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Amplification and generation of ultra-intense
twisted laser pulses via stimulated Raman
scattering
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Twisted Laguerre–Gaussian lasers, with orbital angular momentum and characterized by

doughnut-shaped intensity profiles, provide a transformative set of tools and research

directions in a growing range of fields and applications, from super-resolution microcopy and

ultra-fast optical communications to quantum computing and astrophysics. The impact of

twisted light is widening as recent numerical calculations provided solutions to long-standing

challenges in plasma-based acceleration by allowing for high-gradient positron acceleration.

The production of ultra-high-intensity twisted laser pulses could then also have a broad

influence on relativistic laser–matter interactions. Here we show theoretically and with

ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering

can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may

open new research directions in nonlinear optics and high–energy-density science, compact

plasma-based accelerators and light sources.
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T
he seminal work by Allen et al.1 on lasers with orbital
angular momentum (OAM) has initiated a path of
significant scientific developments that can potentially

offer new technologies in a growing range of fields,
including microscopy2 and imaging3, atomic4 and nano-particle
manipulation5, ultra-fast optical communications6,7, quantum
computing8 and astrophysics9. At intensities beyond material
breakdown thresholds, it has been recently shown through theory
and simulations that intense (with \1018 W cm� 2 intensities)
and short (with 10–100 fs durations) twisted laser beams could
also excite strongly nonlinear plasma waves suitable for
high-gradient positron acceleration in plasma accelerators10.
As a result of their importance, many techniques have emerged
to produce Laguerre–Gaussian lasers over a wide range of
frequencies11. Common schemes use spiral phase plates or
computer-generated holograms to generate visible light with
OAM, nonlinear optical media for high-harmonic generation and
emission of XUV OAM lasers12,13 or spiral electron beams in
free-electron lasers to produce OAM X-rays14,15.

Optical elements such as spiral phase plates are designed for
the production of laser beams with pre-defined OAM mode
contents. Novel and more flexible mechanisms capable of
producing and amplifying beams with arbitrary, well-defined
OAM states, using a single optical component, would then be
interesting from a fundamental point of view, while also
benefiting experiments where OAM light is relevant. In addition,
the possibility of extending these mechanisms to the production
and amplification of laser pulses with relativistic intensities, well
above the damage thresholds of optical devices, could also open
exciting perspectives for high-energy-density science and applica-
tions. The use of a plasma as the optical medium is a potential
route towards the production of OAM light with relativistic
intensities. Although other routes may be used to produce high-
intensity OAM laser pulses, for instance, by placing spiral phase
plates either at the start or at the end of a laser amplification
chain16,17, the use of plasmas can potentially lead to the
amplification of OAM light to very high powers and intensities.
Plasmas also allow for greater flexibility in the level of OAM in
the output laser beam than other more conventional techniques.

Here we show that stimulated Raman scattering processes in
nonlinear optical media with a Kerr nonlinearity can be used to
generate and to amplify OAM light. Plasmas, optical fibres and
nonlinear optical crystals are examples of nonlinear optical media
with Kerr nonlinearity. Although optical parametric oscillators
have also been used to transfer OAM from a pump to down
converted beams18, here we explore the creation of new OAM
states absent from the initial configuration, according to simple
selection rules. We also demonstrate that stimulated Raman
scattering processes can generate and amplify OAM light even in
scenarios where no net OAM is initially present. To this end, we
use an analytical theory, valid for arbitrary transverse laser field
envelope profiles, complemented by the first three-dimensional
(3D) ab initio particle-in-cell (PIC) simulation of the process
using the PIC code OSIRIS19, considering that the optical
medium is a plasma. Starting from recent experimental and
theoretical advances20–22, our simulations and theoretical
developments show that stimulated Raman processes could
pave the way to generate OAM light in nonlinear optical media
and that the nonlinear optics of plasmas23,24 could provide a path
to generate and amplify OAM light to relativistic intensities25–28.

