across the ca 55 h re-
quired to complete the analysis, a pooled sample: (P1–6) was prepared
by combining 5 × 40μl of extract randomly selected from each sample
type. Replicates were run as follows: P1 and 2 near the beginning of
the sequence after running three blanks and four standard mixtures,
P3 after ca 20 h, P5 after ca 39 h, P4 and 6 at the end of the run after
ca 55 h. As can be seen in Fig. 1, the pooled samples all lie towards the
centre of the PCA plot and individual sample points are close to each
other. This indicates that there is only a small amount of instrumental
drift and thus the results reflect biological, rather than technical,
differences.

3.3. Comparison of SDB and SDBDI Samples Against Controls Using OPLSDA

When the DI samples were omitted, it was found that 36 of the 44
available SDB and control samples (see footnote to Table A1) could be
combined where 19 SDB samples were compared against 17 control
samples to produce a strong OPLS-DA model (Fig. 2) (R2CUM 0.976,
Q2CUM 0.671) explaining 96.7% of the variation in the samples with
six components. Q2 N 0.5 is generally accepted as being indicative of a
robust model [35,36] and the model gave a permutations plot where
all the permutated Q2 values (n = 999) on the left are lower than the
points on the right (Figure A 1) and the line plot intercepts the y-axis
below 0 [34–36]. This preliminary model was used to inform the selec-
tion of the samples for univariate statistical comparison by excluding 8
samples that did not fit the model, four controls and four SDB samples.
Despite variations arising from complex medical histories, length of
sample storage and exact cause of death there appeared to be a strong
metabolic signature associated with mental illness overriding these
confounding factors which apply to both control and affected samples.
Table 1 also shows the univariate statistical comparisons for themetab-
olites with VIP scores N 1 in the preliminary OPLSDAmodel. All of which
are significantly different according to a two-tailed t-test and FDR statis-
tics [31] based on 755 metabolites indicate all P values b0.05 are signif-
icant. A complete list of significantly different metabolites based on
univariate comparison of the 17 controls and 19 SDB samples is given
in Table A2. The initial application of OPLSDA based on 755metabolites
allowed us to focus onmore limited list of metabolites than those listed
in table A2.



Fig. 1. PCA plot for control, SDB and DI samples (R2X cum 0.61, Q2 (cum) 0.464, 3 components) based on 755 metabolites from positive and negative ion modes. Three of the DI samples
(DI4, 7 and 8) lay outside of the ellipse and were omitted from the model. P = pooled sample used to check instrument stability over time.
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3.4. SDB Samples ShowDifferences in BranchedAminoAcid, Neurotransmitter
and Sugar Metabolism Compared With Controls.

Leucine/isoleucine have the highest VIP (8.1) this a very strong
variable along with valine which has a VIP of 5.1. Thus, branched
chain amino acids are highly correlated in the brains of SDB subjects
and are also present in significantly higher levels than in the controls.
The other neutral lipophilic amino acids methionine, phenylalanine, ty-
rosine, tryptophan, and proline also have high VIP values (Table 2
and table A2), are elevated in SDB brains and are important in
the model. The important metabolites that are significantly lower
in the SDB subjects than in the controls include GABA, its metabolite
guanidino amino butyric acid, and the neuromodulator N-acetyl
aspartyl glutamate (NAAG). In addition, there are higher levels of
sugar metabolites, putatively identified according to the LC-MS
Fig. 2.OPLS-DAmodel (R2CUM0.976, Q2CUM0.671, 6 components) of control (n=17) compar
modes.
analysis as sorbitol, gluconic acid, and erythritol, in the SDB
samples.

