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Abstract–This paper presents a new design of zero-voltage-switching (ZVS) buck converter. This new converter utilizes 

a coupled inductor to implement the output filter inductor as well as the auxiliary inductor which is commonly employed to 

realize ZVS for switches. Additional magnetic core for the auxiliary inductor in traditional designs is removed and hence 

manufacture cost is reduced. Moreover, thanks to the series connection between the input and output, the switch voltage 

stress in the steady-state is reduced and thus the ZVS operation can be easier achieved. Then the leakage inductor current 

circulating in the auxiliary switch is decreased, contributing to reduced conduction losses. Especially, low voltage rating 

devices with low on-state resistance can be adopted to further improve efficiency in the application with non-zero output 

voltage all the time, such as the battery charger. Furthermore, the reverse-recovery problem of the diode is significantly 

alleviated by the leakage inductor of coupled inductor. In the paper, operation principle and steady-state analysis of the 

proposed converter are presented in detail. Meanwhile, design considerations are given to obtain circuit parameters. Finally, 

the simulation and experimental results of a 200W prototype circuit are demonstrated to validate the advantages and 

effectiveness of the proposed converter.   

 

 

 

 

None of the material in this paper has been published or is under consideration for publication elsewhere. 

I. INTRODUCTION 

DC-DC converters have been widely utilized in the industrial applications, such as voltage regulator module (VRM), power 

factor correction (PFC), renewable energy system, power supply and so on. In DC-DC converters, high density and high efficiency 

are the main focus of attention [1]. To achieve higher density, a simple yet effective solution is to increase switching frequency, 

which allows for considerable size reduction of the passive component. However, higher switching frequency results in deteriorated 

switching loss and lower efficiency in the conventional hard-switching converters. In order to overcome the conflicts between high 
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switching frequency and low efficiency, zero-voltage-switching (ZVS) techniques [2-27] including quasi-resonant ZVS, multi-

resonant ZVS, zero-voltage-transition (ZVT) and active-clamping ZVS, have been employed to eliminate the turn-on loss which 

is mainly concerned in the high frequency application with majority carrier device such as MOSFET. 

Quasi-resonant converters (QRCs) in [2-5] use LC resonant components to create a zero-voltage turn-on condition for the 

switching device. Therefore, the switching loss is greatly reduced. However, the switch is subjected to high voltage stress which 

is proportional to the load. Besides, a wide switching frequency range is required for the converter to operate with a wide input 

voltage and load range due to the variable frequency control. As a consequence, the suitable application of QRCs is limited. 

Moreover, severe parasitic oscillation between the junction capacitance of the diode and the resonant inductor increases the 

switching noise and the converters instability. Though the oscillation is eliminated in the multi-resonant converters (MRCs) 

through absorbing all parasitic capacitances of switch and diode into the resonance process, severe drawbacks of high voltage 

stress and variable frequency remain [6,7].  

Compared to the QRCs and MRCs, the merit of ZVS operation is retained while the voltage stress is reduced in the ZVT 

converters because the resonant inductor is removed out of the main circuit [8-19]. Moreover, the converter is controlled by pulse-

width modulation instead of variable frequency, which simplifies the circuit design. However, extra switching loss occurs in the 

auxiliary switch as a result of zero-current-switching (ZCS) turn-on and ZVS turn-off [12-14]. The soft-switching characteristic of 

the auxiliary switch is improved in the self-commutated auxiliary circuit, which achieves ZCS turn-on and turn-off for the auxiliary 

switch in [15]. Although the switching loss of the auxiliary switch is improved, the auxiliary circuit is complicated.  In [16,17], a 

simple ZCS auxiliary circuit only consisting of a unidirectional switch and an auxiliary inductor is proposed. But the ZVS of main 

switch will lose under improper voltage conversion ratio [18]. In [19], a slave output was utilized to effectively improve the ZVS 

characteristic but also with the penalty on the increased auxiliary circuit complexity. Therefore, compromise should be made 

between the main switch and the auxiliary circuit. 

The active-clamping DC-DC converters can achieve ZVS for both  main switch and auxiliary switch in [20-26]. Besides, the 

oscillation induced by the diode junction capacitor is suppressed by simply adding a clamping diode and a resonant capacitor [27]. 

However, switches suffer from high voltage stresses in these converters. Moreover, non-isolated converters in [20-21,27] need 

additional magnetic cores to implement the auxiliary inductors, which are also demanded in QRCs, MRCs and ZVT converters. 