Results
Theoretical model. We illustrate our findings considering that
the nonlinear optical medium is a plasma. Extension to other
materials is straightforward. In a plasma, stimulated Raman

backscattering is a three-wave mode coupling mechanism in
which a pump pulse (frequency o0 and wavenumber k0), decays
into an electrostatic, or Langmuir, plasma wave (frequency op

and wavenumber 2k0�op/c) and into a counter-propagating
seed laser (frequency o1¼o0�op and wavenumber
k1¼op/c� k0). The presence of OAM in the pump and/or seed
results in additional matching conditions that ensure the con-
servation of the angular momentum carried by the pump when
the pump itself decays into a scattered electromagnetic wave and
a Langmuir wave29. These additional matching conditions, which
are explored in more detail in Supplementary Notes 1–4 and
Supplementary Figs 1–3), correspond to selection rules for the
angular momentum carried by each laser and plasma wave. Here
we illustrate key properties of OAM generation and amplification
by exploring different seed and pump configurations.

In order to derive a model capable of predicting stimulated
Raman scattering OAM selection rules, we start with the general
equations describing stimulated Raman scattering, given by
D0A0 ¼ o2

pdnA1, D1A1 ¼ o2
pdn�A0 and Dpdn ¼ e2k2

p= 2m2
e

� �
A0 � A1, where D0;1 ¼ c2 r2

?�2ik0;1@z
� �

þ 2io0;1@t , Dp¼ 2iopqt,
and where the minus (� ) sign is used to describe the
seed pulse evolution. Moreover, A0,1 is the envelope of the
pump/seed laser, with complex amplitude, given by
A1 t; r?ð Þexp ik0;1z� io0;1t

� �
þ c:c:, where t is the time and z the

propagation distance. We note that A0,1 are arbitrary functions of
the transverse coordinate r>. The complex amplitude of the
plasma density perturbations is dn t; r?ð Þexp ikpz� iopt

� �
þ c:c:,

where kp¼op/c is the plasma wavenumber, op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0=E0me

p
the plasma frequency, me the mass of the electron, E0 the vacuum
electric permittivity and e the elementary charge. Although these
general equations can be used to retrieve the selection rules for
the OAM that will be explored throughout this paper, it is
possible to derive exact solutions in the long pulse limit, where
k0;1@z � o0;1@t and in the limit where the pump laser contains
much more energy than the seed laser energy. In this case, since
@tA2

0 � @tA2
1, and A0 � A1 (pump has more energy than seed),

then @tA0 � @tA1 (this condition is strictly satisfied in our
simulations when new modes are created and until their energy
becomes comparable to the energy in the pump pulse). In this
case, it is possible to show that stimulated Raman scattering of a
seed beam A1 from a pump beam A0 creates a plasma wave
density perturbation, given by:

dn� t; r?ð Þ ¼ i
e2k2

p

4opm2
e

A�0 � A1 t ¼ 0ð Þ
� � sinh Gtð Þ

G
; ð1Þ

G2 r?ð Þ ¼
e2k2

po
2
p

8opo1m2
e

A0j j2; ð2Þ

where G is the growth rate at which the plasma amplitude grows
as the interaction progresses and r> is the transverse position.
The amplification of the seed is given by:

A1 t; r?ð Þ ¼ A1 t ¼ 0ð Þ � A�0
A0j j

� �
A0

A0j j
cosh Gtð ÞþC; ð3Þ

where (o1, k1) are the frequency and wavenumber of the seed
laser pulse, respectively, and C is a constant of integration. The
derivation of equations (1)–(3), presented in detail in
Supplementary Note 1, assumes that the pump and the seed
satisfy the frequency matching conditions stated above, being
valid for arbitrary transverse laser envelope profiles as long as the
paraxial equation is satisfied. Neglecting pump depletion does not
change the selection rules for the OAM, as discussed in the
remainder of this work. Unless explicitly stated, the generic
expression for the pump vector potential (or electric field) is

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10371

2 NATURE COMMUNICATIONS | 7:10371 | DOI: 10.1038/ncomms10371 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


A0 ¼ A0x exp i‘0xfð Þex þA0y expði‘0yfÞey , where (ex, ey) are the
unit vectors in the transverse x and y directions, and f the
azimutal angle. Similarly, the generic expression for the seed
vector potential is A1 ¼ A1xexp i‘1xfð Þex þA1yexp i‘1yf

� �
ey .

