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Until recently, deprotonative metalation reactions have been performed using 

organometallic compounds that contain only a single metal (e.g., organolithium 

reagents). Since the turn of the millennium, bimetallic compounds such as alkali 

metal magnesiates have begun to emerge as a new class of complementary 

metalating reagents. These have many benefits over traditional lithium compounds, 

including their enhanced stability at ambient temperatures, their tolerance of reactive 

functional groups and their stability in common reaction solvents. In recent years lots 

of attention has been focused on understanding the structure of alkali metal 

magnesiates in an effort to maximize synthetic efficiency and thus shed insight into 

approaches for future rational design. In this chapter, the diverse structural chemistry 

of alkali metal magnesiate compounds reported since 2007 will be summarized.  
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1.1  Introduction  

The deprotonative metalation (deprotonation) of an aromatic ring (i.e., the 

replacement of a hydrogen atom with a metal one) has been known since 1908 

when Schorigin reported that a C-H bond of benzene could be cleaved by a mixture 

of sodium metal and diethylmercury, to yield phenylsodium.1,2 Monometallic 

compounds, particularly organolithium reagents have historically been employed in 

deprotonation reactions.3,4 In recent years, bimetallic variants (one metal being an 

alkali metal, the other magnesium, zinc, aluminum etc.) have come to the fore as a 

new class of compounds capable of smoothly performing deprotonation reactions.5-12 

These reagents often offer enhanced functional group tolerance, greater stability in 

common laboratory solvents, and also reactions can be performed at ambient 

temperature (rather than at −78°C). The bimetallic compounds are often referred to 

as ‘ate’ complexes, a term coined by Wittig in 1951 when he studied bimetallic 

compounds such as the lithium magnesiate LiMgPh3, lithium zincate LiZnPh3 and 

‘higher-order’ lithium zincate Li3Zn2Ph7.13 There was a window of almost five 

decades before chemists significantly exploited ‘ate’ chemistry. Since 2000, the 

number of structural and synthetic studies using bimetallic reagents has increased 

dramatically and due to their wide scope they continue to be a hot topic in modern 

chemistry. Several reviews have been published in this area.6-12 In this chapter, an 

overview of the recent structural chemistry (from 2007-2015) is presented focusing 

specifically at the metal pairs utilized.  

1.2  Lithium magnesiate complexes  

In this section, the surprisingly diverse structural chemistry of recently published 

lithium magnesiate complexes, containing carbon- and/or nitrogen-based anions will 



be surveyed. Since 2007, several different structural motifs have been reported. In 

this section, these will be summarized according to the ligand sets within the lithium 

magnesiate framework.  

1.2.1 Alkyl/Aryl lithium magnesiate complexes 

Lithium magnesiates comprised completely of carbanionic ligands were amongst the 

first ate complexes reported. They are generally prepared by combining the two 

monometallic organometallic species in a hydrocarbon medium that also contains a 

Lewis base donor. Since 2007, contacted ion pair ‘lower order’ lithium (tris)alkyl 

magnesiates (and dimers of this motif) and ‘higher order’ dilithium (tetra)alkyl 

magnesiates, and solvent separated examples have been reported. Examples of 

each of these structural types will be discussed here. 

 

The monomeric tris(carbanion) motif is the simplest structural form of a lithium all-

carbanionic magnesiate. To isolate this particular form, the use of a multidentate 

Lewis basic donor compound is generally required. Hevia and co-workers have 

reported the PMDETA (Nʹ,Nʹ,Nʹʹ,Nʹʹʹ,Nʹʹʹ-pentamethyldiethylenetriamine) solvated 

monomeric lithium magnesiate (PMDETA)LiMg(CH2SiMe3)3 1 (Figure 1).14 It has an 

open-motif, whereby a single CH2SiMe3 alkyl bridge connects the metals. This 

structure is intermediate between a solvent-separated ion pair and a molecule that 

consists of a closed four-membered Li-C-Mg-C ring (vide infra).  

<FIGURE 1 HERE> 

Figure 1: Molecular structure of (PMDETA)LiMg(CH2SiMe3)3 1 

When the denticity of the donor is lowered it is possible to completely change the 

structure of the isolated lithium magnesiate. For instance by using THF, a polymeric 

chain variant [(THF)LiMg(CH2SiMe3)3]∞ 2 is isolated (Figure 2).14 The monomeric unit 



of 2 consists of a closed Li-C-Mg-C ring, and polymer propagation occurs via an 

intermolecular interaction between the CH2SiMe3 group not present in this ring and a 

Li atom. Another interesting and unusual feature of 2 is that the molecule of THF that 

is present binds to the magnesium center.   

<FIGURE 2 HERE> 

Figure 2: Molecular structure of [(THF)LiMg(CH2SiMe3)3]∞ 2 

When 1,4-dioxane is used in place of THF, two different lower order magnesiates 

can be formed depending on the quantity of the donor that is employed, higher 

quantities of donor lead to a polymeric complex which incorporates two molecules of 

1,4-dioxane per monomeric unit, [(1,4-dioxane)2LiMg(CH2SiMe3)3]∞ 3 (Figure 3).14 In 

3, one 1,4-dioxane molecule binds solely to the lithium atom in a monodentate 

fashion (the other O atom does not participate in bonding). The polymeric 

arrangement is formed by a combination of Li-(1,4-dioxane)-Li and Mg-(1,4-dioxane)-

Mg bridges to give a ‘head-to-head’ and ‘tail-to-tail’ repeating pattern.   

<FIGURE 3 HERE> 

Figure 3: Molecular structure of the simplest repeating unit of [(1,4-

dioxane)2LiMg(CH2SiMe3)3]∞ 3 

When a molar deficit of 1,4-dioxane is employed the polymeric ‘tetranuclear’ lower 

order magnesiate [(1,4-dioxane)Li2Mg2(CH2SiMe3)6]∞ 4 is isolated.14 Each 

tetranuclear building block in 4 consists of three fused four membered metal-carbon 

rings: two are LiC2Mg rings whilst the other is a Mg2C2 ring. The junctions occur at 

the Mg atoms.  

<FIGURE 4 HERE> 

Figure 4: Molecular structure of the simplest repeating unit of [(1,4-

dioxane)Li2Mg2(CH2SiMe3)6]∞ 4 



 

The examples discussed thus far are classed as contacted ion pairs as both distinct 

metals are contained within the same molecule. Since 2007, one example of a 

solvent separated lithium tris(aryl) magnesiate (i.e., the complex exists as distinct 

cationic and anionic moieties) has been reported. [Li(THF)4]+[Mg(mesityl)3]−, 5 

(where mesityl is 2,4,6-trimethylphenyl) resembles many other trialkyl/aryl lithium 

magnesiates and consists of a tetrahedrally disposed tetra-THF solvated lithium 

cation and a trigonal planar magnesium tris(aryl) anion (Figure 5).15 

<FIGURE 5 HERE> 

 Figure 5: Molecular structure of [Li(THF)4]+[Mg(mesityl)3]− 5 

 

Another common motif in organomagnesiate chemistry occurs when the compound 

is rich in alkali metal with respect to magnesium. In general, two factors can lead to 

this scenario: 1) and most obviously, if the organolithium to organomagnesium 

reagent ratio employed in the synthesis is 2:1; 2) if the spatial nature of the lower 

order reagent (including steric bulk of anions and donor ligand) precludes the 

inclusion of a further molecule of ‘Li-R’ (R is alkyl/aryl). Since 2007, five complexes 

that can be classed as higher order lithium magnesiates have been reported. The 

first three are structurally similar and are the (trimethylsilyl)methyl-containing 

(TMEDA)2Li2Mg(CH2SiMe3)4 6 (Figure 6a);14 the 1,4-buta-di-ide 

(TMEDA)2Li2Mg[CH2(CH2)2CH2]2 7 (Figure 6b)16 and the heteroanionic 1,4-buta-di-

ide, diphenyl-containing (TMEDA)2Li2Mg(Ph)2[CH2(CH2)2CH2] 8 (Figure 6c).16 

Complex 7 was prepared by treating 1,4-dilithiobutane with THF-solvated 

magnesium dichloride; whereas 8 was produced by combining 1,4-dilithiobutane with 

dioxane-solvated diphenylmagnesium.  