Therefore, the volume and the cost are increased. 

In order to eliminate the requirement of additional magnetic cores, non-isolated ZVS DC-DC converters with coupled inductors 

are proposed to implement the auxiliary inductor by the leakage inductor and utilize the magnetizing inductor to acts as a filter 

inductor [28-31]. The elimination of the additional magnetic core results in reduced volume and improved power density. However, 

disadvantages of high voltage stress on the auxiliary diode and increased dc-bias of magnetizing current degrade the improvement. 
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From above, ZVS converters with merits of low voltage stress and reduced magnetic component are considerably desired. In 

the paper, an improved non-isolated ZVS buck converter with a coupled inductor is proposed in Fig.1. The voltage across junction 

capacitors of the main switch S1 and the auxiliary switch S2 are discharged to zero before turn-on by the leakage inductor and 

magnetizing inductor of the coupled inductor, respectively. ZVS operation is realized for both switches and hence reduced 

switching loss and EMI noise are achieved. Moreover, two switches are series connected between the input and the output. 

Therefore, the switches voltage stresses in the steady-state are decreased. Furthermore, benefit of reduced magnetic component is 

retained with the coupled inductor. Also, the dc-bias of magnetizing current is decreased, which can further achieve efficiency 

improvement. 

 The paper is organized as follows. The operation principle of the proposed ZVS buck converter is presented in detail in section 

II. Steady-state analysis is illustrated in section III and design considerations are shown in section IV. The simulation and 

experimental results of a 200W prototype circuit are demonstrated in section V to validate the effectiveness of the converter. 

Finally, conclusion is given in the section VI.  

 

Fig.1. The proposed ZVS buck converter. 

 

II. OPERATION PRINCIPLE 

The proposed converter is shown in Fig.1. It consists of two switches S1-S2 with parasitic capacitors Cs1-Cs2, a diode D1, a 

blocking capacitor Cb and a coupled inductor T1. The coupled inductor T1 is modelled as a magnetizing inductor Lm, a leakage 

inductor Lr and an ideal transformer T1 with turns ratio of  Np:Ns = n:1.  

Key operating waveforms of the proposed converter is shown in Fig.2. Switches S1 and S2 are operated with the asymmetrical 

pulse-width modulation. The operation is composed of 7 different stages in a switching period, and equivalent circuits in different 

stages of a switching cycle are illustrated in Fig.3.  

To simplify the analysis of operation principle, some assumptions are made. 

(1) The magnetizing inductance Lm is much larger than the leakage inductance Lr. 
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(2) The parasitic capacitances Cs1-Cs2 are constant in the switching process and the sum of them is denoted as Cds. 

(3) All components are ideal except for the parasitic parallel capacitors of switches. 

 

Fig.2. Key operating waveforms of the proposed converter. 

Prior to t0, S1 is on and S2 is off. D1 is forward biased. The leakage current iLr is increased while the diode current iD1 is decreased. 

Stage 1 (t0-t1): At t0, the diode current iD1 decays to zero. Therefore D1 is reverse biased. In this stage, the blocking capacitor 

Cb, the leakage inductor Lr and the magnetizing inductor Lm are charged by V1-V2, which is the difference between the input and 

the output. Energy is transferred from the input to the magnetizing and leakage inductors, the blocking capacitor and the output. 

Therefore, the leakage current iLr, the magnetizing current iLm and the blocking capacitor voltage vcb are increased. 
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Stage 2 (t1-t2): S1 is turned off at t1. The parasitic parallel capacitors Cs1 and Cs2 are charged and discharged by the combination 

of the magnetizing inductor Lm and the leakage inductor Lr. The voltage across Cs1, which is denoted as vds1, rises from 0 to V1-V2. 

iLr and iLm are nearly constant in this stage since the magnetizing inductance is large. 

 1
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Stage 3 (t2-t3): The drain-to-source voltage across S1 rises to V1-V2 and the drain-to-source voltage across S2 decays to zero at 

t2, thus the current commutes to the anti-parallel diode of S2. In this stage, Cb resonates with Lr and Lm. The blocking capacitor 

voltage vcb is increased and the voltage across the magnetizing inductor Lm reaches to the output voltage V2 at t3. Then the diode 

D1 starts to conduct. 