Selection rules can then be generally derived by inserting these
expressions into the factor (A1(t¼ 0) ? A0*)A0 in equation (3).
Although we have assumed that the plasma is the optical
medium, other nonlinear optical media with Kerr nonlinearity
will also exhibit similar phenomena.

PIC simulations. We will now use equation (3) to explore OAM
generation and amplification in three separate classes of initial
set-ups, all identified in Fig. 1. We start by studying the case of
the amplification of existing OAM modes. Figure 1a illustrates the
process in a set-up leading to the amplification of a seed in an
arbitrary, single state of OAM ‘1 in a plasma using a counter-
propagating Gaussian pump laser without OAM. The mechanism
is trivially generalized for a pump with arbitrary OAM ‘0.
We can then assume a pump linearly polarized in the x direction
with OAM ‘0x , which decays into a Langmuir plasma wave
with OAM ‘p ¼ ‘0x� ‘1x and into a seed, also linearly polarized
in the x direction with OAM ‘1x . Making these substitutions
into equation (3) confirms that the amplification of A1 retains
the initial seed OAM. For the specific example in Fig. 1a,
where ‘0x ¼ 0, direct substitution of A0 � exp i‘0xfð Þex and
A1 � exp i‘1xfð Þex in equation (1) shows that the plasma wave
density perturbations dn � exp i ‘0x � ‘1xð Þf½ 	 have OAM
‘p ¼ ‘0x � ‘1x ¼ � ‘1x , that is, the plasma wave absorbs the
excess OAM that may exist between the pump and the seed
(see Supplementary Note 2 and Supplementary Fig. 1 for several
examples illustrating angular and linear momentum matching
conditions, demonstrating that the plasma wave always absorbs
the excess OAM between pump and seed.) The scheme is thus
ideally suited to amplify an existing OAM seed using a long
Gaussian pump without OAM. The amplification of circularly
polarized OAM lasers, with both spin and OAM, obeys similar
selection rules. For amplification to occur in this case, and similar
to stimulated Raman backscattering of circularly polarized
Gaussian lasers, both seed and pump need to be polarized with
the same handedness either in eþ ¼ exþ iey or in e� ¼ ex� iey.

Figure 2a illustrates 3D simulation results showing the
amplification of an ‘1 ¼ 1, linearly polarized seed from a linearly
polarized Gaussian pump. Simulation parameters are stated in

Table 1. Figure 2a shows that the growth rate for the
amplification process is nearly indistinguishable from stimulated
Raman amplification of Gaussian lasers. In agreement with
equation (2), this result also indicates that, in general, the overall
amplification process is OAM-independent.

Stimulated Raman scattering also provides a mechanism to
create new OAM modes (that is, modes that are absent from
the initial pump/seed lasers) and amplify them to very high
intensities. Figure 1b illustrates the process schematically. The
pump electric fields can have different OAM components in both
transverse directions x and y. Each component is represented in
blue and orange in Fig. 1b. The pump electric field component
in x has OAM ‘0x . The pump electric field component in y has
OAM ‘0y . The initial seed electric field contains an OAM ‘1x
component in the x direction. After interacting in the plasma, the
pump becomes depleted and a new electric field component
appears in the seed with OAM, given by ‘1y ¼ ‘1xþ ‘0y � ‘0x .

The process can be physically understood by examining the
couplings between the plasma and light waves in the example
considered above. Initially, a plasma wave will be excited due to
beating pump and seed components that have their electric fields
pointing in the transverse x direction. According to equation (1),
the plasma wave OAM is ‘p ¼ ‘0x � ‘1x . This plasma wave
ensures OAM conservation for the pump and seed electric field
components in the x direction. The (same) plasma wave also
couples the pump and seed modes with electric field components
pointing in the y direction. Thus, ‘p ¼ ‘0y � ‘1y must also hold in
order to ensure conservation of angular momentum. This implies
the generation of a new seed component with electric field
polarized in y so that OAM is conserved at all times and in both
components. The OAM of the new seed component is thus
‘1y ¼ ‘0y � ‘p ¼ ‘1x � ‘0x þ ‘0y .