 

<FIGURE 6 HERE> 

Figure 6: Molecular structure of a) (TMEDA)2Li2Mg(CH2SiMe3)4 6; b) 1,4-buta-di-ide 

(TMEDA)2Li2Mg[CH2(CH2)2CH2]2 7; and c) (TMEDA)2Li2Mg(Ph)2[CH2(CH2)2CH2] 8 

 

The remaining two higher order magnesiates, have a subtly different structure and 

can be described as ‘magnesiacyclopentadienes’.17 By reacting substituted 1,4-

dilithio-1,3-butadienes with 0.5 molar equivalents of MgCl2 in the presence of 

TMEDA, the spiro-dilithio magnesiacyclopentadiene complexes 

(TMEDA)2Li2Mg[CR1
2(CR2

2)2CR1
2]2 9 and 10 (for 9, R1 = SiMe3; R2 = Me; and for 10, 

R1 = SiMe3; R2 = Ph) are formed (Figure 7).    

 

<FIGURE 7 HERE> 

Figure 9: Molecular structure of a) (TMEDA)2Li2Mg[C(SiMe3)2(CMe2)2C(SiMe3)2]2 9 

and b) (TMEDA)2Li2Mg[C(SiMe3)2(CPh2)2C(SiMe3)2]2 10 

1.2.2 Amido lithium magnesiate complexes 

In keeping with the chemistry discussed thus far, tris(amido) lithium magnesiate 

complexes can be grouped into lower order (contacted or solvent separated ion 

pairs) and higher order species. Since 2007, it appears that only one tris(amido) 

lower order lithium magnesiate has been synthesized namely the dimeric unsolvated 

lithium magnesium guanidinate Li2Mg2(hpp)6 11 (Figure 8) (where hpp is 1,3,4,6,7,8-

hexahydro-2H-pyrimdo[1,2-a]pyrimidide).18 The guanidinates anions adopt two 

different coordination modes – one bridging between two metal centers; the other 

between four metal centers.  

<FIGURE 8 HERE> 



Figure 8: Molecular structure of Li2Mg2(hpp)6 11 

Three solvent separated tris(amido) lithium magnesiates have been reported since 

2007. All three are tris(HMDS) (1,1,1,3,3,3-hexamethyldisiliazide) complexes, [Li{(−)-

sparteine)2]+[Mg(HMDS)3]− 12 (Figure 9a),19 [Li{(R,R)-TMCDA}2]+[Mg(HMDS)3]− 13 

(Figure 9b)19 and [Li(IPr)2]+[Mg(HMDS)3]− 14 (Figure 9c)20 [where (R,R)-TMCDA and 

IPr are (R,R)-tetramethylcyclohexyldiamine and 1,3-bis(2,6-di-

isopropylphenyl)imidazolyl-2-ylidene respectively] and have essentially identical 

Mg(HMDS)3 anions. 

 

<FIGURE 9 HERE> 

Figure 9: Molecular structure of [Li{(−)-sparteine2]+[Mg(HMDS)3]− 12; b) the cation of 

[Li{(R,R)-TMCDA}2]+[Mg(HMDS)3]− 13; and c) the cation of [Li(IPr)2]+[Mg(HMDS)3]− 

14 

 

Only one example [Li2Mg{(NDipp)2SiMe2)2] 15 (Figure 10) of a higher order 

heteroleptic amido magnesiate has been published between 2007-2015.21 It 

incorporates the bulky dianionic bis(amido)silane ligand [Me2Si(DippN)2]2−, (where 

Dipp is diisopropylphenyl). The Mg atom is tetrahedrally disposed - η2 (N,N)-bound 

to two bis(amido)silane ligands – and the lithium atoms σ-bind to a N atom of each 

ligand. Further stabilization to the lithium atoms is provided by π-coordination to an 

arene-C atom (not shown in Figure 10).    

 

 

<FIGURE 10 HERE> 



Figure 10:  Molecular structure of [Li2Mg{(NDipp)2SiMe2}2] 15. Li-Ar bonding not 

shown for clarity 

 

1.2.3 Heteroleptic lithium magnesiate complexes 

So far, only all carbanion or all amido lithium magnesiates have been discussed. In 

this section of the review, heteroleptic lithium magnesiates will be described. The 

section will begin by focusing on mixed carbanion/amido lithium magnesiates. Then 

magnesiates, which contain carbanions (or amido ligands) with other ligands, will be 

discussed. The structural chemistry for this set of molecules is diverse. The simplest 

example is the unsolvated lower order monomeric complex LiMg(HMDS)tBu 16 

(Figure 11).22 The HMDS ligands bridge between the two metals in the structure 

whilst the tBu is terminally bound to the magnesium atom. Further stabilization of the 

lithium atom is achieved by two agostic-type interactions from a pair of CH3-groups 

present on the HMDS ligands.    

 

 

<FIGURE 11 HERE> 

Figure 11: Molecular structure of LiMg(HMDS)tBu 16 

 

Redshaw and co-workers have recently reported the synthesis and structure of a 

monomeric bimetallic calixarene-containing complex (THF)LiMgnBuR* 17 [where R* 

is 1,3-dipropoxy-p-tert-butylcalix[4]arendi-ide].23 The Mg atom in 17 is five 

coordinate, adopting a distorted square pyramidal arrangement with the n-butyl 

ligand sits apically with respect to the four equatorially positioned oxygen atoms. The 

lithium atom has a trigonal planar coordination sphere and bonds to two anionic O 



centers and a THF molecule and it sits within the calixarene cone. Complex 17 has 

been successfully utilized in the ring-opening polymerization of rac-lactide.  

<FIGURE 12 HERE> 

Figure 12: Molecular structure of (THF)LiMgnBuR* 17 

Two halide containing amido lithium magnesiates (THF)3LiMg(TMP)Cl2 18 (Figure 

13)24 and the dimeric [(THF)2LiMg(NiPr2)Cl2]2 19 (Figure 14)25 have recently been 

reported. These are of particular importance to the well-developed synthetic area of 

turbo-Hauser metalation chemistry pioneered by Knochel.26 Complex 18 is 

representative example of the most heavily utilized turbo-reagent and is dinuclear. 

The chloride anions bridge the two metals, the TMP anion adopts a terminal position 

on the Mg cation and three molecules of THF complete the structure – two binding to 

the Li cation and one to the Mg. In contrast, 19 is tetranuclear. A key structural, and 

synthetic difference between the two structures is that the diisopropylamide groups 

adopt bridging positions between two Mg cations at the center of the structure 

resulting in the formation of a dimer rather than a monomer, presumably due to the 

reduced steric influence of diisopropylamide versus TMP.       

<FIGURE 13 HERE> 

Figure 13: Molecular structure of (THF)3LiMg(TMP)Cl2 18 

<FIGURE 14 HERE> 

Figure 14: Molecular structure of [(THF)2LiMg(NiPr2)Cl2]2 19 

 

Akin to their homoleptic analogues, higher order heteroleptic species have also been 

isolated. A series of higher order magnesiates which contain the dianionic (rac)-

BIPHEN ligand have been reported. These include: (THF)3Li2Mg{(rac)-

BIPHEN}(nBu)2 20 (Figure 15);27 (THF)3Li2Mg{(rac)-BIPHEN}(CH2SiMe3)2 21;27 



(THF)2Li2Mg{(rac)-BIPHEN}(tBu)2 22;27 and (THF)2Li2Mg{(rac)-BIPHEN}(2-pyridyl)2 

23 (Figure 16).27 In 20-23 the biphenolate ligand stitches together the three metals 

forming a Li-O-Mg-O-Li zig-zag chain. The key structural framework is completed by 

the alkyl or pyridyl ligands adopting bridging positions between the metals. 

Interestingly 20 and 21 contain three THF molecules whilst 22 and 23 only contain 

two. The compounds were prepared by co-complexation of the dilithium biphenolate 

with the respective dialkyl (or dipyridyl)magnesium reagent. Also 23 could be 

prepared by reacting 20 with 2-bromopyridine showing that 20 is active in 

magnesium-halogen exchange reactions.    