 2 22

( ) ( )
( ) ( ) ( )Lm cb

Lr Lr

r m

i t v t
i t i t t t

n L n L
   


  (5) 

 2 2

( )
( ) ( ) ( )Lr

cb cb

b

i t
v t v t t t

C
     (6) 

The average voltage Vcb across the blocking capacitor Cb nearly equals to nV2 as given in (7) when the fluctuation of capacitor 

voltage is small enough to be neglected. 

 
2cbV nV   (7) 

Stage 4 (t3-t4): In this stage, D1 is forward biased and the magnetizing inductor Lm is clamped by the output. Therefore, the 

blocking capacitor Cb resonates with the leakage inductor Lr. The leakage current iLr is decreased while the diode current iD1 is 

increased. To achieve ZVS operation, the active switch S2 should be turned on before iLr turns to negative. In this stage, energy is 

transferred from magnetizing inductor to the output. 
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Stage 5 (t4-t5): S2 is turned off at t4. The voltage across the magnetizing inductor Lm remains unchanged because the diode D1 

is still conducting. Therefore, the parasitic parallel capacitors Cs1 and Cs2 are resonant with the leakage inductor Lr. The voltage 

across Cs2, which is denoted as vds2, rises from zero to V1-V2. 
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Stage 6 (t5-t6): The voltage across S2 rises to V1-V2 and the voltage across S1 decays to zero at t5. Then the leakage current iLr 

flows through the anti-parallel diode of S1. Therefore, S1 is ZVS turned on. In this stage, the leakage current iLr is increased while 

the diode current iD1 is decreased.  
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Owing to the leakage inductor Lr and magnetizing inductor Lm, the falling rate of the diode current iD1 is small. It is mainly 

determined by Lr as shown in (15) since Lm is so large that diLm/dt can be neglected. 
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Stage 7 (t6-t7): The leakage current iLr increases to zero at t6. The state of this stage is the same as the stage 6 except that iLr is 

positive. The switching period ends at t7 when the diode current iD1 drops to zero.  

               

(a) t0-t1                                                                                   (b) t1-t2 

                 

(c) t2-t3                                                                                   (d) t3-t4                           

                 

 (e) t4-t5                                                                                   (f) t5-t6            
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                                                 (g) t6-t7                                                                                                                                                      

Fig.3. Equivalent circuits of the proposed converter in different stages. (a) Stage 1. (b) Stage 2. (c) Stage 3. (d) Stage 4. (b) Stage 

5. (c) Stage 6. (d) Stage 7. 

 

III. STEADY-STATE ANALYSIS   

A. Voltage Transfer Ratio 

From the flux balance of the magnetizing inductor Lm, (16) is derived when the dead-time between S1 and S2 is ignored and the 

effect of the leakage inductor Lr is neglected.  
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where D is the duty cycle of S1. 

Substituting (7) into (16), the voltage transfer ratio M of the proposed converter is calculated in (17). The relationship between 

M and D with different value of n is depicted in Fig.4. To achieve same voltage transfer ratio M, the duty cycle D is increased in 

the proposed converter compared with the conventional buck converter. Therefore, the ripple current of the inductor Lm in (18) is 

decreased. But the maximum transfer ratio is smaller than that of the conventional buck converter, which may result in slower 

transient response. 
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Fig.4. Relationship between M and D in the proposed converter and conventional buck converter. 

It is noteworthy that the effective duty cycle Deff is a little smaller than D. The loss of duty cycle, which is denoted as D , is 

mainly caused by the leakage inductor Lr. As shown in Fig.2, the diode current iD1 is linearly decreased in the interval t4-t7 and 

hence the voltage across magnetizing inductor Lm keeps unchanged. The duration of the interval t4-t7 is mainly determined by the 

falling rate of diode current diD1/dt and the peak diode current iD1,peak. In (19), iD1,peak is approximately derived from the average 

output current Io and the average input current Iin. Then D is derived in (20) from (15) and (19), and the voltage transfer ratio M 

is revised in (21), where effD D D  .  
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B. ZVS Performance of Switches and Reverse-Recovery Problem Alleviation of Diode 

The ZVS operation of S2 can be easily achieved as long as the dead-time between S1 and S2 is appropriate because the energy 

needed is provided by the combination of the magnetizing inductor Lm and the leakage inductor Lr. S1 is ZVS turned on when the 

energy stored in Lr is large enough to discharge the parallel capacitor Cds as shown in (22) and the dead-time td between S2 and S1 

satisfies the relationship in (23). From (22), the ZVS operation in the proposed converter is easier to achieve since the turn-off 

voltage of switches is reduced to V1-V2 and hence less energy is required to store in Lr. Therefore, the conduction loss in the 

auxiliary switch caused by the leakage inductor current is reduced. 
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As shown in Fig.2 and (15), the diode current iD1 is decreased in the interval t4-t7 with the falling rate determined by the leakage 

inductor Lr. Thus, the output diode reverse-recovery problem is greatly reduced.  