Alternatively, this selection rule can also be found by
examining equation (3). Direct substitution of a pump profile
with A0 � exp i‘0xfð Þex þ exp i‘0yf

� �
ey and of an initial seed

profile with A1 � exp i‘1xfð Þex then leads to the generation of a
new seed with exp i ‘1xþ ‘0y � ‘0x

� �
f

� �
ey . The same selection

rules would also hold if the pump consists of combination of a
right- and left-handed circularly polarized modes, each with
different OAM, and the seed initially contains only a left- or
right-handed circularly polarized mode. In this case, a new seed
component would appear with right- or left-handed circular
polarization. The new mode is created to ensure conservation
of OAM. The selection rules are identical as long as polarizations
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Figure 1 | Generation and amplification of OAM lasers via stimulated Raman backscattering. In Raman amplification, a long pump laser transfers

its energy to a short, counter-propagating seed laser in a plasma. The process depletes the pump laser pulse energy and enhances the intensity of the

seed laser. The seed/pump lasers propagate in the direction of the red/green arrow, respectively. Polarization in the x/y direction is represented by

blue/orange lasers, respectively. The position of the plasma, relative to the seed and pump lasers, is shown by the green cylinders. The back/front

projections show the intensity profile of the closest laser. (a) A set-up leading to the amplification of a seed with OAM. (b) The generation and

amplification of new OAM modes. (c) The generation and amplification of a new OAM laser in a configuration with no initial OAM.
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in ex/ey are replaced by polarizations in eþ /e� (where
e±¼ ex±iey). This set-up provides a robust mechanism for the
production and amplification of a new and well-defined OAM
mode, absent from the initial set of lasers. The generation of a
new OAM mode when a linearly polarized seed interacts with a
pump with electric field components in the two orthogonal

directions is also illustrated in Supplementary Note 3 and
Supplementary Fig. 2.

Figure 3 shows a result of a 3D PIC simulation illustrating the
production of a new seed mode with ‘1y ¼ 3, which is initially
absent from the simulation, from a pump with ‘0y ¼ 2, ‘0x ¼ 0
and an initial seed with ‘1x ¼ 1 (simulation parameters given in
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Figure 2 | Simulation results showing the generation and amplification of OAM lasers. Blue refers to the amplification of a Gaussian seed by a Gaussian

pump. The initial laser configuration in each panel (a–c) corresponds to the initial set-up illustrated by each corresponding panel (a–c) in Fig. 1. (a) The

amplification of a seed with ‘1x ¼ 1 using a long Gaussian pump (red). (b) The generation and amplification of a new OAM mode with ‘1y ¼ 3 (dashed red)

and of an existing mode with ‘1x ¼ 1 (solid red) from an OAM pump polarized in two directions with ‘0y ¼ 2 and ‘0x ¼ 0. (c) The amplification of a new

OAM mode with ‘1 ¼ 1 from a TEM seed with no net initial OAM and from a Gaussian pump. See Table 1 for simulation parameters.

Table 1 | Laser parameters for the different Raman Amplification regimes to generate and amplify OAM lasers.

Amplification of existing modes Generation and amplification of new OAM modes

Pump Seed OAM seed TEM seed

Pump Seed Pump Seed

TEM — — — — TEM00exþTEM00ey TEM01exþ i TEM10ey

OAM L00ex L01ex L00exþ L02ey L01ex — —
a0 (peak) 0.02 0.06 0.02 0.03 0.02 0.08
Spot (mm) 718 435 718 435 718 435
Duration (fs) 25
 103 25 25
 103 25 25
 103 25
w0/wp 20 19 20 19 20 19

Simulation parameters are close to ideal Raman amplification regimes determined in ref. 21. In all simulations, the probe has a central wavelength of 1mm. The background plasma density is
n0¼4.3
 1018 cm� 3 for all simulations presented. When the pump/probe initially has components in both the transverse directions, the initial peak a0, spot size and durations present in the table are
identical for every component. L‘n refers to a Laguerre–Gaussian ðn; ‘Þ mode, where the OAM corresponds to the index ‘. TEMmn correspond to Hermite–Gaussian lasers with order (m, n). The table only
describes the initial simulation conditions.
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Figure 3 | Simulation results showing the generation and amplification of a new OAM modes. The new mode with ‘1y ¼ 3 grow from a seed with