3.5. The Effect of Age on Metabolite Profiles of Brain Tissue

The brains were from subjects with a wide age range and the mean
age of the control group at death was 45.9 and mean age for the SDB
group was 46.4. An OPLS model (R2X (cum) 0.706), R2Y (cum) 0.979,
Q2 (cum) 0.476)) gave a very good correlation between age andmetabo-
lites (Figure A2) and there was no overlap between the metabolites used
to discriminate the control and SDBbrains and thosewhich discriminated
age (Table A3). The major changes with age were related to decreases
in unsaturated fatty acids in the brain such as eicosatetraenoic,
docosahexaenoic, and linoleic acid and increases in glycerol metabolites
such as phosphoethanolamine and phosphocholine.
ed to SDB (n=19) brain samples based on 755metabolites frompositive and negative ion



Table 2
Metabolites with high impact on the model separating controls from SDB brains (18 control/18 SDB). ⁎Matches retention time of standard. ⁎⁎Application of the Benjamini–Hochberg
procedure [31] with a Q value of 0.1 indicates that the critical threshold for a regarding a P value as being significant is N0.05. ⁎⁎⁎Retention time does not match that of the standard. N
= negative ion P = positive ion.

m/z Rt min. Metabolite VIP P value Ratio SDB/C

N 130.087 11.2 ⁎Leucine/isoleucine 8.3 0.0041 1.34
N 96.9698 13.6 ⁎⁎Orthophosphate (carbonic acid adduct of chloride) 7.5 0.0050 1.17
N 116.072 12.9 ⁎Valine 5.1 0.0008 1.36
P 116.071 13.2 ⁎Proline 4.2 0.0021 1.34
N 135.03 10.6 ⁎⁎Threonic acid isomer 4.3 0.0656 1.09
N 164.072 10.4 ⁎Phenylalanine 4.0 0.0050 1.31
N 102.056 15.9 ⁎GABA 3.2 0.0050 0.854
N 88.0404 15.2 ⁎Sarcosine 3.1 0.0730 1.12
N 118.051 14.8 ⁎Homoserine 3.1 0.0140 1.51
N 267.074 11.3 ⁎Inosine 3.0 0.0340 0.81
N 148.044 11.8 ⁎Methionine 2.8 0.0038 1.30
N 181.072 14.3 ⁎Sorbitol/mannitol/iditol/dulcitol 2.6 0.0022 1.99
P 258.11 14.9 ⁎sn-glycero-3-Phosphocholine 2.2 0.0415 1.61
N 273.039 15.7 Deoxy sedoheptulose phosphate 1.9 0.0020 0.5870
N 180.067 13.4 ⁎Tyrosine 1.7 0.0170 1.23
N 121.051 12.1 ⁎Erythritol/threitol 1.5 0.0011 1.57
N 241.012 17.4 D-myo-Inositol 1,2-cyclic phosphate 1.3 0.0060 0.580
N 239.115 16.6 ⁎⁎Homocarnosine isomer (anserine) 1.4 0.0037 0.622
N 303.084 17.2 ⁎N-Acetyl-aspartyl-glutamate 1.3 0.0327 0.533
N 203.083 12.0 ⁎Tryptophan 1.3 0.0250 1.21
N 195.051 14.4 ⁎Gluconic acid 1.3 0.0011 2.20
N 215.033 13.7 Hexose (chloride adduct) 1.1 0.0019 2.19
N 209.067 14.4 ⁎Sedoheptulose 1.0 0.0006 1.74
P 146.092 15.6 4-Guanidinobutanoate 1.0 0.00021 0.713
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3.6. Inclusion of Diabetic Brains in the OPLSDA Model

There is evidence that theremay be some shared pathology between
diabetes and mental illness going back as far the pre-neuroleptic drug
era and this provided the rationale for the insulin coma therapy which
was used in the first half of the 20th century [39]. There were eight di-
abetes samples in the set of brain samples and thesewere subsequently
added to the data set used to build the OPLSDAmodel described above.
Two of the diabetic samples (DI1 and DI8) were extreme outliers and
were excluded from the initial PCA plot (Fig. 1) since they were outside
of the ellipse. They were also excluded from the combined OPLSDA
model along with one of the SDB samples (S5) which was excluded
Fig. 3. OPLS-DA model (R2 (cum) 0.850, Q2 (cum) 0.534, 4 components) including six of the D
from positive and negative ion modes.
since it did not fit into the new OPLSDA model. Six of the diabetic sam-
ples could be classified with the SDB samples (Fig. 3, R2 CUM 0.850, Q2