C. DC-Bias of Magnetizing Current  

As illustrated in Fig.1 that the magnetizing current iLm is always equal to the sum of the reflected leakage current niLr and the 

diode current iD1, as given in (24). The average leakage current ILr is zero because Lr is series connected with the blocking capacitor 

Cb. Therefore, the dc-bias of the magnetizing current ILm derived in (25) is equal to the difference between the average output 

current Io and the average input current Iin. From (25), ILm is decreased with the increase of voltage transfer ratio M and can be 

much smaller than Io when M is large. 
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D. Voltage Stress 

The turn-off voltage across switches S1 and S2 is equal to V1-V2 because they are in series connection between the input and the 

output. Thus, lower voltage stress is achieved in the steady-state. Especially, in the battery charger application with non-zero output 

voltage, lower voltage rating switches with lower on-resistance can be used, contributing to a reduction of cost and conduction 

loss.  

The diode D1 is reverse biased in the interval t0-t3 as shown in Fig.3 and thus the turn-off voltage across D1 is derived in (26).  

The relationship between the normalized voltage stress of D1 and voltage transfer ratio M is depicted in Fig.5(a).  The turn-off 

voltage VD1 is lower than the input voltage V1 when M with different turns ratio n satisfies in the region A. However, in practical 

application, higher turn-off voltage appears owing to the resonance between the leakage inductor Lr and the junction capacitor of 

D1. Therefore, conventional RCD snubber is usually desired to suppress the spike voltage at the expense of increased conduction 

loss. A simple but effective alternative solution is illustrated in Fig.5 (b) that only one clamping-diode Dc is utilized to clamp the 

diode D1 to the input. The efficiency is improved since the conduction loss of additional resistance in the RCD snubber is avoided. 
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(a) The relationship between VD1/V1 and M with different turns ratio n. 

 

(b) With clamping-diode. 

Fig.5. Voltage-clamping of diode D1.  

 

 

 

 

 

 

 

 

 

 

 

 

E. Comparison of Proposed ZVS Buck Converter and Other ZVS Buck Converters  

Comparison between the proposed ZVS buck converter and other ZVS buck converters is illustrated in TABLE I. In the proposed converter, 

the switch and diode voltage stresses in the steady-state are lowest. Besides, reduced magnetic component is achieved because of the additional 

magnetic core elimination and the reduced DC bias of inductor current. Moreover, ZVS is also realized for the auxiliary switch, which is similar 
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with the active-clamping ZVS converters. Therefore, the proposed converter is expected to achieve improvement on cost and power density 

while retaining ZVS for switches in comparison with other ZVS buck converters.  

TABLE I. Comparison of proposed ZVS buck converter and other ZVS buck converters 

 

Voltage Stress 
DC Bias of  

Inductor Current 

Magnetizing 

Core 

Auxiliary  

Switch 
Switches Diodes 

QRC[4] 𝑉1 + 𝐼𝑜√𝐿𝑟/𝐶𝑑𝑠 𝑉1 𝐼𝑜 2 --- 

ZVT[12] 𝑉1 𝑉1 𝐼𝑜 2 
ZCS-on 

ZVS-off 

Active-clamping[21] 
𝑉1

1 − 𝐷
 𝑉1 𝐼𝑜 2 ZVS 

Coupled-inductor[28] 𝑉1 (1 +
1 − 𝐷

𝑛
)𝑉1 𝐼𝑜 +

1

𝑛
𝐼𝐷 1 --- 

Proposed Converter 𝑉1 − 𝑉2 
𝑉1 − 𝑉2

𝑛
 

𝑉1 − 𝑉2
𝑉1

𝐼𝑜 1 ZVS 

 

IV. DESIGN CONSIDERATIONS 

In this section, the design considerations of the proposed converter are illustrated in detail based on the analysis in Section II 

and III. The specifications of the prototype circuit are shown as following: 

1) Input voltage V1=156 V; 

2) Output voltage V2=48 V; 

3) Maximum output power Po=200 W; 

4) Switching frequency fs=50 kHz. 