‘1x ¼ 1 and a linearly polarized pump with a Gaussian profile in the x direction, and with an OAM ‘0y ¼ 2 in the y direction. z¼ 2 mm (a) and z¼ 6.22 mm

(b). The initial set-up is illustrated in Fig. 1b. Projections in the (x,z-ct) and (y,z-ct) planes show intensity profile slices at the mid-plane of the OAM mode

(blue–green–red colours). Projections in the (x,y) plane (blue–white–red) show the normalized vector potential (a0) field envelope of the new OAM mode

at the longitudinal slice where the laser intensity is maximum. The envelope of the 3D laser intensity is also shown for z46.25 mm in blue–green–red

colours, and normalized vector potential isosurfaces for zo6.25 mm in blue and red.
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Table 1). Figure 3 presents several distinct signatures of the new
OAM mode with ‘1y ¼ 3. The laser vector potential shows helical
structures, which indicate that the new mode has OAM. The
normalized vector potential forms a pattern that repeats each 3
turns, which turn in the clockwise direction from the front to the
back of the pulse, a signature for ‘1y ¼ 3. Field projections in the
(x,y) plane also show a similar pattern further confirming that
the new OAM mode has ‘1y

		 		 ¼ 3. The change in colour from
blue–green in (a) to (green–red) in (b) is a clear signature for the
intensity amplification of the new seed mode. Intensity was
calculated using I W=cm2� �

¼ 1:27
1018a2
0=l

2
0 mmð Þ, where

l0¼ 0.8 mm is the central laser wavelength. Figure 3 also shows
that the amplified laser envelope acquires a bow-shaped
profile21,22,30, a key signature of Raman amplification identified
in ref. 21. In agreement with theory (equations (2) and (3)),
Fig. 2b shows that the new ‘1y ¼ 3 mode and the existing ‘1x ¼ 1
OAM mode amplify at nearly coincident growth rates. Still, since
it grows from initially higher intensities, the existing ‘1x ¼ 1
mode reaches higher final intensities than the new OAM mode
with ‘1y ¼ 3. The generation of the new modes in Fig. 2b also
illustrates the transition from the regime where the depletion of
the pump is negligible (small signal and exponential growth) to
the regime where the depletion of the pump is not negligible
(strong signal and linear growth). Hence, Fig. 2b shows an
exponential growth of the new mode up to zo0.6 mm. For
z40.6 mm, the energy in the new seed becomes comparable to
the energy contained in the pump pulse. As a result, the growth
slows down significantly, becoming linear with the propagation
distance26.

L. Allen et al.1 showed that particular superpositions of
Hermite–Gaussian modes (also called transverse electro-magnetic
or TEM modes) are mathematically equivalent to Laguerre–
Gaussian modes. Since the transverse amplitude distribution of
high-order (transverse) laser modes is usually described by a
product of Hermite–Gaussian polynomials, which is also usually
associated with TEM modes, this result paved the way for
experimental realization of vortex light beams with OAM from
existing TEM laser modes. It is thus interesting and important to
explore whether and how stimulated Raman backscattering can
be used to generate and amplify light with OAM from Hermite–
Gaussian laser beams, that is, from initial configurations with no
net OAM. Figure 1c illustrates the process. From now on, we refer

to each Hermite–Gaussian beam as a TEMm,n laser, where (m, n)
represents the Hermite–Gaussian mode. The TEM mode electric
field is given by equation (5) (see Methods section). We consider
first a Gaussian pump linearly polarized at 45�, that is, having
similar electric field amplitudes in both transverse directions
x and y. The Gaussian pump can then also be written as
A0BTEM00(exþ ey). In addition, we assume a seed with a TEM10

mode electric field component in x and with a TEM01 mode
electric field component in y. The two seed modes are p/2
out of phase with respect to each other. The seed is given by
A1BTEM10exþ iTEM01ey. This set-up is represented in
Fig. 1c, where blue and orange colours refer to the pump
and seed components polarized in the x and y directions,
respectively.

