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Abstract 

This study proposes a methodology for rolling element bearings fault diagnosis which 

gives a complete and highly accurate identification of the faults present. It has two main 

stages: signals pretreatment, which is based on several signal analysis procedures, and 

diagnosis, which uses a pattern-recognition process. The first stage is principally based 

on linear time invariant autoregressive modelling. One of the main contributions of this 

investigation is the development of a pretreatment signal analysis procedure which 

subjects the signal to noise cleaning by singular spectrum analysis and then 

stationarisation by differencing.  So the signal is transformed to bring it close to a 

stationary one, rather than complicating the model to bring it closer to the signal. This 

type of pretreatment allows the use of a linear time invariant autoregressive model and 
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improves its performance when the original signals are non-stationary. This contribution 

is at the heart of the proposed method, and the high accuracy of the diagnosis is a result 

of this procedure.  The methodology emphasises the importance of preliminary noise 

cleaning and stationarisation.  And it demonstrates that the information needed for fault 

identification is contained in the stationary part of the measured signal.    

The methodology is further validated using three different experimental setups, 

demonstrating very high accuracy for all of the applications. It is able to correctly 

classify nearly 100% of the faults with regard to their type and size. This high accuracy 

is the other important contribution of this methodology.   Thus, this research suggests a 

highly accurate methodology for rolling element bearing fault diagnosis which is based 

on relatively simple procedures. This is also an advantage, as the simplicity of the 

individual processes ensures easy application and the possibility for automation of the 

entire process. 

 

Keywords 

Rolling element bearings, fault diagnosis, linear autoregressive modelling, 
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1. Introduction 

Rolling element bearings are considered the most common reason for failures in rotating 

machinery. The literature shows that, for example, roller bearings are considered a 

major reason for over 40% of failures in induction machines [1]. When a fault occurs in 

a bearing, the overall vibration level is affected. If the fault is not detected and the 
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correct decision is not taken in time, the consequences of fault development can be 

catastrophic. Thus, the inspection and detection of faults at an early stage is crucial to 

prevent such consequences. However, detection of this change is sometimes difficult at 

an early stage. A number of strategies have been developed for the purpose of fault 

diagnosis in rolling element bearings, and it is a subject of continuing interest.  

For rolling element bearings, vibration-based fault diagnosis is the most popular 

strategy. This strategy is based on the analysis of vibration signals acquired from 

bearing housings. Many techniques have been developed for analysing bearing vibration 

signals and for the purpose of fault diagnosis [2-4]. Some studies compare the 

performance of different techniques [5-9].  

Generally, these techniques can be divided into non-parametric and parametric. When 

using a non-parametric technique, signals can be analysed in the time domain, using 

parameters such as kurtosis and crest factors [10-12], in the frequency domain, e.g. 

through application of the fast Fourier transform (FFT) [13], and/or in the time-

frequency domain, using techniques such as the wavelet transform [14-20]. 

Bearing signals are almost always non stationary because bearings are inherently 

dynamic. The non-stationarities in the benign bearing are generally due to abrupt 

changes in the bearing signal that might come from a clearance between the bearing 

outer race and the housing, sliding of a rolling element [21]. The non-stationarities can 

also come from the impacts of the damaged and the non damaged part of a bearing, 

flaking of one of the bearing raceways [22].   For this reason, conventional non-

parametric techniques have some limitations. For instance, the FFT is an efficient 

numerical algorithm that transforms signals from the time domain to a frequency 

spectrum; however, it is not appropriate for non-stationary signals [23], and it requires 

long time intervals to form a good resolution spectrum [24]. To overcome the 
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limitations of using FFT with non-stationary signals, a lot of studies for bearing fault 

detection are proposed. Some of these studies include analysing the signal 

instantaneously in its time and frequency domain such as using short term Fourier 

transform  [25] and the wavelet transform [26-29] which are able to present the overall 

view of non-stationary signals in time-frequency domains. Nevertheless, on some 

occasions they are still unable to obtain a good frequency resolution [30]. Others do 

some transformations which are usually aimed at decomposing the signal into a number 

of simpler components such as the empirical mode decomposition [31-33] . But it 

should be noted that these transformations are much more complicated than the 

proposed differencing technique. 

Parametric techniques can be introduced to overcome the problems of the frequency 

resolution limitation associated with non-parametric techniques. They are based on 

considering the bearing vibration signal as time series which can be predicted using a 

suitable model with few parameters [23].  