CUM 0.534, p-value for cross-validated ANOVA score 0.00087) increas-
ing the significance of the ANOVA score, the large decrease in the
CVANOVA score implies considerable strengthening of the model
since the score can be used as a guide to the optimal fitting of a model
[36]. The permutations plot is shown in Figure A3 indicates a strong
model. The addition of the diabetic samples to the model produced
some change in the VIP values but basically most of the discriminating
metabolites are the same (Table A3) which is perhaps not surprising
since themodel is strengthened by addition of these samples. However,
when the univariate comparisons are examinedmost of themetabolites
I samples. Green control and blue SDB+ diabetic brain samples based on 755 metabolites
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with high VIP values in the model did not have significant p-values
when the diabetic samples in the model are compared with controls.
Thus, the similarities between diabetic and the SDB brains lie in the
covariance of the set of important marker compounds shown in Table
A3 rather than in the absolute levels. Leaving the diabetic samples out
of the model and using them as a prediction set resulted in four of the
samples being classified as SDB samples while two were unclassified
but borderline to the SDB class.

3.7. Preparation of PCA Model with a Reduced Metabolite List

When the reduced list of 120 metabolites with low P values shown
in Table A2 was used to prepare a PCA model, it was clear that the
SDB samples contained subgroups. In particular, a group of nine SDB
samples were quite different from the controls and the rest of the SDB
samples as shown in Fig. 4 where HCA was used to define the groups
(HCA tree shown in Figure A5). The metabolites defining the subgroup
are shown in Table 3. This supports the proposal that there are similar-
itieswithin the SDB group since the sub-group contains all three classes.

3.8. Refining the OPLSDA Models

The purpose of this study to try to better understand disease pathol-
ogy inmental illness and thus the ideal outcomewould be a list of relat-
ed metabolites corresponding to the disease state in order to develop a
hypothesis. Of lower priority was to provide a classification system in
the current case since sampling brain tissue is not going to be a diagnos-
tic test. With a high number of variables, there is the danger of
overfitting and although theOPLSDAmodels shown in Figs. 2 and 3 per-
formed well in cross-validation tests, there might still be some doubts
with regard to their validity. Thus, the control/SDB OPLSDA model was
refined by removing 600 of the lowest priority variables and then sys-
tematically removing variables one at a time from the remaining set
while retaining variables that caused a reduction in the Q cum score of
N0.05 when removed. This resulted in the model shown in Fig. 5
which had a CVANOVA score of 0.0006 and which could accommodate
38 out of the original 44 samples based on the six metabolites shown
in Table 4. The cross-validation model is shown in Figure A5. Removal
of samples belonging to each sub-group in order to create prediction
sets gave the results shown in Table 5. This resulted in two out of 21
Fig. 4. PCAmodel ( R2X= 0.68, Q2X=0.283, 5 components) based on themetabolites with P v
in Fig. 2 are compared and hierarchical cluster analysis is used to define subgroups. The anal
samples which is distinctly different from the rest of the samples.
subjects being misclassified. The sample size is relatively small so re-
moving in each case around 15% of the samples will considerably weak-
en the model. In reduced model, the branched chain amino acid valine
and the neurotransmitter GABA retain their high importance. The
same process of variable reductionwas applied to the combined diabet-
ic/SDBmodelwhich included six of the diabetic samples and resulted in
amodel based on sixmetabolites into which 45 out of 53 samples could
be fitted and included seven of the diabetic samples (Fig. 6) and which
had a CVANOVA score of 0.000013. The metabolites included in the
model were the same as those used in themodel shown in Fig. 5 except
that the VIP values for eachmetabolite were different (Table 6). Remov-
ing the 7 diabetic samples and using them as a prediction set resulted in
six of the samples being classified with the SDB group and one of the
samples being classified with the controls (details shown in Table 5).