<FIGURE 15 HERE> 

Figure 15: Molecular structure of (THF)3Li2Mg{(rac)-BIPHEN}(nBu)2 20. Complex 21 

is isostructural except that nBu groups are replaced by CH2SiMe3 groups 

<FIGURE 16 HERE> 

Figure 16: Molecular structure of (THF)2Li2Mg{(rac)-BIPHEN}(2-pyridyl)2 23. 

Complex 22 has a similar motif except that the pyridyl groups are replaced by tBu 

groups  

 

Two magnesium-rich species, which adopt cubane-type motifs have recently been 

isolated. The first is the tetranuclear lithium-trimagnesium alkyl alkoxide 

(THF)LiMgMe3(OC6H11)4 24 (Figure 17).28 The metal cations and alkoxide anions 

occupy the corners of the cube, and the methyl ligands are terminally bound to the 

Mg centers. The coordination sphere of the Li cation is completed by a molecule of 

THF. Complex 24 has been employed as a molecular single-source precursor for the 

preparation of MgO nanoparticles which contains lithium. The second cubane thiol-

containing (nBu3N)LiMg3
 tBu3{S(tBu)}4 25 (Figure 18) adopts a structural similar motif 



to 24 and was isolated by Schnöckel and co-workers whilst attempting to access 

Mg(I) complexes.29 

<FIGURE 17 HERE> 

Figure 17: Molecular structure of (THF)LiMgMe3(OC6H11)4 24 

<FIGURE 18 HERE> 

Figure 18: Molecular structure of (nBu3N)LiMg3
 tBu3{S(tBu)}4 25 

Another lithium magnesiate structure has been reported. This structure arises from 

the double magnesiation of N-methyl-1,3-propylenediaminoboryl ferrocene (Fc*-

H2).30 The structural motif of the trimagnesium-bridged ferrocenophane 

(THP)2Li2Mg3(TMP)2(Fc*)2 26 (Figure 19, where THP is tetrahydropyran) has been 

observed previously.31  

<FIGURE 19 HERE> 

Figure 19: Molecular structure of (THP)2Li2Mg3(TMP)2(Fc*)2 26 

 

1.3 Sodium magnesiate complexes 

1.3.1 Donor-free homo- and heteroleptic sodium magnesiate complexes 

Tri organo sodium magnesiates can be prepared as solvates using common donor 

molecules (TMEDA, PMDETA, THF etc.) or as solvent-free complexes. The 

presence of polar alkali metals in their formulations is often required to increase their 

solubility in hydrocarbon solvents, often at the cost of altering their aggregation 

states in solution. If the anions within the magnesiate are judiciously chosen, 

polymeric (or highly oligomeric) aggregation states in the solid state can be 

achieved. 

 



The polymeric sodium magnesiate [NaMg(CH2SiMe3)3]∞ 27 is an example of  a 

homoleptic tri-basic alkyl deprotonating agent.32 Related species have been used in 

deprotonation reactions, for instance, its nBu analogue [NaMg(nBu)3]33 has been 

used as an effective deprotonating reagent of a certain sterically demanding ketone 

(2,4,6-trimethylacetophenone) for preparing mixed metal enolate complexes,34 and 

more recently to deprotonate benzophenone imine to give sodium magnesium ate 

complexes containing ketimino anions.35  

 

The homoleptic sodium magnesiate 27 (Figure 20) represents the first example of a 

structurally characterized solvent-free tris-alkyl sodium magnesium ate complex 

reported in the literature. Complex 27 exists as a solvent-free polymeric ate –

prepared by a co-complexation approach by mixing the monometallic alkyls 

NaCH2SiMe3 and Mg(CH2SiMe3) in an n-hexane/toluene solvent mixture.32 The 

organo alkali metal reagent NaCH2SiMe3 interacts with the diorgano magnesium 

complex Mg(CH2SiMe3) to formally give a ‘NaMg(CH2SiMe3)3
’ moiety by electrostatic 

interactions (Figure 20a). The trigonal planar Mg atom is now bonded to three alkyl 

ligands, one bridges to the Na cation in the asymmetric unit cell whereas the other 

two bridging alkyls are linked to neighboring Na atoms. The absence of Lewis donor 

molecules is crucial in inducing polymerization by forcing the alkali metal Na to 

directly coordinate to a neighboring alkyl groups. This situation results in a 12-atom 

[NaCMgC]3 fused ring which propagates as a honeycomb layered two-dimensional 

infinite network (Figure 20b) in which all CH2SiMe3 ligands are rendered equivalent. 

The bis(amido) alkyl sodium magnesiate [NaMg(HMDS)2(nBu)] 28 (Figure 20c) is 

also polymeric;36 however, it adopts a one-dimensional chain-like infinite polymer 



through an almost linear Na-C(nBu)-Mg bridge. Two bridging HMDS ligands 

complete the trigonal planar coordination sphere of both Mg and Na cations. 

 

<FIGURE 20 HERE> 

Figure 20: a) Molecular structure of [NaMg(CH2SiMe3)3]∞ 27 showing the contents of 

the asymmetric unit. b) Section of the two-dimensional sheet network of 27. c) 

Section of the extended polymeric framework of [NaMg(HMDS)2(nBu)]∞ 28. 

 

Returning to 27, it has been utilized in the promotion of catalytic 

hydroamination/trimerization reactions of isocyanates.37 It also reacts with 

diphenylamine in a 1:3 molar ratio (albeit in the presence of THF) to yield 

[(THF)NaMg(NPh2)3(THF)] 29 (Figure 21). Complex 29 is a contacted ion-pair 

whereby the cationic [Na(THF)]+ fragment exhibits -interactions with two arenes 

groups (in a 5 and 2 fashion) from two distinct diphenyl amido PhN groups. The Mg 

binds to three di-diphenyl-amido ligands and one molecule of THF to complete its 

coordination sphere. Complex 29 acts as a pre-catalyst to selectively promote the 

hydroamination/trimerization reactions of isocyanates  in good yields under mild 

conditions.37 When it is reacted with three molar equivalents of tert-butyl isocyanate 

the reaction yields the novel tris(ureido)sodium magnesiate [(THF)3NaMg(ureido)3] 

30, resulting from the insertion of an heterocumulene molecule in each of the Mg–N 

bonds of 29. In 30 each ureido ligand is fac-disposed and chelates to the octahedral 

Mg center via its O and N atoms forming a four-membered [Mg-O-C-N] ring, while 

the terminal Na atom is bonded to the three O atoms of the ureido ligands and to 

three THF molecules in an octahedral fashion. 

 



<FIGURE 21 HERE> 

Figure 21: a) Molecular structure of [(THF)NaMg(NPh2)3(THF)] 29 and b) 

[(THF)3NaMg(ureido)3] 30 

 

Complex 27 is also an ideal bimetallic precursor for novel solvent-free sodium 

magnesiate complexes which contain both alkyl and alkoxide ligands. When 27 is 

exposed to atmospheric oxygen in a controlled manner, the alkoxide containing 

complex [Na2Mg2(OCH2SiMe3)2(CH2SiMe3)4]n 31 is obtained (Figure 22a).38 It 

features a dimeric rearrangement comprising two ‘NaMgR2(OR)’ units giving rise to a 

face-fused double heterocubane structure with two missing corners. Alternatively, 

the complex can be described as a sodium magnesium inverse crown motif (see 

section 1.3.3 for definition) consisting of a cationic eight membered polymetallic 

[NaCMgC]2 ring with four bridging CH2SiMe3 groups between Na and Mg atoms, and 

two alkoxide OCH2SiMe3 guests. Each alkoxide group is bonded to two Mg atoms 

and one Na. In absence of Lewis donor molecules discrete inverse crown units 

propagate in the two-dimensional space by long secondary Na···Me electrostatic 

contacts between the two Na atoms and CH2SiMe3 groups from neighboring inverse 

crown structures (Figure 22b).  

 

<FIGURE 22 HERE> 

Figure 22: a) Molecular structure of [Na2Mg2(OCH2SiMe3)2(CH2SiMe3)4]n 31 showing 

the contents of the asymmetric unit cell. b) Section of the two-dimensional network. 