The use of autoregressive modelling for the purpose of fault diagnosis in rolling element 

bearings has been the subject of several research papers. As bearing vibration signals 

are originally non-stationary, some researchers suggest the use of time-varying 

autoregressive (TVAR) models which take into account the presence of 

nonstationarities in the signal. In [30] a parametric time- frequency spectrum is made 

using a time  varying autoregressive model. Then singular value decomposition (SVD) 

is used to form features which are used as input to a radial basis function (RBF) neural 

network. In [34, 35], three different algorithms, namely, Kalman, extended Kalman and 

modified extended Kalman filter, of model coefficients estimation are investigated. In 

these TVAR models, the model coefficients are assumed to evolve over time in order to 

facilitate the modelling of the non-stationary signals. Nevertheless, there are several 

obstacles implicit in such models. Since the coefficients of such models are evolving 
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over time, it is necessary to adopt a coefficient set with proper evolution; a good initial 

set of coefficients is also required. Thus, the entire process may be jeopardised by an 

improper assumption for coefficient evolution or an inappropriate initial set of 

coefficients. 

Other studies use nonlinear autoregressive models in which the data points of the signal 

are related in a nonlinear form  [36, 37].  However, these models are complex in terms 

of selection of the nonlinear relationship form, and they require relatively long 

computational time. 

There are other forms of AR  models used in the fault diagnosis of rolling element 

bearings, such as periodic time –varying AR model [38]. Such a model assumes that 

bearing vibration signal has cyclostationary behaviour.  

In terms of complexity, linear autoregressive models of time invariant coefficients are 

the simplest way of representing signals. However, these models are suitable for 

stationary signals, while bearing vibration signals are originally non-stationary [39]. To 

overcome this limitation, some pretreatment of signals has been proposed to enhance 

the modelling goodness of fit (i.e. the ability of the model to correctly predict a signal).  

In this study, a new pretreatment is proposed, based on the combination of singular 

spectrum analysis (SSA) and a particular type of stationarisation, the differencing 

technique.  

The pretreatment goals are: 

1. noise suppression using singular spectrum analysis (SSA), as the presence of 

noise deteriorates the quality of model prediction 
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2. Achievement of stationarity by subjecting the non-stationary sub-signals to 

differencing which is essentially a kind of high frequency filtering process. 

Singular spectrum analysis is one of the non-parametric techniques for time series 

analysis. It decomposes a time series (i.e in this research a bearing vibration sub-signal) 

into a number of independent components. These components are generally interpreted 

as trend, periodic components and structure-less noise components. This technique is 

used widely for the analysis of climatic and meteorological time series[40, 41]. 

Recently, it has been used for health monitoring  of tool wear[42], rotor rub problems  

[43] and fault diagnosis in rolling element bearings [44-46]. In [44]  a number of 

statistical features are developed from the trend components and used as input to an 

artificial neural network classifier. Singular spectrum analysis is also applied as a 

multilevel analysis in [45]. A two level cascade   singular spectrum analysis is applied 

and the number of the significant components for signal reconstruction is used as an 

indicator for the bearing condition monitoring. In [46] singular values and the energy of 

the first several principal components are used to form two feature vectors. Both of 

these feature vectors are used as input to the back propagation neural network (BPNN) 

classifier.    

In the present work, SSA is used for the purpose of cleaning the structure-less noise 

before subjecting the signal to AR modelling. It helps in improving the goodness of fit 

of the linear time invariant autoregressive (LTIVAR) model.  

As it was mentioned above there are several techniques that can be used for analysing / 

transforming a non stationary signal. In this study the simplest and most straightforward 

approach for making a signal stationary, the differencing technique is used.  The 

differencing technique somehow has not been used before for stationarising bearing and 

in general machinery signals, although it is very popular in signal analysis and 

biomedical research [47-51].   
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To the knowledge of the authors, no previous applications of the LTIVAR modelling for 

ball bearing fault diagnosis have applied a similar type of procedure to ensure that the 

signal can be modelled by an LTIVAR model. There are other studies that use linear 

autoregressive modelling, some of them also applying pretreatment of the signal, but 

this is done by different methods, e.g. empirical mode decomposition (EMD) [52] and 

amplitude demodulation (AD) [37]; which are generally more complicated than the 

procedure suggested here.  Moreover signal stationarisation has not been taken as the 

basis of the pretreatment.  