Although this set-up has no initial OAM, since both pump and
seed have no OAM, it results in the generation and amplification
of an OAM mode with ‘1 ¼ 1. In order to understand the OAM
generation mechanism, we first consider equation (1). According
to equation (1), the beating between the TEM10 seed with the
Gaussian pump in the x direction will drive a TEM10 daughter
plasma wave component. The beating between the iTEM01 seed
and Gaussian pump in the y direction will drive a iTEM01

daughter plasma wave component. These two plasma wave
components are p/2 out of phase with respect to each other.
Hence, the resulting plasma wave will be a combination of TEM
modes given by dnBTEM10� iTEM01, where the i denotes the
phase difference between modes. According to ref. 1, this mode
combination is equivalent to a Laguerre–Gaussian mode with
‘p ¼ � 1. In order to conserve angular momentum, a new seed
component with ‘1 ¼ 1 will then have to be generated and
amplified in the direction of polarization of the pump. This
process is also illustrated in Supplementary Note 4 and
Supplementary Fig. 3.

It is also possible to reach this conclusion by substituting in
equation (3) the expressions for initial Gaussian pump transverse
profile [A0BTEM00(exþ ey)] and initial TEM seed profile
(A1BTEM10exþ iTEM01ey). This substitution yields a new seed
transverse profile given by A1B(TEM10þ iTEM01)(exþ ey),
corresponding to a Laguerre–Gaussian mode with ‘1 ¼ 1
(ref. 1). Similarly, a circularly polarized Gaussian pump and a
A1BTEM10exþTEM01ey seed (that is, without phase difference
between the TEM10 and TEM01 modes) would also lead to a new
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Figure 4 | Simulation result showing the generation and amplification of a new OAM mode from initial configurations with no net OAM. The new

mode is linearly polarized in x and in y with ‘1x ¼ ‘1y ¼ � 1 from an initial seed polarized in the x direction with a TEM01 mode and in the y direction with a

TEM10 mode that is p/2 out of phase with respect to the TEM01 mode polarized in x. The pump is a Gaussian laser linearly polarized at 45�. The initial laser
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seed component with ‘1j j ¼ 1. The plasma can then be viewed as
a high-intensity mode converter.

Figure 4 shows results from a 3D simulation that confirms
these predictions (see Table 1 for simulation parameters). The
simulation set-up follows the example of Fig. 1c described earlier.
Simulations show that stimulated Raman scattering leads to a
new OAM mode with ‘1 ¼ 1 linearly polarized at 45�. Figure 2c
shows that the amplification rates are comparable to the other
typical scenarios shown in Fig. 2a,b. The change on the field
topology of the seed normalized vector potential shown in Fig. 4,
from plane isosurfaces to helical isosurfaces, indicates the
generation of a laser with OAM from a configuration with
no net OAM. Normalized vector potential isosurfaces, and
projection in the yz direction, form a pattern that repeats each
turn and that rotates clockwise from the front to the back of the
pulse, thereby indicating an OAM with ‘1y ¼ 1.

Discussion
We have so far assumed that the lasers are perfectly aligned. In
experiments, however, the beams can only be aligned within a
certain precision. In the presence of misalignments, our results
will still hold as long as Raman side-scattering can be neglected,
that is, when the angle between the two pulses is much smaller
than 90�. The k-matching conditions are then still satisfied in the
presence of small misalignments because the nonlinear medium,
a plasma in the case of our simulations, absorbs any additional
transverse wave vector component. Thus, momentum is still
locally conserved, thereby allowing for Raman backscatter
processes (interestingly, we note that when using OAM beams,
the wave vectors of seed and pump are already locally
misaligned). Despite lowering the total interaction time, and
possibly the final amplification level, a small angle between the
seed and pump will not change the OAM selection rules and the
overall physics of stimulated Raman scattering.

We note that our seed laser pulse final intensity, on the order of
1017 W cm� 2, and seed laser spot size, on the order of 1 mm,
indicate the production and amplification of Petawatt class
twisted lasers with OAM. Additional simulations (not shown)
revealed the generation and amplification of circularly polarized
OAM modes using a scheme similar to that in Fig. 1b. Moreover,
simulations showed that Raman amplification can also operate in
the absence of exact frequency/wavenumber matching between
seed and pump as long as the seed is short so that its Fourier
components can still satisfy k- and o-matching conditions.