A. Turns Ratio and Duty Cycle 

The maximum n can be derived from (21) with the consideration that effective duty cycle D  is less than 1, as shown in (27). 

And the minimum n is calculated in (28) to clamp the turn-off voltage of diode at the input voltage according to (26). The available 

range of turns ratio n with voltage transfer ratio M=0.308 is shown in Fig.6 (a). From (26), the larger n is, the lower voltage stress 

of diode D1 is. However, with a larger n, the corresponding duty cycle D increases as illustrated in Fig.6 (b). Therefore, the peak 

diode current in (19) and the duty cycle loss in (20) are increased. Therefore, both factors should be taken into consideration to 

determine an appropriate value of n. In practical application, the diode D1 is clamped to the input V1 by the clamping diode Dc. 

Hence the turns ratio n is set to 0.9, which is around the minimum n to achieve low peak diode current and duty loss. 

 
1 1

( 1) 1effn D
M M
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 1n M    (28) 
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                                   (a) Available range of turns ratio n.                         (b) Available turns ratio n with different Deff. 

Fig.6. Relationship between turns ratio n and voltage transfer ratio M. 

After the determination of turns ratio n, the effective duty cycle Deff can be derived from (21).  
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B. Magnetizing Inductance 

The magnetizing inductor is charged in the interval t0-t1 and is discharged in the rest of a switching period, as shown in Fig.2.  

From (18), the magnetizing inductance is derived in (30) with the assumption that 0.2 0.2( )Lm Lm o ini I I I    .  
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C. Active Switches and Diodes 

As discussed in Section III, the voltage stress of the main switches is V1-V2. Considering the output voltage V2=0 at start-up 

with the resistance load,  the maximum turn-off voltage Vds1,max=Vds2,max=V1=156V is achieved. And the turn-off voltage of diode 

D1 is clamped at the input voltage with the clamping diode Dc, thus the maximum turn-off voltage Vd1,max=VDc,max= V1=156V. 

The leakage current iLr flows through switches S1-S2 when the switch is on, as shown in Fig.2. The leakage current iLr at different 

time is derived in (31). Then the RMS current of the switches S1-S2 is approximately calculated in (32) and (33), respectively. And 

the average current of diode D1 is approximately derived in (34). Since the diode Dc conducts only when the turn-off voltage of D1 

exceeds the input voltage, the current stress is very low. 

From above, mosfet IRF630 (200V/5.7A@Tc=100°C) is chosen as active switches. MUR620CT (200V/6A@Tc=130°C) is 

chosen for the diode D1 and SK1200 (200V/1A) operates as the clamping diode Dc. 
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D. Leakage Inductance and Blocking Capacitance 

From (22), in order to achieve the ZVS of S1, the energy stored in the leakage inductor must be greater than that of the parasitic 

capacitor. Therefore, the leakage inductance has to satisfy in (35). Substituting iLr3 in (31) to (35), the relationship between the 

ZVS region and the leakage inductance is depicted in Fig.7. In the experiment, the leakage inductance of the coupled inductor is 

7.6 μH, thus the ZVS can be achieved around 15% load condition with the parasitic capacitance Cds=1000pF from Fig.7. 
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Fig.7. ZVS region of proposed converter with Cds=1000pF. 

From Fig.2 and Fig.3, the blocking capacitor Cb is charged by the leakage inductance current iLr in the interval t0-t2. The voltage 

increment can be obtained in (36). Then 5.94bC F can be derived assuming 0.01cb cbV V  . In the experiment, a 10μF capacitor 

is used and thus the voltage variation of blocking capacitor is small enough to be neglected. 
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E. Summary of Design Results 

From above, the design results of topology parameters are concluded in TABLE II. The simulation and experiment are 

implemented with the parameters to verify the correctness of the design and to validate the effectiveness of the proposed converter. 

TABLE II. Topology Parameters 

Parameter Symbol Value Units 

Turns ratio n 0.9  

Magnetizing inductance Lm 1000 μH 

Leakage inductance Lr 7.6 μH 

Blocking capacitance Cb 10 μF 

Switches S1–S2 IRF630  

Diode D1 MUR620CT  
 

Diode Dc SK1200  
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V. EXPERIMENT AND SIMULATION RESULTS 

        

(a) S1 and Lr                                                                         (b) S2 and Cb 

        

                                                      (c) D1                                                  (d) Load current iR and magnetizing current iLm 

Fig.8. Key operating waveforms of the proposed converter from experiment results (a), (b), (c) and simulation results (d). 