3.9. GC-MS Analysis to Quantify and Identify Polyols and Polyol Acids in
Brain

In the process of analysing the data, it became apparent that sugar
metabolism had an important role in distinguishing the control and
SDB brains. The commercially available sugar alcohol standards were
run on the ZICpHILIC column and isomeric compounds were found to
co-elute or elute closely and thus were not distinguishable from each
other. A GC-MS method was developed for the analysis of the sugar al-
cohols which were converted into their acetates after initial treatment
withmethanolicHCl to esterify the acidic groups in gluconic and gulonic
acid. The retention times for the available standards are shown in Table
A5. Fig. 7 shows the separation of some the polyols present in brain
tissue in comparison with a mixture of standards. The major polyols
present were erythritol plus an additional unknown tetritol, ribitol,
arabinotol, xylitol, gluconic acid, and sorbitol (Fig. 7). Figure A7 shows
OPLS-DA separation of control and SDB + diabetic samples based on
the ionsmonitored for the polyol standards; therewas not sufficient tis-
sue to repeat analysis of all the samples and the model is based on 21
SDBDI samples compared to 15 control samples. Figure A8 shows the
cross-validation for the model indicating the there was a robust dis-
crimination. Calibration curves were prepared in the range 1–16 μg for
all the sugar alcohols against 2 μg of pinitol which was used as an inter-
nal standard. The data for the calibration curves are shown in Table S4.
The quantitative data for the sugar alcohols are shown in Table 7.
alues b0.05 when the control and SDB samples used to prepare the OPLS-DAmodel shown
ysis reveals a clear subgroup (group 1) containing depressive/bipolar and schizophrenic



Table 3
Important metabolites defining the sub-group of nine SDB brains shown in Fig. 4. ⁎Matches retention time of standard. ⁎⁎Does not match the retention time of the standard therefore is an
isomer of the named compound.

m/z Rt min Metabolite P value Ratio VIP

P 227.114 10.3 ⁎⁎Carnosine isomer 0.0020 8.34 1.70
N 145.014 6.3 ⁎⁎Oxoglutarate isomer 0.0310 3.91 1.35
N 195.051 14.4 ⁎Gluconic acid b0.001 3.30 2.32
N 159.103 4.9 Ethyl-hydroxyhexanoate 0.0020 2.95 1.35
N 181.072 14.3 ⁎Sorbitol/mannitol/iditol/dulcitol b0.001 2.94 2.22
N 151.061 13.2 ⁎Xylitol/ribitol/arabinotol b0.001 2.38 1.56
N 209.067 14.4 ⁎Sedoheptulose b0.001 2.34 2.20
N 252.088 8.1 N-Acetylvanilalanine b0.001 2.06 2.15
N 121.051 12.1 ⁎Erythritol/threitol b0.001 2.00 1.65
N 164.072 10.4 ⁎Phenylalanine b0.001 1.88 1.80
N 178.072 12.9 ⁎Glucosamine 0.0010 1.88 1.48
N 130.087 11.2 ⁎Leucine b0.001 1.66 1.54
N 202.109 5.5 ⁎⁎O-Acetylcarnitine isomer b0.001 1.60 2.13
P 116.072 12.9 ⁎Valine b0.001 1.58 1.62
N 103.004 16.1 ⁎Malonate 0.0010 1.56 1.68
P 161.107 10.4 Tryptamine 0.0010 1.55 1.39
P 169.097 11.3 ⁎Pyridoxamine 0.0010 1.53 1.34
N 114.056 13.2 ⁎Proline 0.002 1.52 1.99
N 180.067 13.4 ⁎Tyrosine 0.001 1.44 1.97
P 230.151 24.2 Gamma-Aminobutyryl-lysine 0.0280 1.42 1.62
N 220.083 12.3 ⁎N-Acetyl-D-glucosamine b0.001 1.40 1.99
P 104.071 15.9 ⁎4-Aminobutanoate b0.001 0.78 1.40
P 284.099 13.0 ⁎Guanosine b0.001 0.58 1.63
N 273.039 15.7 1-Deoxy-D-altro-heptulose 7-phosphate 0.0020 0.49 1.47
N 171.007 15.4 ⁎Glycerol 3-phosphate 0.0040 0.38 1.88
N 231.099 16.8 N2-Succinyl-L-ornithine 0.0110 0.36 2.07
P 248.024 10.8 Norepinephrine sulfate b0.001 0.32 1.48
P 305.098 17.2 ⁎N-Acetyl-aspartyl-glutamate 0.0030 0.27 2.52
P 277.031 12.6 ⁎⁎Phospho-gluconate isomer 0.0030 0.06 1.92
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Clearly, both the diabetic samples and SDB have high levels of sorbitol,
gluconic acid, ribitol, and erythritol in comparison to the controls.
Elevated levels of sorbitol in schizophrenic and bipolar brains have
been reported before [18], but the addition of the other sugar metabo-
lites re-enforces the importance of this pathway in the illness.