 

Interestingly, around the same time that the structure of [NaMg(HMDS)2(nBu)] 27 

was reported, Hill and co-workers39 studied the reactivity of an in situ mixture of 



[NaMg(HMDS)2(nBu)] with PhSiH3. The resulting novel higher metal hydride cluster is 

the heterododecametallic complex [Na6Mg6{N(SiMe3)2}8H10] 32 (Figure 23). Two 

distorted octahedral [MgH6] units share two hydride ligands forming a [Mg2H10]. The 

remaining four Mg centers are coordinated to two HMDS and two hydride ligands in 

a tetrahedral fashion and six Na atoms occupy the terminal sites. The formation of 

32 involves distinct metathesis of both nBu and amide ligands present in 27. This 

reactivity pattern indicates the under-represented utility of heteroleptic magnesiates 

for selective metathesis chemistry.  

 

<FIGURE 23 HERE> 

Figure 23: a) Molecular structure of the higher metal hydride cluster 

[Na6Mg6{N(SiMe3)2}8H10] 32 

 

1.3.2 Introducing donors to sodium magnesiate complexes 

The mixed sodium magnesium compounds [Na2(HMDS)2Mg(nBu)2(donor)]∞ (donor is 

TMEDA and (R,R)-TMCDA for 33 and 34 respectively, Figure 24) are isostructural 

and can be considered as the first examples of ‘inverse sodium magnesium ate’ 

complexes. They can be rationally prepared by combining HMDS(H) with a mixture 

of nBuNa and nBu2Mg in the presence of the corresponding donor molecule in a 

2:2:1:1 molar ratio. Normally ate complexes are commonly associated with bimetallic 

systems, whereby one of the metals has higher Lewis acidity (i.e. Mg2+) than the 

other (i.e. Na+), thus the former metal captures mores Lewis basic anionic ligands 

(i.e. alkyl nBu– and amido HMDS–). For 33 and 34, this situation is reversed; these 

polymers can be better described as the nBu2Mg moiety formally acts as a Lewis 

base to solvate the dimeric [NaHMDS]2 unit [i.e., the (NaHMDS)2 dimer acts as a 



Lewis acidic entity], hence the new term ‘inverse magnesiate’. Both complexes are 

still polymeric despite the presence of TMEDA and (R,R)-TMCDA donors.  

 

<FIGURE 24 HERE> 

Figure 24: Section of the two-dimensional sheet network of a) 

[Na2(HMDS)2Mg(nBu)2(TMEDA)]∞ 33 and b) [Na2(HMDS)2Mg(nBu)2(R,R-TMCDA)]∞ 

34 

 

The two complexes [(donor)NaMg(TMP)(R)] 35 and 36 are isostructural (Figure 25), 

where donor and R are CH2SiMe3 and TMEDA or nBu and (–)-sparteine, respectively 

for 35 and 36.40 Complex 36 is an example of a chiral mixed-metal, mixed alkyl-

amide sodium magnesiate and represents the first structural example whereby (–)-

sparteine (a highly important ligand in asymmetric synthesis) is chelated to an alkali 

metal other than lithium. Both are discrete monomers consisting of four membered 

Na-N-Mg-C rings with one bridging TMP and alkyl ligand between Na and Mg, and 

one terminal TMP and bidentate chelating ligand, coordinated to Mg and Na, 

respectively. They contain the basic skeleton evident for many bimetallic synergic 

bases and indeed can be prepared by the typical co-complexation protocol in 

hydrocarbon solvent.  

<FIGURE 25 HERE> 

Figure 25: Molecular structure of a) [(TMEDA)NaMg(TMP)(CH2SiMe3)] 35 and [{(–)-

sparteine}NaMg(TMP)(nBu)] 36 

 

Complex 35 has been utilized in the metalation of furan, tetrahydrofuran, thiophene 

and tetrahydrothiophene. Several interesting deprotonation and cleave/capture 



mechanistic insights have been uncovered using this base. For instance, 35 reacts in 

a different fashion with thiophene and tetrahydrothiophene giving rise to different 

structural motifs. Towards the former, 35 behaves as a tri-basic reagent yielding 

[(TMEDA)Na(-C4H3S)3Mg(TMEDA)] 37 which contains three -deprotonated 

thiophenyl moieties (Figure 26a).41 It exhibits three -deprotonated thiophenyl 

molecules that are bonded to Mg in a -fashion and Na is -coordinated to the three 

thiophenyl moieties. TMEDA ligands are coordinated to both Na and Mg atoms, an 

exceptionally rare structural feature in the chemistry of sodium magnesiates. 

When 35 reacts with an equimolar quantity of tetrahydrothiophene, the bis amido 

complex [(TMEDA)NaMg(TMP)2(-C4H7S)] 38 is obtained (Figure 26b). Complex 38 

is structurally related to 35, where an alkyl group has been replaced by the 

deprotonated tetrahydrothiophenyl unit and it represents the first structural example 

of a magnesiated tetrahydrothiophenyl molecule. Interestingly, now the Na atom is 

also interacting in a -fashion with the softer S atom from the tetrahydrothiphenyl 

ligand providing addition stabilization for the -deprotonated substrate.  

 

<FIGURE 26 HERE> 

Figure 26: Molecular structure of a) [(TMEDA)Na(-C4H3S)3Mg(TMEDA)] 37 and 

[(TMEDA)NaMg(TMP)2(-C4H7S)] 38 

 

When 35 reacts with furan, it mirrors the reactivity observed with thiophene acting as 

a dual alkyl-amido base; however, the unexpected dodecasodium hexamagnesium 

ate complex [{(TMEDA)3Na6Mg3(CH2SiMe3)(2,5-C4H3O)(2-C4H3O)5}2] 39 (Figure 

27a).42 This structure is built upon a bridge network containing 10 -deprotonated 

and 6 twofold ,’-deprotonated furan ligands. The core of the structure represents a 



unique structural motif in mixed metal chemistry containing twelve Na and six Mg 

sites, being of the highest nuclearity uncovered via alkali-metal-mediated 

magnesiation.  

Perhaps the most useful feature of 35 is its ability to induce cleavage and capture of 

highly sensitive and elusive molecules. The bimetallic butadiene-diide containing 

complex [{(TMEDA)NaMg(TMP)2}2{1,4-C4H4}] 40 (Figure 27b) was isolated from the 

reaction of 35 with THF, to induce a unique example of cleave and capture chemistry 

through the fragmentation of THF.43 The reaction of 35 with equimolar amounts of 

THF yields this complex as a result of breaking two C-O bonds and four C-H bonds 

of THF to produce the dianionic buta-1,3-diene (C4H4
2–) fragment which has been 

trapped by two terminal dinuclear [(TMEDA)NaMg(TMP)2]+ cationic residues of the 

original base [(TMEDA)NaMg(TMP)2(CH2SiMe3)] 26.  

 

<FIGURE 27 HERE> 

Figure 27: a) Monomeric unit of [{(TMEDA)3Na6Mg3(CH2SiMe3)(2,5-C4H3O)(2-

C4H3O)5}2] 30 with TMEDA and CH2SiMe3 groups omitted for clarity. b) Molecular 

structure of [{(TMEDA)NaMg(TMP)2}2{1,4-C4H4}] 40 

 

The bis amido alkyl complexes [(donor)nNaMg(HMDS)2(alkyl–)] 41 (donor, diethyl 

ether; alkyl, tBu; n = 1)  and 42 (donor, TMEDA; alkyl, nBu; n = 2) are discrete 

monomeric complexes (Figure 28).44 Complex 41 is prepared via a metathetical 

approach by reacting NaHMDS with the Grignard reagent tBuMgCl in a 1:1 molar 

ratio in the presence of Et2O in hydrocarbon solvent with concomitant NaCl 

elimination. Complex 42 is prepared by a different synthetic approach involving the 

deprotonative metalation of HMDS(H) by reacting BuNa, Bu2Mg, in the presence of 



TMEDA in 2:1:1:2 molar ratio in hydrocarbon solution. For 41, its structure consists 

of a 4-membered Na-N-Mg-N ring with both the Na and Mg atoms occupying 

distorted trigonal planar arrangements. Two bridging HMDS ligands are connecting 

Na to Mg and a terminal tBu group is bound to Mg completing its coordination 

sphere. Complex 42 is best described as a loosely contacted ion pair structure for 

where only a single nBu group bridges Na to Mg. The chelation of two molecules of 

TMEDA to Na gives rise to a square pyramidal rearrangement, hampering the 

coordination of a second bridging HMDS amido molecule to Na and preventing the 

formation of a typical 4-membered Na-C-Mg-N ring. 