It is the opinion of the authors that the above mentioned  two steps of signal 

pretreatment , namely SSA noise cleaning and stationarisation via differencing, 

represent an important improvement to the modelling precision and to the information 

contained by the signal, allowing much greater accuracy in the results of the detection 

and the classification of bearing condition. 

The methodology presented in this work has been developed to achieve accurate and 

complete fault identification. The term ‘complete’ refers to the ability of the 

methodology to detect and identify the condition of the bearing (e.g healthy, IRF…etc) 

and eventually estimate its severity. To the best of the author’s knowledge, the majority 

of previous studies using linear autoregressive modelling have not applied it to fault 

severity estimation. 

The methodology suggested here can be divided into two main stages: 

1. signal pretreatment, which is based on several signal analysis procedures, 

including signal de-noising using SSA, signal stationarisation and the AR 

modelling 

2. signal diagnosis, which is essentially based on a pattern-recognition process. 
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 In the first stage, signals are segmented into a number of equal-length segments, and 

each segment is then subjected to SSA to decompose into a number of components. The 

components of the higher singular values (i.e. higher contribution to the total signal 

variance) are used to reconstruct the new segment (i.e. sub-signal). When the new 

segments are reconstructed, they are subjected to a stationarity test. The non-stationary 

segments, i.e. those which fail to meet the test criterion, are stationarised using the 

differencing technique. The final step in the first stage of this methodology is to subject 

the segments to modelling, using the LTIVAR model and obtaining the model 

coefficients. 

In the second stage (i.e. the signal diagnosis), the LTIVAR model coefficients are 

arranged into feature vectors, and a pattern-recognition approach is used to detect, and 

localise the fault and to estimate its size. The nearest neighbour (NN) classification rule, 

based on the Mahalanobis distance, is suggested for this purpose. In this classification 

approach, the distance of each new feature vector from a testing sample to the 

corresponding signal categories from training sample is checked to assign the feature 

vector to the category to which its nearest neighbour belongs. If for any reason, the 

lengths of the new testing feature vector and that made from the training sample are 

different, they should be equalized to measure the Mahlanobis distance properly. Three 

different possibilities are investigated in this study to see whether vectors length 

equalization may affect the performance of the methodology or not.  Eventually, the 

technique which ensures best classification results is adopted.  

The paper is organised into the following sections: Section 2 presents the pretreatment 

of the data, including signal segmentation, noise suppression using singular spectrum 

analysis SSA, stationarisation and linear AR modelling. Section 3 describes the 

diagnosis method, based on the pattern-recognition process. In Section 4, three case 
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studies for the validation of the method are introduced. In Section 5, the results and 

discussion are presented. Section 6 provides a comparison of the performance of the 

method suggested here with some recent previous works. Finally, concluding remarks 

and proposals for further development of the suggested methodology are given in 

Section 7. 

 

2. Signal pretreatment 

2.1 Signal segmentation  

Signals are segmented to provide more samples and to overcome the difficulty of 

obtaining repetitive measurements from the machine. For each bearing condition, each 

signal is segmented into a number of non-overlapping sub-signals of equal-length. With 

regard to autoregressive modelling, it is generally recommended that the segment length 

should follow the ratio 𝑝 𝑛⁄ < 0.1, where p is the model order and n is the segment 

length [53]. This ratio is recommended because it is known that a greater ratio can affect 

the model’s goodness of fit.  

 

2.2 Singular Spectrum Analysis (SSA) 

 SSA is a statistical procedure which has been used extensively for climate and 

meteorology analysis, but has not yet gained popularity for machinery analysis. It is 

simply principal components analysis applied to the lagged components of a time series. 

SSA is used to decompose the original signal into a number of independent 

components; the principal components (PCs). The initial time series can be then 

reconstructed by using a number of PCs. The primary aim of SSA is to uncover the 
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trend in a signal, particularly its oscillatory patterns. SSA can, however, also be used as 

a noise-cleaning procedure; it is known to clean structure-less noise by transforming it 

into low singular value components [54]. This is the purpose for which SSA is used in 

this study. Only the independent principal components that explain a large proportion of 

the variance of the sub-signal were selected for the reconstruction step. This resulted in 

a considerable improvement in the LTIVAR model’s goodness of fit. In this study, SSA 

was used for decomposing the segmented signals, after which they were reconstructed 

using a number of the principal components. Thus, the procedure has two stages: 

decomposition and reconstruction [55]. 