4. Discussion

4.1. High Levels of BCAs and Other Liphilic Amino Acids in SDB Samples

The OPLSDAmodels based on the larger number of variables (Figs. 2
and 3) and the univariate differences will be used to develop some
Fig. 5. OPLSDA (R2Y cum 0.725, Q2 cum 0.638, five components) model based on the six
hypotheses based on the underlyingmetabolite differences. The highest
VIPs in the OPLS-DAmodel (Fig. 2) of the SDB samples against the con-
trols are the branched chain amino acids leucine/isoleucine and valine
(BCAs) which are elevated above the levels found in the controls. The
importance of these metabolites in schizophrenia and bipolar disorder
has recently been highlighted [40]. There have been a number of recent
metabolomics studies of obesity and insulin resistance and it has been
observed that there is a distinct metabolic signature linked tometabolic
syndrome where the plasma levels of branched chain amino acids
(BCAs) leucine, isoleucine, and valine were elevated together with me-
thionine, glutamine, phenylalanine, tyrosine, asparagine, and arginine
[41,42]. A study which was carried out on a cohort of 1872 individuals
metabolites shown in Table 4 classifying 17 controls (1) and 21 SDB samples (2).



Table 4
Marker compounds used in the OPLSDA model shown in Fig. 5.

m/z Rt (min) Metabolite P value⁎ Ratio ⁎SDB/Control VIP

116.072 12.9 L-Valine 0.00026 1.39 1.55
104.071 15.9 4-Aminobutanoate 0.0069 0.87 1.43
162.112 13.7 L-Carnitine 0.680 0.96 0.82
204.123 11.4 O-Acetylcarnitine 0.081 1.26 0.75
87.0087 8.3 Pyruvate 0.063 1.26 0.41
175.025 14.6 Ascorbate 0.85 1.03 0.37

⁎ For the 38 samples in this model.

Fig. 6. OPLSDA model (R2Y cum 0.798, Q2 cum 0.691, 4 components) based on the six
metabolites shown in Table 4 classifying 18 controls (1) and 27 SDBDI samples (2).
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who were subdivided in lean, overweight, and obese groups proposed
that BCA levels can provide a better signature of metabolic wellness
than BMI [43]. Another group found that elevated levels of BCAs in plas-
ma could be linked to obesity and potentially to the development of in-
sulin resistance in children and adolescents [44]. BCAs are known to
promote production of muscle protein [45,46] and an elevation in BCA
levels may indicate that the uptake of BCAs into muscle tissues is
reduced. Metabolomic profiling of plasma from schizophrenics, even
before medication, has been found to indicate that they are at risk of
developing metabolic syndrome [47]. Antipsychotic medications are
known to significantly increase metabolic complications and induce
weight gain and although the medication history of the relating to cur-
rent samples is unknown it unlikely that variations in medication alone
would be sufficiently systematic to account for the differences observed.
In addition to BCAs, the neutral amino acids proline, methionine, tyro-
sine, and tryptophan are all elevated in the SDB/diabetic group and
have high VIP values. There is an early report of marginal differences
in the levels of lipophilic amino acids in plasma from schizophrenics
with valine, phenylalanine, alanine, leucine, isoleucine, methionine,
and tyrosine all being elevated [48]. However, the current data do not
support the theory proposed by that paper, which was that elevation
in lipophilic plasma acids might produce competition for lipophilic
amino acid transporters into the CNS, resulting in reduced uptake of
the amino acids tyrosine and tryptophan which are required for neuro-
transmitter biosynthesis.

Proline is a potential precursor of glutamate which is a neurotrans-
mitter in brain and it has previously been shown to be increased in
individuals diagnosed with schizophrenia. There is an extensive litera-
ture indicating that proline dehydrogenase (PRODH) activity may be
up-regulated in schizophrenia [49,50]. However, this would be expect-
ed to lead to a fall in proline levels which does not fit with the current
observation.