 

<FIGURE 28 HERE> 

Figure 28: a) Molecular structure of [(Et2O)NaMg(HMDS)2(tBu)] 41. b) Molecular 

structure of [(TMEDA)2NaMg(HMDS)2(nBu)] 42 

 

The tris-amido sodium magnesium ate complex [(TMEDA)NaMg(cis-DMP)3] 43 

(Figure 29) was prepared by mixed-metalation approach.45 Two cis-DMP ligands 

bridge the Mg and Na centers whilst one terminal amido ligand is coordinated to Mg 

completing its trigonal planar coordination sphere. One molecule of TMEDA ligand 

chelates to Na. The isolation of 43 has allowed structural comparisons with other 

related TMP and diisopropylamido magnesiates, and helped postulate that the 

chemistry of cis-DMP(H) resembles the latter amide.  

 

<FIGURE 29 HERE> 

Figure 29: Molecular structure of [(TMEDA)NaMg(cis-DMP)3] 43 

 



1.2.4.6 Solvent-separated sodium HMDS amido magnesiate reagents 

Several solvent-separated sodium magnesiates have been isolated. For instance, 

44-47 are all well-defined charge separated ion pair magnesiates which have the 

generic formula [(donor)2Na]+[Mg(HMDS)3]– (Figure 30).46,47 The four magnesiates 

are constructed by a trigonal planar Mg center ligated to three 

bis(trimethylsilyl)amido ligands in a trigonal planar fashion [Mg(HMDS)3]–. However, 

distinct Lewis donor molecules appears to be perfect donor in the isostructural 

cationic [(donor)Na]+ unit. The donor ligands are chelating Lewis basic molecules, 

TMEDA, (–)-sparteine and R,R-TMCDA, in 44, 45 and 46, respectively. For 45 and 

46, the coordination environment of the Na atom is distorted tetrahedral while 

unusual square-planar-like coordination environment is found in 44. Being (R,R)-

TMCDA and (–)-sparteine bidentate chiral donor molecules commonly used with 

alkali metals, interestingly in the case of 45, the cationic [Na{(–)-sparteine}2]+ 

constitutes the first example in which the alkali metal center is sequestered by two (–

)-sparteine molecules. In contrast, in 47 the Na atom is coordinated by two N-

heterocyclic carbene (NHC) ligands, 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-

ylidene (IPr). N-heterocyclic carbenes are well known two electron -donor ligands 

which steric properties can be easily tuned by modification of the N-bound imidazolyl 

organic residues. They favor unusual bonding modes and low coordination numbers 

in complexes containing metals from across the entire periodic table. However, their 

use in s-block systems is relatively recent and crystallographic data of alkali metal 

containing examples is limited. Complex 47 is the first example in which a neutral 

NHC ligand is bound to sodium. The two IPr ligands are -bound through the sp2-

hybridized-carbenic C atom to the Na in almost a linear array while the harder 



bis(trimethylsilyl)amido ligands are coordinated to the harder Mg metal, in keeping 

with 44-46.  

In general terms, both the anionic [Mg(HMDS)3]– and cationic [Na(donor)2]+ moieties 

are typical structural motifs for solvent-separated alkali metal containing bimetallic 

magnesium complexes. 

<FIGURE 30 HERE> 

Figure 30: Molecular structure of a) [(TMEDA)2Na]+[Mg(HMDS)3]– 44, b) [(R,R-

TMCDA)2Na]+[Mg(HMDS)3]– 45, c) [{(–)-sparteine}2Na]+[Mg(HMDS)3]– 46 and d) 

[(IPr)2Na]+[Mg(HMDS)3]– 47 

 

A special case of solvent-separate sodium magnesiate complex is 

[Na(THF)6]+[(THF)Mg(nBu){(DippN)2SiPh2}]– 48 (Figure 31), where Dipp is 2,6-

diisopropylphenyl,48 prepared by reacting [NaMgBu3]34,49 with the bis(silyl)amine 

Ph2Si(NHDipp)2 in THF. In contrast to the previous examples 44-47, the anionic 

[MgN2(nBu)(THF)]– moiety contains a Mg atom bonded to a bidentate bis amido 

ligand and to an alkyl group. The cationic moiety consists of a [Na(THF)6]+ unit. 

 

<FIGURE 31 HERE> 

Figure 31: Molecular structure of [Na(THF)6]+[(THF)Mg(nBu){(DippN)2SiPh2}]− 48 

 

The reactivity of 48 has been studied in magnesiation reactions and it has been 

discovered that this bulky magnesiate can induce complex magnesium-mediated 

transformations. For instance, simple organomagnesium reagents will deprotonate 

benzothiazole at 2-position; however, 48 initiates a remarkable cascade process with 

benzothiazole at ambient temperature comprising a sequence of C-H 



deprotonations, C-C coupling, ring-opening and nucleophilic addition reactions, 

forming the novel magnesiate 49 (Figure 32). Structural studies unveil that the 

molecular structure contains two similar Mg centers solvated by THF and connected 

by two newly generated trianionic fragments [{C7H4NS}C{NC6H4S}]3– as a result of 

this cascade event. The contacted-ion pair magnesiate 49 is completed by two 

[Na(THF)2]+ and [Na(THF)3]+ units. 

 

<FIGURE 32 HERE> 

Figure 32: Molecular structure of the sodium magnesiate 49. THF molecules form 

the [Na(THF)2]+ and [Na(THF)3]+ units have been omitted for clarity 

 

Complex 48 also reacts as a single mono-alkyl base with N-methylbenzimidazole to 

deprotonate the most acidic C2 site at ambient temperature in THF solution resulting 

in the solvent-separated ion pair derivative [Na(THF)5]+2[{{Ph2Si(NDipp)2}Mg{(N-

methylbenzimidazolyl)-2}}2]2− 50 (Figure 33). The novel structure of 50 contains two 

Na cations solvated by only five THF molecules [Na(THF)5]+ and a dinuclear 

dianionic unit featuring two [{Ph2Si(NDipp)2}Mg{(N-methylbenzimidazolyl}]– units 

linked by two bridging N-methylbenzimidazolyl ligands via its N and C-metallated 

atoms forming a six-membered [Mg-C-N]3 core ring. In addition, each Mg atom is 

bonded to a bulky bis(amido)silyl amide group [Ph2Si(NDipp)2] which chelate the Mg 

atom forming a four-membered [Mg-N-Si-N] terminal ring. 

 

<FIGURE 33 HERE> 

Figure 33: Molecular structure of a) [Na(THF)5]+2[{{Ph2Si(NDipp)2}Mg{(N-

methylbenzimidazolyl)-2}}2]2− 50 (cations not shown), 



[{Na(THF)2}{Mg(C4H4N)2{(DippN)SiPh2(DippNH)}}] 51, and 

[Na(THF)6]+[{Ph2Si(NDipp)(NHDipp)}Mg(NHDipp)2(THF)]− 52 

 

Emphasizing the versatility and polybasic nature of 48, it can act as a di-basic alkyl-

amido reagent, using its single nBu arm and one amido site of its bulky 

bis(amido)ligand to deprotonate certain substrates. For instance, the sodium 

magnesiate [{Na(THF)2}{Mg(C4H4N)2{(DippN)SiPh2(DippNH)}}] 51 (Figure 33b) is 

formed as a result of its deprotonation reaction with pyrrole.50 Complex 51 is a 

contacted ion-pair tris(amido)magnesiate in which the sodium atom exhibits -Na···C 

interactions with pyrrole ligands (5 fashion) whilst the Mg binds to three amido N 

atoms. Two molecules of THF complete the coordination sphere of Na. The Mg atom 

binds to two deprotonated pyrrole ligands and one monodeprotonated bis(amido)silyl 

ligand. 