Finally, we note that our results could be extended to other
nonlinear optical media with Kerr nonlinearities. In a plasma, the
coupling between seed and pump is through an electron
Langmuir wave, which also ensures frequency, wavenumber
and OAM matching conditions will hold. In other nonlinear
optical media, molecular vibrations, for instance, would play the
role of the plasma Langmuir wave. We note that the possibility
of OAM transfer has been explored in solids18. Similar
phenomenology as illustrated in this work could also be
obtained in three-wave mixing processes, where an idler wave
could play the role of the plasma Langmuir wave. One advantage
of testing these set-ups in nonlinear Kerr optical media such as a
crystal is that lasers with much lower intensities could be used
(see Supplementary Note 5 for a discussion in nonlinear optical
media with Kerr nonlinearity admitting three-wave interaction
processes). The plasma, however, offers the possibility to amplify
these lasers to very high intensities. This scheme could also
be used in combination with optical pulse chirped pulse
amplification to pre-generate and pre-amplify new OAM modes
via stimulated Raman scattering before they enter the plasma to
be further amplified. Similar configurations (for example,

stimulated Brillouin backscattering31) can also be envisaged to
produce intense OAM light.

Methods
Set-up of numerical simulations and simulation parameters. Simulations have
been performed using the massively parallel, fully relativistic, electro-magnetic PIC
code OSIRIS19. In the PIC algorithm, spatial dimensions are discretized by a
numerical grid. Electric and magnetic fields are defined in each grid cell and
advanced through a finite difference solver for the full set of Maxwell’s equations.
Each cell contains macro-particles representing an ensemble of real charged
particles. Macro-particles are advanced according to the Lorentz force. Since
background plasma ion motion is negligible for our conditions, ions have been
treated as a positively charged immobile background. The plasma was initialized at
the front of the simulation box that moves at the speed of light c. Note that
although the simulation are performed in a frame that moves at c, the moving
window corresponds to a Galilean transformation of coordinates where all
computations are still performed in the laboratory frame. The simulation
box dimensions were 50
 2,870
 2,870 mm, it has been divided into
650
 2,400
 2,400 cells and each cell contains 1
 1
 1 particles (3.7
 109

simulation particles in total). Additional simulations with 1
 2
 2 particles per
cell showed no influence on our conclusions and simulation results. The pump
laser was injected backwards from the leading edge of the moving window32,33.
In order to conserve canonical momentum, the momentum of each plasma
electron macro-particle has been set to match the normalized laser vector potential.
The particles are initialized with no thermal spread.

The initial OAM seed and pump laser electric field is given by:

E ¼ 1
2

E0w0

w zð Þ
r
ffiffiffi
2
p

w zð Þ

� � ‘j j

L lj j
p

2r2

w2 zð Þ

� �
exp � r2

w2 zð Þ

� �


 exp ik z� z0ð Þþ ikz
1þ z2=z2

R

r2

z2
R
� i 2pþ ‘j j þ 1ð Þarctan

z
Zr

� �
þiy0þi‘f


 �

þ c:c:;

ð4Þ

where c.c. denotes complex conjugate, E0¼ (E0x, E0y) is the laser electric field at the
focus, with (E0x, E0y) being the electric field amplitudes in the transverse x and y
directions, respectively. For a linearly polarized laser, there is no phase difference
between E0x and E0y. For circularly polarized light, both components are p/2 out of
phase, that is, E0x¼±iE0y. In addition w2 zð Þ ¼ w2

0 1þ z2=Z2
r

� �
is the waist of the

beam as a function of the propagation distance z in vacuum, w0 the waist at the
focal plane, Zr ¼ pw2

0=l the Rayleigh length, and l¼ 2pc/o¼ 2p/k the central
wavelength of the laser, o and k are its central frequency and wavenumber,

respectively. In addition, L lj j
p is a generalized Laguerre polynomial with order p; ‘ð Þ,

with ‘ being the index that gives rise to the OAM, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
the radial distance

to the axis, y0 an initial phase and z0 the centre of the laser. We note that all
simulations involving Laguerre–Gaussian modes have p¼ 0. The initial electric
field of an Hermite–Gaussian (TEM) laser is given by:

E ¼ 1
2

E0w0

w zð Þ Hm xð ÞHn yð Þexp � r2

w2 zð Þ

� �


exp ik z� z0ð Þþ i
kz

1þ z2=z2
R

r2

z2
R
� i mþ nþ 1ð Þarctan

z
Zr

� �
þ iy0


 �
þ c:c:;

ð5Þ

where Hm is an Hermite polynomial of order m. Moreover, the wavenumber of the
pump laser (which travels in the plasma) in all simulations presented in Figs 2–4 is
set according to the linear plasma dispersion relation k2c2 ¼ o2 �o2

p, where

op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=me

p
is the plasma frequency associated with a background plasma

density n0, and where e and me are, respectively, the elementary charge and
electron mass. The seed frequency and wavenumber are set according to the
matching conditions for Raman amplification (Table 1).
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29. Mendonça, J. T., Thidé, B. & Then, H. Stimulated Raman and Brillouin
backscattering of collimated beams carrying orbital angular momentum. Phys.
Rev. Lett. 102, 185005 (2009).

30. Fraiman, G. M. et al. Robustness of laser phase fronts in backward Raman
amplifiers. Phys. Plasmas 9, 3617 (2002).

31. Alves, E. P. et al. A robust plasma-based laser amplifier via stimulated Brillouin
scattering. Preprint at http://arxiv.org/abs/1311.2034 (2014).

32. Mardahl, P. et al. 43rd APS/DPP meeting, ‘XOOPIC simulations of Raman
backscattering‘, Paper KP1.108. Bull. Am. Phys. Soc 46, 202 (2001).

33. Mardahl, P. PIC Code Charge Conservation, Numerical Heating, and
Parallelization: Application of XOOPIC to Laser Amplification via Raman
Backscatter. PhD thesis, Univ. California, Berkeley (2001).

Acknowledgements
This work was supported by the European Research Council through the
Accelerates European Research Council project (contract ERC-2010-AdG-267841),
Fundação para a Ciência e para a Tecnologia, Portugal (contract EXPL/FIZ-
PLA/0834/1012) and the European Union (EUPRAXIA grant agreement 653782). We
acknowledge PRACE for access to resources on SuperMUC (Leibniz Research Center).

Author contributions
All authors contributed to all aspects of this work.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Vieira, J. et al. Amplification and generation of ultra-intense
twisted laser pulses via stimulated Raman scattering. Nat. Commun. 7:10371
doi: 10.1038/ncomms10371 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10371 ARTICLE

NATURE COMMUNICATIONS | 7:10371 | DOI: 10.1038/ncomms10371 | www.nature.com/naturecommunications 7

http://arxiv.org/abs/1311.2034
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Theoretical model
	PIC simulations

	Figure™1Generation and amplification of OAM lasers via stimulated Raman backscattering.In Raman amplification, a long pump laser transfers its energy to a short, counter-propagating seed laser in a plasma. The process depletes the pump laser pulse energy 
	Figure™2Simulation results showing the generation and amplification of OAM lasers.Blue refers to the amplification of a Gaussian seed by a Gaussian pump. The initial laser configuration in each panel (a-c) corresponds to the initial set-up illustrated by 
	Table 1 
	Figure™3Simulation results showing the generation and amplification of a new OAM modes.The new mode with  1y =3 grow from a seed with  1x =1 and a linearly polarized pump with a Gaussian profile in the x direction, and with an OAM  0y =2 in the y directio
	Figure™4Simulation result showing the generation and amplification of a new OAM mode from initial configurations with no net OAM.The new mode is linearly polarized in x and in y with  1x = 1y =1 from an initial seed polarized in the x direction with a TEM
	Discussion
	Methods
	Set-up of numerical simulations and simulation parameters

	AllenL.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modesPhys. Rev. A4581851992JesacherA.Shadow effects in spiral phase contrast microscopyPhys. Rev. Lett.942339022005JackB.Holographic ghost imaging and the violation
	This work was supported by the European Research Council through the Accelerates European Research Council project (contract ERC-2010-AdG-267841), Fundação para a Ciência e para a Tecnologia, Portugal (contract EXPLsolFIZ- PLAsol0834sol1012) and the Europ
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