4.2. Alterations in Sugar Metabolism.

It was not possible to clearly identify the different sugar alcohols
using LC-MS since the isomeric compounds have almost identical reten-
tion times and their MS/MS spectra are very similar. In order to get a
clearer identification of the sugar alcohols in brain, standards and a
brain extracts were derivatised and analysed by GC-MS. The high
chromatographic resolving power of a capillary GC column was able
to separate the isomers. The levels of glucose in these brains appeared
to be very low and the major sugar in the brain was myo-inositol. As
can be seen in Fig. 7, there are several sugar alcohols in the brain. The
presence of these compounds has been observed before in human CSF
Table 5
Summary of the results obtained by removing the subsets B, S, D, andDI and using themas
prediction sets.

Samples
removed

R2Y (cum) /Q2 (cum)
for new model

Correctly
classified

Incorrectly
classified

B1–B6 0.721/0.596 B2–B6 B1 as control
S3–S5, S7–S11 0.706/0.601 All
D1_D5, D6 0.623/0.526 D2–5, D7 D1 as control
DI1–DI7 0.739/0.619 DI2-DI7 DI1 as control
[51] where has been proposed that the likely source of the polyols
was from the metabolic activity of the brain. The major hexitol in the
brains is sorbitol but the pentitol peak observed in LC-MS as a single
peak is due to the presence of three compounds, ribitol, arabinotol,
and xylitol. In addition, there are two tetritols, erythritol, and an un-
known isomer which are also elevated. It has been observed that the
levels of these polyols in brain are elevated in response to osmotic stress
[52]. In the current case, the levels of sorbitol, gluconic acid, ribitol, and
erythritol are higher in the SDB/diabetic samples in comparison with
the controls as judged from both the LC-MS and the GC-MS data
(Table 3).

4.3. Elevation of Polyols and Oxidative Stress

Since the sugar alcohols are not closely linked within a particular
pathway and several are elevated this suggests that the higher levels
might be due to an upregulation of aldose reductase which has a wide
substrate specificity [53] and is able reducemany different aldoses. For-
mation of sugar alcohols via aldose reductase activity is responsible for
some of the complications of diabetes [53] and also generates oxidative
stress since NADPH is consumed in carrying out the reduction. A previ-
ous paper observed that altered glucose metabolism is the brains of
those diagnosed with depression and schizophrenia, where sorbitol
was increased by a factor of 2.2 [18], similar to the elevations in the
SDB brains in the current study. A recent metabolomic study observed
altered glucose metabolism in peripheral blood mononuclear cells in
Table 6
Marker compounds used in the OPLSDA model shown in Fig. 6.

m/z Rt (min) Metabolite P value⁎ Ratio ⁎SDBDI /Control VIP

104.071 15.9 4-Aminobutanoate 0.023 0.83 1.64
116.072 12.9 L-Valine 0.0022 1.30 1.32
162.112 13.7 L-Carnitine 0.84 1.01 0.76
204.123 11.4 O-Acetylcarnitine 0.023 1.33 0.71
175.025 14.6 Ascorbate 0.834 1.04 0.50
87.0087 8.3 Pyruvate 0.063 1.26 0.48

⁎ For the 45 samples used in the model.



Fig. 7. GC-MS analysis of polyol standards (A and C 0.8 μg/0.2 ml) in comparison with
polyols in brain (B and D).
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schizophrenia with alterations in several glycolysis and Krebs cycle me-
tabolites [11]. Glucaric acid, which is increased in SDB, also contributes
to the model and has a high correlation to the model. Glucaric acid is
of interest since it also relates to sorbitol and gluconic acid, being only
a single oxidation step away from gluconic acid. Glucaric acid has
been frequently monitored in urine as a marker of xenobiotic stress
and urinary levels have been observed to rise in response to treatments
with phenothiazines (such as the antipsychotic, chlorpromazine) [54].
Sedoheptulose is considerably elevated in SDB brainswhile a compound
putatively identified as deoxysedoheptulose phosphate is depressed.
Our published metabolomics study of brain tissue from a mouse
model of psychiatric disorder, the Npas3 knockout, also showed elevat-
ed levels of sedoheptulose (2.65-fold increase) [55]. This suggests that
changes in glycolysis or nucleotide metabolism might be altering flux
through the pentose phosphate pathway which could correlate with
an increased requirement for NADPH as a co-factor for aldose reductase
sinceNADP is converted toNADPHwith formation of phosphogluconate
at the entry to the pentose phosphate pathway. In addition, there is a
deficit in the neuromodulator NAAG in the SDB brains; NAAG has
been found to protect against neuronal death induced by exposure to
glucose in a cell-culture model of diabetic neuropathy [56].