Highlighting the complexity of these deprotonation reactions, when 49 reacts with the 

primary amine 2,6-diisopropylaniline, the formation of the solvent-separated sodium 

magnesium ion pair complex 

[Na(THF)6]+[{Ph2Si(NDipp)(NHDipp)}Mg(NHDipp)2(THF)]− 52 (Figure 33c) occurred 

as the result of a double amination process involving both alkyl and amido basic 

groups of 49. Despite their similar tris(amido) constitution, the sodium magnesiates 

51 and 52 exhibit different structural features. In 52 the Mg atom adopts a distorted 

four-coordinate tetrahedral geometry bonded to one amido(silyl)amine 

[Ph2Si(NDipp)(NHDipp)] and two N(H)Dipp amido groups (where Dipp is 2,6-

diisopropylphenyl group) and a solvating molecule of THF. Complex 52 exhibits a 

solvent separated structure where the Na is fully solvated by six molecules of THF in 

a distorted octahedral manner. The new N(H)Dipp amino group present in the 



amido(silyl)amine ligand of 52, which is generated by protonation of one of the 

chelating N atoms of the bis-amido(silyl) ligand of 49, does not coordinate to Mg. 

 

Sodium-rich higher-order sodium magnesiates such as the tetra-alkyl magnesiate 

[(TMEDA)2Na2Mg(nBu)4]49 can direct deprotonative metalation of 1-methylindole in a 

regioselective manner towards the 2-position. In keeping with the starting material, 

the product of this reaction is the sodium-rich tetraindol-2-yl magnesium complex 

[(TMEDA)2Na2Mg{(1-methylindolyl)-2}4] 53 (Figure 34).51 It can be prepared using a 

4:1 molar ratio of 1-methylindole to base, mirroring the presence of four basic alkyl 

arms in the metallating reagent. The four basic n-butyl chains have been replaced by 

2-metalated 1-methylindolyl groups giving rise to a tetrahedrally disposed Mg center. 

The two terminal Na atoms are linked to the 5 membered ring of the indolyl systems 

via electrostatic cation -interactions in a 2-manner with the C2 (deprotonated) and 

C3 (proton-bearing) atoms. Each Na atom is additionally solvated by a chelating 

TMEDA donor ligand completing their tetrahedral coordination spheres. This high 

order magnesium ate complex represents the first example of a structure of a C-

magnesiate indolyl system. 

 

<FIGURE 34 HERE> 

Figure 34: Molecular structure of [(TMEDA)2Na2Mg{(1-methylindolyl)-2}4] 53 

 

1.3.3 Inverse crown molecules 

The donor-free sodium magnesium ate complexes of formula [Na4Mg2(TMP)6(arene-

di-ide)] (arene-di-ide = 2,5-C6H3OMe in 54, 3,5-C6H3NMe2 in 55; and 3,5-C6H3Me in 

56; Figure 35) are representative structural motifs of inverse crown complexes.52,53 



Those complexes are coined inverse crowns in view of their topological but inverse 

relation to conventional crown ethers in which the Lewis basic heteroatoms (i.e., 

oxygen) of the host rings trap Lewis acid metal guests (i.e., Li, Na, K etc.). Sodium 

magnesiates 54 and 55 are organometallic intermediates towards the regioselective 

functionalization via deprotonative metalation of aromatic substrates by the solvent-

free sodium magnesium ate complex [Na4Mg2(TMP)6(nBu)2]. They can ultimately be 

converted to organic products by reaction with appropriate Whilst the template base 

[Na4Mg2(TMP)6(nBu)2] reacts with anisole to give regioselective 2,5-di-metalation of 

the arene; with dimethylaniline (an arene which offers steric protection to both ortho-

sites) yields di-metalation in a 3,5-regioselective fashion. Regioselective metalation 

in 3,5-positions of dimethylaniline 55 constitutes the first example in which the 

metalation at both ortho-sites of an aromatic substituted with a traditionally ortho-

directing group has been overridden, breaking the dogma of Directed ortho-

Metalation (DoM) effects.  Similarly, the solvent-free combination of 

nBuNa/TMP(H)/Mg(CH2SiMe3)2 in 2:3:1 molar ratios reacts with toluene to give 3,5-

di-metalation of the arene, 56.  

 

The three complexes 54-56 exhibit similar structural features, two Mg and four 

sodium cations within a 12-atom metal-TMP host ring, where the Mg cations anchor 

the corresponding guest arene-di-ide with four Na cations -bonding in pairs to each 

metallated C position. However, as expected the structures of 2,5- (54) and 3,5-

dimetallated arene (55 and 56) are subtly different due to the different metalation 

regioselectivities of the guest substrates.  

 

<FIGURE 35 HERE> 



Figure 35: Molecular structure of sodium magnesium inverse crowns a) 

[Na4Mg2(TMP)6(2,5-C6H3OMe)] 54, b) [Na4Mg2(TMP)6(3,5-C6H3NMe2)] 55, and c) 

[Na4Mg2(TMP)6(3,5-C6H3Me)] 56 

 

Another example of a sodium magnesium inverse crown is the naphthalen-1,4-diide 

containing [{Na4Mg2(TMP)4(TTHP)2(1,4-C10H6)}] 57 (where TTHP is 2,2,6-trimethyl-

1,2,3,4-tetrahydropyridide) (Figure 36). It is obtained by reacting naphthalene with 

the aforementioned solvent-free sodium magnesium template base 

[Na4Mg2(TMP)6(nBu)2].54 Prior to this result, using conventional alkyllithium or alkali 

metal bimetallic bases naphthalene, had only been regioselective metalated at the 2-

position55 or di-metalated at the 2,6-positions.56 The polymetallic twelve-membered 

Na4Mg2N6 ring resembles that in 54; however, two of the TMP ligands have been 

transformed into TTHP (2,2,6-trimethyl-1,2,3,4-tetrahydropyridide) ligand, formally by 

the loss of methane. 

<FIGURE 36 HERE> 

Figure 36: Molecular structure of sodium magnesium inverse crown 

[Na4Mg2(TMP)4(TTHP)2(1,4-C10H6)] 57 

 

Another inverse crown molecule which has recently been reported contains 

benzophenone imine species [Na2Mg2(PhC=N)6(PhC=NH)2] 58 (Figure 37). Its solid-

state structure shows a bicyclic arrangement, centered on a planar [Mg2N2] four-

membered ring with both Mg atoms bridged both above and below the plane by N-

Na-N linkers.  All the N atoms of the ring system are ketimino anions and exocyclic 

ligands are neutral ketamine molecules which datively bond to the Na cations. The 

eight-membered dicationic [(NaNMgN)2]2+ ring hosts two Ph2C=N– guest anions 



which sit above and below the center of the polymetallic ring and bridge the Mg 

cations.  

 

<FIGURE 37 HERE> 

Figure 37: Molecular structure of sodium magnesium inverse crown 

[Na2Mg2(PhC=N)6(PhC=NH)2] 58 

 

Subjecting benzene to a bis-amido mono-alkyl mixture of 

NaTMP/tBuMgTMP/TMEDA in a 1:2:2:2 molar ratios readily produces the open 

magnesiate complex [{(TMEDA)NaMg(TMP)2}2(C6H4)] 59 (Figure 38). In this 

complex, benzene has been converted to a 1,4-dianion. Comparing this complex to 

compounds like 57, it seems that the addition of TMEDA has resulted in the 

formation of an opening of the inverse crown molecule (with the extrusion of neutral 

NaTMP), whereby the TMEDA chelates to Na cations.  

 

<FIGURE 38 HERE> 

Figure 38: Molecular structure of the sodium magnesium ‘open’ inverse crown 

[{(TMEDA)NaMg(TMP)2}2(C6H4)] 59 

 

1.3.4 Miscellaneous sodium magnesiate complexes 

There are several other structural motifs which are prevalent in sodium magnesiate 

chemistry. The structure of [(TMEDA)2NaMg(CH2SiMe3)2{PhC(NSiMe3)2}] 60 (Figure 

39) displays two anionic alkyl bridging ligands between Mg and Na and a terminal 

bidentate benzamidinate ligand bound to the Mg cation.57 Two bidentate TMEDA 



ligands coordinate to the alkali metal to form a discrete monomeric bimetallic 

contacted ion pair structure.  