Key operating waveforms of the proposed converter from experiment and simulation are shown in Fig.8. The experiment and 

simulation results coincide well with the theoretical analysis. In Fig.8(a) and Fig.8(b), the turn-off voltage of switches S1 and S2 is 

clamped at 108V, which is nearly equal to the differential voltage between the input and the output. Therefore, the voltage stress 

of switches is reduced to near two thirds of the input voltage in the steady state. Furthermore, with the clamping diode Dc, the peak 

turn-off voltage of diode D1 shown in Fig.8(c) is equal to the input voltage. Because no additional resistance is needed, the voltage-

clamping scheme is simpler and more efficient compared with conventional RCD snubber. In addition, the falling rate of the diode 

current is limited by the leakage inductor Lr so that the reverse-recovery characteristic is effectively improved. Since the 

magnetizing current can't be practically measured, Fig.8(d) demonstrates the simulation results with PSIM. It shows that the dc-

bias of magnetizing current is much smaller than the load current because it is decreased to the difference between load current 

and average input current.  
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Fig.9 depicts gate-to-source voltage, drain-to-source voltage and drain-to-source current of S1 and S2 at 20% load condition. 

Before turn-on, the current is1 and is2 flow through the body diodes of S1 and S2, respectively. Therefore, both switches can achieve 

ZVS even under light load condition. As a result, switching loss can be drastically reduced and EMI noise is significantly alleviated. 

 

Fig.9. Experiment wavefoms of gate-to-source voltage, drain-to-source voltage and drain-to-source current of switches S1 and S2. 

The photograph of the proposed converter is shown in Fig.10 (a) and the measured efficiency as a function of the output power 

is illustrated in Fig.10 (b). Owing to the merits of ZVS operation, high efficiency is achieved for the proposed converter over the 

whole power range. At 30% load condition, the efficiency is the highest because the ZVS is achieved while the circulating leakage 

inductor current is low. Therefore, both switching loss and conduction loss are low and maximum efficiency of 95.68% is achieved. 

The conventional buck converter with same switch, diode and switching frequency is built for comparison. It is noteworthy that 

additional RCD snubbers are required to suppress the spike turn-off voltage induced by the resonance between parasitic inductor 

and parallel capacitors of the switch and diode with the hard-switching operation. From the loss distribution depicted in Fig.10 (c), 

the conduction loss of the switches, diode and inductor is always higher in the proposed converter, resulting from the extra 

conduction loss in the auxiliary circuit. But the switching loss is lower owing to the ZVS operation. Moreover, the loss is further 

reduced because of the RCD snubbers elimination. At low load (e.g. Po=40W), the conduction loss occupies a small proportion of 

the total loss, hence the efficiency of the proposed converter is much improved. The proportion enlarges with the increment of 

output power, resulting in increased loss in the proposed converter. Nevertheless, the efficiency is improved in the proposed 

converter at most load condition except for the full load condition, as shown in Fig.10 (b). Besides, with higher frequency,  the 

efficiency and  EMI characteristic can be further improved in comparison with the conventional buck converter owing to the ZVS 

operation.   

vgs1(10V/div) vds1(100V/div)

is1(2A/div)

vgs2(10V/div) vds2(100V/div)

is2(2A/div)

5μs/div



17 

 

 

 

(a) Photograph of the proposed converter. 

 

(b) Measured efficiency. 

 

(c) Loss distribution under output power Po=40W and Po=200W 

Fig.10. Photograph, measured efficiency and loss distribution. 
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VI. CONCLUSION 

In this paper, a novel ZVS buck converter is introduced. With the incorporation of filter inductor and leakage inductor into the 

coupled inductor, the converter has reduced magnetic component while retaining the merit of ZVS. Meanwhile, the turn-off voltage 

of switches is reduced to the differential voltage between the input and output in the steady-state. Therefore, easier ZVS realization 

are achieved for switches since the energy required to discharge the switches parallel capacitors is decreased. Then the circulating 

leakage inductor current can be reduced, which saves conduction loss in the auxiliary circuit. In addition, the turn-off spike voltage 

of the output diode is effectively clamped to the input with a single diode, which makes the proposed converter more efficient. 

Moreover, the leakage inductor limits the diode current decreasing rate and thus improved reverse-recovery characteristic of the 

diode is achieved. The feasibility and advantages of the proposed ZVS buck converter are verified by simulation and experimental 

results based on a 200W prototype circuit with a maximum efficiency of 95.68%.  
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