4.4. GABA Deficiency

GABA and its metabolite guanidino butyrate, which is formed
directly from GABA via arginine–glycine amidinotransferase [57] are
important variables in the OPLS-DA model separating control and SDB
Table 7
The amounts of sugar alcohols and gluconic acid in post-mortem brain samples.

Sugar SDB +DI (RSD) μg/g SDB (RSD) μg/g Control (RSD

Sorbitol 22.7 (±56.4) 22.3 (±56.4) 13.5 (±57.0
Gluconic acid 3.96 (±55.8) 4.2 (55.6) 1.96 (±40.7
Ribitol 9.8 (±21.8) 10.3 (20.2) 9.3 (±25.9)
Arabinotol 7.9 (±26.6) 8.0 (26.6) 8.5 (±34.1)
Xylitol 4.1 (±28.3) 4.3 (28.3) 7.1 (±57.8)
Erythritol 15.1 (±23.8) 15.1 (23.8) 12.9 (±34.9
brains. It iswell established that there is a deficit in GABAergic transmis-
sion in schizophrenia [58–60]. The GABA receptor governs the entry of
the chloride ion into cells [61] and one of the highest VIP values in
Table 1 is for an adduct formed between chloride and carbonate
which is present in the mobile phase which is strongly correlated with
the SDB group. Initially, this peak was assigned to orthophosphate
according to the library search but it runs earlier than the standard for
orthophosphate. Inspection of the peak revealed a chlorine isotope pat-
tern and the elemental composition matches the carbonic acid/chloride
adduct. Chloride itself is below the lower mass range cut off for the
instrument.

4.5. Altered Purine Metabolism

From the univariate comparisons, the purines guanine and guano-
sine were found to be lower in SDB brains and this can be correlated
with elevated levels of uric acid in SDB brains. In a recent publication,
it was observed that the severity of schizophrenic symptoms could be
predicted from a high ratio of uric acid to guanine and the current
data indicate that in SDB brains purine oxidation seems to be more ac-
tive [62]. It has been suggested that that elevated uric acid is indicative
of high levels of oxidative stress. Allopurinol, which inhibits purine ox-
idation, has been used as an experimental treatment for schizophrenia
[63].

4.6. Elevation in the Level of a Homocarnosine Isomer

A compound, present in high amount in the brains, putatively iden-
tified as anserine since it is isomeric with homocarnosine but has a
different retention time, is an important component is the OPLS-DA
model separating control and SDB brains and it is significantly lower
in the SDB samples according to the univariate data. Brain tissue ac-
counts for around 20% of the oxygen consumption by the body and
thus is a major site of oxidative stress. Carnosine, homocarnosine, and
anserine are important antioxidants in brain and skeletal muscle [64]
and lower levels of anserine might indicate increased oxidative stress
in the SDB samples. Of the three commonly occurring histidine dipep-
tides, anserine has been observed to be the most effective anti-oxidant
[64].

4.7. High Levels of Pyridoxine

The SDB brains contain higher levels of pyridoxine which has been
used for many years as an experimental treatment for schizophrenia
when given in conjunction with nicotinic acid [65].

4.8. Alterations in Biogenic Amine Metabolism

Anumber of neurochemically important compounds are significantly
changed in the univariate data. Tryptamine has long been associated
withmental illness particularly schizophrenia [8] and it is clearly slightly
elevated in the SDB brain samples. In the SDB samples, there is a depres-
sion of norepinephrine sulphate levels; there are two isomers of this
compound in brain both of which are depressed. Glucuronide and sul-
phate conjugates of dopamine and serotonin have been measured in
brain dialysate previously [66]; there was no evidence in the current
) μg/g SDB + DI/Control ratio (P value) SDB/Control ratio (P value)

) 1.67 (0.0079) 1.65 (0.0015)
) 1.96 (0.0006) 2.06 (0.0012)

1.06 (0.18) 1.11 (0.06)
0.93 (0.37) 0.94 (0.49)
0.58 (0.0042) 0.61 (0.006)

) 1.17 (0.028) 1.17 (0.056)
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case for the presence norephinephrine glucuronide conjugates in brain.
Although not significant in the OPLS-DA model, in the univariate analy-
sis, N-acetylvanilalanine is significantly elevated in bipolar brains. This
metabolite is of great interest since it is a marker for a deficiency of aro-
matic amino decarboxylase (AADC/DOPA Decarboxylase) deficiency
which can lead to a deficit in the levels of several neurotransmitters
[67]. This can be correlated with elevated levels of all the aromatic
amino acids in the SDB brains. There are also elevated levels of
kynurenine and kynurenamine which are metabolites of tryptophan
which have neuropathological effects [68].