<FIGURE 39 HERE> 

Figure 39: Molecular structure of [(TMEDA)2NaMg(CH2SiMe3)2{PhC(NSiMe3)2}] 60 

 

The reaction of [NaMg(NiPr2)3] with two molar equivalents of phenylacetylene in the 

presence of TMEDA yields the bimetallic complex 

[(TMEDA)2Na2Mg2(PhCC)4(NiPr2)2] 61 (Figure 40).58 This complex exists as a 

tetranuclear Na···Mg···Mg···Na near-linear chain stitched together by acetylido and 

amido bridges and is a contacted ion pair of two terminal [Na(TMEDA)]+ cations and 

a heteroleptic dinuclear dianion [Mg2(CCPh)4(NiPr2)2]2–. 

<FIGURE 40 HERE> 

Figure 40: Molecular structure of [(TMEDA)2·Na2Mg2(PhCC)4(NiPr2)2] 52 

 

1.4 Potassium magnesiate complexes 

1.4.1 Inverse crown molecules  

The final part of this chapter will focus on the recent chemistry which has been 

reported involving potassium magnesiate chemistry. The first examples to be 

discussed involve the characterization of solvent-free potassium magnesiates which 

contain two TMP and one n-butyl anion per potassium (or magnesium) cation [i.e., 

‘KMg(TMP)2
nBu’]. Three different oligomeric forms have been reported including 

polymeric [KMg(TMP)2
nBu]∞ 62, tetrameric [KMg(TMP)2

nBu]4 63 and hexameric 

[KMg(TMP)2
nBu]6 64 example (Figure 41). The structures of 63 and 64 are 

architecturally similar to the inverse crowns discussed in section 1.3.3; but they still 

retain the basic n-butyl arm, and as such they have been coined as pre-inverse-



crowns. Pre-inverse crown 64 has been shown to function as a base towards 

naphthalene to induce regioselective mono-deprotonation of the arene at the 2-

position producing inverse crown [KMg(TMP)2C10H7]6 65.59 Complex 62 exists as an 

unusual helical polymer, the backbone of which is repeating [KNMgN] units. This 

chain is supported by K···CH2(nBu)···K interactions generating a series of four-atom 

four-element [KNMgC] rings, fused together along the Mg-C edge to another ring of 

identical composition. Each K cation participates in a shared vertex that links 

neighboring pairs of doubly fused tetranuclear ring systems, favoring the propagation 

of the polymeric chain. The Mg center exhibits a distorted trigonal planar 

arrangement bonded to TMP N atoms of both bridging amido ligand, and the C atom 

of the nBu anion. Tetrameric 63 and hexameric 64 consist of 16-atom and 24-atom 

polymetallic inverse crown-type rings respectively.  

 

<FIGURE 41 HERE> 

Figure 41: Molecular structure of a) 62 showing the contents of the asymmetric unit, 

which corresponds to a single turn of the helical chain, b) 63, c) 64, and d) 65 

 

1.4.2 Introducing donors to potassium magnesiate complexes 

The deprotonation of anisole with the heteroleptic potassium magnesiate 

[(PMDETA)KMg(TMP)2(CH2SiMe3)] 66 (Figure 42) was found to serve as a perfect 

bimetallic system for ‘structurally tracking’ alkali metal mediated ortho-deprotonation 

transformations.60 Starting from 66 and anisole, the first stage of the reaction 

produces an ortho-magnesiated anisole intermediate [(PMDETA)KMg(2-

C6H4OMe)(TMP)(CH2SiMe3)] 67, but the ultimate product is the bis(amido) ortho-

magnesiated anisole complex [(PMDETA)KMg(2-C6H4OMe)(TMP)2] 68 (i.e., a TMP 



ligand has formally been reincorporated into the final product with the elimination of 

alkane). This structural study provided evidence that the heteroleptic base reacts 

kinetically through its TMP arm, but ultimately the alkyl group is the 

thermodynamically more basic ligand. 

 

The molecular structures of 66, 67 and 68 (Figure 42) contain the same [K-TMP-Mg] 

backbone unit, chelated by PMDETA at the K cations. Moving from 66 to 67, the 

terminally disposed ligand on Mg changes from TMP to the alkyl CH2SiMe3. An 

ortho-deprotonated anisole ligand fills the vacated bridging position in 67. Moving 

now from 67 to 68, the terminal site on Mg loses the CH2SiMe3 ligand by reaction 

with TMP(H) and concomitant release of Me4Si but gains a TMP anion. 

 

<FIGURE 42 HERE> 

Figure 42: Molecular structure of a) 66, b) 67 and c) 68 

 

Mg adopts a distorted trigonal-planar geometry within 66-68 and binds to the ortho-

C-site of the aromatic system in the deprotonated intermediates 67 and 68. In 

addition, K engages long -interaction with ipso/ortho-C atoms bonded to Mg in the 

anisolyl ligands. 

 

A novel potassium tris(amido) magnesiate 69 (Figure 43) was prepared61 by 

combining an equimolar mixture of benzylpotassium and di-n-butylmagnesium with 

three molar equivalents of diphenylamine in the presence of THF and PMDETA. 

 

<FIGURE 43 HERE> 



Figure 43: Molecular structure of 69 

 

The molecular structure of 69 comprises a monomeric dinuclear potassium 

magnesiate motif. The tetracoordinate (consisting of three amido groups and one 

THF molecule) Mg cation adopts a distorted tetrahedral arrangement. Two diphenyl 

amido ligands bridge Mg to K; however, perhaps surprisingly, not via the ‘hard’ 

amido N anions. Reflecting the soft nature of the heavier K metal, it engages -

interactions (η6-bonding mode) with two phenyl rings, one from each bridging amido 

group. The second phenyl rings on the bridging diphenylamido ligands do not 

contribute to the stabilization of K.  

 

Two novel potassium tris(amido) magnesiates, namely, [{(–)-

sparteine}K+{Mg(HMDS)3}−]n 70 and [{(R,R)-TMCDA}K+{Mg(HMDS)3}−]n 71 (Figure 

44) can be prepared from equimolar mixtures of KHMDS and nBuMg reacted with 

two further molar equivalents of HMDS(H) in a hydrocarbon medium with the 

corresponding addition of the chiral donor (–)-sparteine and (R,R)-TMCDA 

molecules, respectively.62 Focusing on 70, it has a polymeric structure. In the 

asymmetric unit two [{(–)-sparteine}K+{Mg(HMDS)3}−] ion pairs are linked by an 

agostic-type K···Me interaction with a Me(SiMe2)N unit. Both [Mg(HMDS)3]− anions 

interact with the two K atoms within the asymmetric unit and a third neighboring K 

atom, acting as μ3-bridges, hence supporting the formation of a polymeric 

arrangement. This is the first example of a metal complex which incorporates the 

chiral diamine (–)-sparteine as part of a polymeric framework, and also the first 

example of a K complex containing this chiral diamine. 

 



<FIGURE 44 HERE> 

Figure 44: Molecular structure of a) 70 and b) 71 

 

For 71, mirroring the situation for 70, its molecular structure consists of a contacted 

ion-pair potassium magnesiate [{(R,R)-TMCDA}K}+{Mg(HMDS)3}−]n. The asymmetric 

unit comprises two unique anions [Mg(HMDS)3]− and cations  [{(R,R)-TMCDA}K]+. 

Four K···Me agostic interactions result in the formation of a 12-membered ring motif. 

As for 70, there are no K-HMDS N-amide interactions. Both [Mg(HMDS)3]− units 

coordinate with two K atoms within the asymmetric unit and to a third neighboring K 

atom via long agostic-type interactions, promoting polymerization. In contrast to 70, 

the extended framework of 71 forms a linear arrangement of alternating small 12-

membered and larger 16-membered fused cyclic aggregates. It is the first K adduct 

containing (R,R)-TMCDA as a chiral donor ligand. Bis(benzene) chromium can act 

as a donor towards a potassium magnesiate HMDS amide complex. 

[{K{(C6H6)2Cr}1.5(Mes)}]]+[Mg(HMDS)3]−∞ 72 was obtained from an attempt to 

deprotonate bis(benzene) chromium with a bimetallic KHMDS/MgHMDS2 system in 

the presence of mesitylene.63 As depicted in Figure 45, compound 72 contains 

[Mg(HMDS)3]– anions and K+ cations that are coordinated to three 

bis(benzene)chromium and a mesitylene molecule. Mesitylene is coordinated to the 

K in a η6-manner, whereas the metallocenes are best described as η3-coordinated. 