4.9. Differences in a Sub-group of SDB Samples

There are many other differences in the univariate data and it is dif-
ficult to rationalise themall. In order to determine if there are subgroups
within the samples, a PCA model was fitted to the 36 samples used to
produce the OPLS-DA model using only the metabolites shown in
Table S1whichwere significantly different according to univariate anal-
ysis. Hierarchical cluster analysis clearly highlighted a group of 9 SDB
samples which were far away from the rest of the samples that did
not clearly separate in the PCA plot (Fig. 4). The metabolites which
were most significant in separating this sub-group from the controls
in the PCA plot are listed in Table 3 along with P values and ratios de-
rived from univariate comparison of these nine samples with the con-
trol samples. The brains in this subgroup contain much lower levels of
NAAG in comparison with the rest of the SDB group and sorbitol,
gluconic acid, and xylitol/ribitol/arabinotol are also higher than in the
general cohort. In addition, N-acetylvanilalanine is higher in these
samples along with tyrosine and phenylalanine than in the rest of the
SDB samples which might indicate a greater degree of aromatic amino
acid decarboxylase deficiency. However, tryptophan is not significantly
different in this subgroup compared with the rest of the SDB samples
although its metabolite tryptamine is elevated. In addition norepineph-
rine sulphate and guanosine are significantly lower in this group com-
pared with the rest of the samples.

4.10. OPLSDA Models Based on Six Metabolites

Figures A10–14 show extracted ion traces for the six marker com-
pounds used to produce the OPLSDA models shown in Figs. 5 and 6.
GABA and valine are important components in the models shown in
Figs. 2 and 3 and have been discussed above. Ascorbic acid does not
show up strongly with regard to univariate statistics having a P value
of 0.5 when comparing the samples modelled in Fig. 2. There have
been reports of increased ascorbic acid requirements in schizophrenia
with reduced urinary excretion being observed [69]. Carnitine and its
acyl derivatives have been reported to have potential in the treatment
of neurochemical disorders [70]. Finally, it was observed in a previous
study that pyruvate levels were lowered in the thalmus of the post-
mortem brains of schizophrenics in comparison with controls [71]. In
the current case, pyruvate is slightly elevated in the SDB group but the
part of the brain analysed in the current case was different.

5. Conclusion

In conclusion,many differenceswere observed in SDB versus control
brains which have been observed by previous papers such as lower
levels of NAAG and GABA in the SDB brains, elevated levels of sorbitol,
and the importance of branched chain amino acids. Our strategy of
treating the three psychiatric disorders as a single disease entity (SDB)
may reduce the ability to detect specific aetiological biomarkers, but it
increased sample size, diluted disease-specific medication effects, and
most importantly, allowed the identification of a metabolic profile
reflecting a shared pathological state. Since there are no biomarkers
for mental illnesses and these diseases are multifaceted, diagnosis is
never absolute and indeed this can be seen in scatter plots where each
individual is different. However, there is enough in common in the
SDB group for them to be classified as more similar to each other than
to the controls. Certain key metabolites highlighted as being more
important in the pathology and it seems that abnormal sugar and
branched chain amino acid metabolism might be a key element in
SDB as reflected in the metabolic similarity between SDB and diabetes,
and thus anti-diabetic treatments might have a role in themanagement
of SDB. There are no previous metabolomics studies of post-mortem
brain tissue in mental illness. Although this is only a small study, the
findings are in agreement with several previous studies looking at
specific markers and in respect of some markers with studies going
back many years. The study has highlighted readily available markers
which could bequantified in physiologicalfluids for the purpose of diag-
nosis or the monitoring of treatment.
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