Complex 72 is therefore a solvent-separated ion pair complex, where mesitylene  

solvates the metal center in the extended framework. All three of the 

bis(benzene)chromium molecules bridge to neighboring K cations, hence the K 

centers act as trigonal nodes to build two-dimensional framework with the 



[Mg(HMDS)3]– unit occupying the interstitial spaces between the layers of adjacent 

sheets. 

 

<FIGURE 45 HERE> 

Figure 45: Molecular structure of 72. Anions are not shown in b) 

 

In the solvent separated potassium magnesiate [(IPr)2K]+[MgHMDS3]− 73 (Figure 

46),20 the K cation is coordinated by two IPr NHC ligands. Complex 73 represents a 

unique example whereby two neutral IPr ligands are -bound to a potassium in a 

near linear arrangement forming the [(IPr)2K]+ cation of 73. This is the first example 

of a K complex where the metal is solely coordinated to NHC donor ligands. 

 

<FIGURE 46 HERE> 

Figure 46: Molecular structure of 73 

 

Three donor solvated potassium tris(alkyl) magnesiates have been characterized 

since 2007. They are: the polymeric lower order [(C6H6)KMg(CH2SiMe3)3]∞ 74, and 

the higher order [(PMDETA)2K2Mg(CH2SiMe3)4] 75 and 

[(TMEDA)2K2Mg(CH2SiMe3)4] 76 (Figure 47).64 Complex 74 has a novel polymeric 

structure, which is formed by a combination of K–CH2, Mg–CH2 bonds and medium-

long K···Me electrostatic interactions. Its monomeric unit comprises a trigonal planar 

Mg bonded to three trimethylsilylmethyl groups and a solvent free K+ ion. 

Trimethylsilylmethyl groups link Mg to K, with K further engaging in interactions 

through a CH2 unit and to one Me group. In addition, K -engages interactions with a 

molecule of benzene in a η6-manner and forms a long contact with a Me of 



neighboring trimethylsilylmethyl groups, propagating the polymeric two-dimensional 

network. 

 

<FIGURE 47 HERE> 

Figure 47: Molecular structure of a) and b) 74, c) 75 and d) 76 

 

The addition of polydentate N-donors, PMDETA or TMEDA to 74 caused its 

deaggregation as well as inducing a redistribution process to yield the higher-order 

potassium magnesiates [(PMDETA)2K2Mg(CH2SiMe3)4] 75 and 

[(TMEDA)2K2Mg(CH2SiMe3)4] 76 respectively with the concomitant elimination of 

neutral Mg(CH2SiMe3)2. The structures of 75 and 76 exhibit similar structural 

features. Both potassium magnesiates display a central distorted tetrahedral C4-

coordinated Mg center flanked by two terminal ionic [(donor)2K]+ units. However, the 

different denticities of the N-ligands impose different coordination modes of the K+ 

ion resulting in subtly different metal arrangements. For 75, a linear K···Mg···K 

arrangement is observed, whereas for 76, a markedly non-linear K···Mg···K 

arrangement is evident.  

 

Two further higher order potassium magnesiates have been reported, both 

containing a bulky bis(amido)silyl ligand. 77 and 78 (Figure 48).65  

 

<FIGURE 48  HERE> 

Figure 48: Molecular structure of a) 77 and b) 78 

 



Complexes 77 and 78 are monomeric where the central magnesium cation is (N,N)-

coordinated (η2) by two bulky di(amido) ligands. The K cations -engage to the 

aromatic substituents of the amido ligand. The only difference between 77 and 78 

are that the K cations in the former are also coordinated to THF molecules – one K 

cation to two, the other to one. The structures exhibit near linear K···Mg···K 

arrangements. 

 

Reported by Hanusa, Okuda et al.66 the potasium magnesiate allyl complexes 

[(THF)KMg(C3H5)] 79 and [(THF)2K2Mg(C3H5)4] 80 (Figure 49) can be prepared from 

bis(allyl)magnesium [Mg(C3H5)2] and one or two molar equivalent of allyl potassium 

[K(C3H5)], respectively, in THF. These potassium magnesium complexes have been 

investigated as initiators for butadiene polymerization and ethylene oligomerization.  

 

<FIGURE 49 HERE> 

Figure 49: Molecular structure of a) 79 and b) 80 

 

In 79, the Mg center is tetrahedrally coordinated by the THF ligand and by three η1-

bonded allyl ligands forming [Mg(C3H5)3(THF)]− units. The K center is coordinated by 

allyl ligands of four different [Mg(C3H5)3(THF)]− units. The allyl ligands show η3-, η2-, 

and weak η1-interactions with K resulting in a distorted octahedral coordination 

geometry. This is the first example of one metal center interacting with six allyl 

ligands. In 80, the Mg center interacts with four allyl ligands in an η1-fashion resulting 

in a distorted tetrahedral coordination geometry and in contrast to 79, no Mg THF 

interactions are observed in the solid state. One of the crystallographically 

independent K atoms is coordinated by one THF ligand and by four allyl groups (η2 



and three η3) resulting in distorted trigonal bipyramidal coordination mode with the 

η2-allyl and the THF ligand in the axial positions. Interactions between K+ ions and 

neighboring allyl ligands favors the propagation of the tridimensional network in both 

potassium magnesiate structures.  

 

1.4.3 Miscellaneous potassium magnesiate complexes 

Heterobimetallic potassium magnesium hydrides can be prepared by selective σ-

bond metathesis route from the corresponding s-block amido alkyls bearing the utility 

amido group HMDS. For instance the potassium hydrido magnesiate 81 (Figure 50) 

can be obtained by reacting [KMg(HMDS)2
nBu], (in situ generated), with PhSiH3 as a 

source of hydride. This protocol provides a powerful methodology for the selective 

Mg–C/Si–H σ-bond metathesis.67 

 

<FIGURE 50 HERE> 

Figure 50: Molecular structure of 81 

 

The molecular structure of 81 is a potassium magnesium hydrido species, which 

contains a Mg−H−Mg bridge and the eight-membered metal-amide ring of 81 is 

chair-shaped. The Mg atoms are forced into a highly distorted tetrahedral 

coordination environment by coordination to two HMDS bridging ligand and a hydrido 

group, and the 'naked' K+ ion participates in the stabilization of the hydrido ligand by 

engaging long K···H interactions. Additionally, this hydrido species can be 

considered as an inverse crown complex as alluded to by Mulvey et al. previously in 

a similar scenario.68 This complex constitutes the most recent addition of a hydrido 

species to the inverse crown family. 



 

Metal−metal bonding constitutes an important area of chemistry, which attracts much 

attention. A number of metal–metal bonds involving both p- and d-block metals have 

been reported in recent years (silicon−silicon triple,69 and chromium−chromium 

quintuple70 bond). In 2004, Carmona and co-workers isolated the first stable 

compound containing a Zn−Zn bond.71,72 In this context, the complex 

[(THF)3K]2[LMg−MgL] 82,73 were L is [(2,6-iPr2C6H3)NC(Me)]22−, represents a new 

Mg−Mg-bonded compound stabilized by a doubly reduced -diimine ligand exhibiting 

a Mg−Mg (Figure 51). 

 

<FIGURE 51 HERE> 

Figure 51: Molecular structure of 82 

 

It was prepared by reduction of a mixture of MgCl2 and the ligand L with K metal in 

THF. Its molecular structure comprises a dimeric structure with a Mg−Mg bond 

length of 2.9370(18) Å, as a salient feature.  

 

 

1.5 Summary 

This chapter has demonstrated the recent progress made in understanding the solid-

state structure of alkali metal magnesiates – key research as structure is inextricable 

linked to reactivity. The advantages that ate complexes have over conventional 

lithium reagents (use of milder reaction conditions, better functional group tolerance, 

and access to hitherto inaccessible synthetic chemistry etc.) ensure that this area of 

research will blossom further in the coming years. This chapter focused only 



magnesiate systems. In addition, alkali metal zincate, aluminate, manganate and 

cuprate systems are also the subjects of continual study and development, and it is 

highly likely that alkali metal ate chemistry will have an important future role in 

synthesis, and complement the massively important and longstanding role that single 

metal organometallic species such as organolithiums play in academia and industry.   
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