In the decomposition stage, a sub-signal x of length n , x(1),x(2),…,x(n),is mapped onto 

a window of length (L) to form the so-called trajectory matrix Y (LxK) where K=n-L+1 

(see Eq. (2)). 

 

 

 

The trajectory matrix (Y) is then subjected to singular value decomposition to obtain (L) 

eigenvectors (𝐔𝐢, 𝑖 = 1,2. . , 𝐿) corresponding to (L) eigenvalues (𝜆𝑖, 𝑖 = 1,2. . , 𝐿). Each 

𝜆𝑖 represents the partial variance of the original time series in the direction of the 𝐔𝐢. 

Projecting the trajectory matrix onto each eigenvector provides the corresponding 

principal components (PCi.): 

 

 

𝐘 =

[
 
 
 
 

  

𝑥(1) 𝑥(2)
𝑥(2)  𝑥(3)

𝑥(3) … 𝑥(𝐾)

𝑥(4) … 𝑥(𝐾 + 1)

𝑥(3) 𝑥(4)
⋮

𝑥(𝐿)
⋮

𝑥(𝐿 + 1)

𝑥(5) … 𝑥(𝐾 + 2)
⋮

𝑥(𝐿 + 2)
⋱
…

⋮
𝑥(𝑛) ]

 
 
 
 

                                                   (2) 

𝑃𝐶𝑖(𝑚) =∑𝑌𝑇(𝑚 + 𝑗 − 1)

𝐿

𝑗=1

∗ 𝑈𝑖(𝑚)    
                                                                          (3) 
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where 

 i=1, 2….L; 

m=1, 2…n; 

 j=1, 2…L.  

Then, L elementary matrices 

(𝐄𝐥𝑖 = 𝐔i𝐏𝐂i
′  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … 𝐿  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑚𝑒𝑎𝑛𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒) can be created 

by the projection of the PCs on the Eigenvectors U.  

The contribution of these elementary matrices norms to the original trajectory matrix 

norm follows the trend of the singular values, which is the first matrices have the 

highest contribution while the last ones have the lowest.    

As was mentioned above, the signals can be reconstructed by a linear combination of all 

or a number of the  PCs. Different criteria can be used to select the number of PCs [45]. 

In this study, a number (w) of PCs was selected so that 90% of the original sub-signal 

variance is contained in the new reconstructed signal (𝐱𝐫) . The reconstruction process 

is done by the diagonal averaging technique which is described below[56]:  

 𝑥𝑟(𝑚) =
1

𝑁𝑚
∑ ∑ 𝑃𝐶𝑖

𝑈𝑚

𝑗=𝐿𝑚𝑖∈𝑤
(𝑚 − 𝑗 + 1) ∗ 𝑈𝑖(𝑚)            ,𝑚 = 1,2, , , , 𝑛 − 1       (4) 

The Normalisation factor (𝑁𝑚) and the lower (Lm) and upper (Um) bounds of sums 

differ for the edges and the centre of the signal. They are defined as follows:  

 

(
1

𝑁𝑚
, 𝐿𝑚, 𝑈𝑚) =    

{
 
 

 
 (

1

𝑚
, 1,𝑚) ,        𝑓𝑜𝑟         1 ≤ 𝑚 ≤ 𝐿 − 1

(
1

𝐿
, 1, 𝐾) , 𝑓𝑜𝑟           𝐿 ≤ 𝑚 ≤ 𝐾

(
1

𝑛 −𝑚 + 1
,𝑚 − 𝑛 + 𝐿, 𝐿) ,   𝑓𝑜𝑟      𝐾 + 1 ≤ 𝑚 ≤ 𝑛

     (5)   
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The new reconstructed signals 𝐱𝐫 will be used for the further analysis. 

 

 

2.3 Stationarisation  

Basically, the property of a stationarity of a signal is defined as the consistency of the 

first four statistical moments over the time. Conversely, non stationarity occurs when 

these statistical moments are changing with time.  However, since the above definition 

is too strict and difficult to achieve, a second order or weak stationarity is usually meant 

by the term ‘’stationary’’. And it refers to the case when the first two statistical 

moments are constant over the time [57].  

The suggested procedure uses linear autoregressive modelling as a method for 

extracting the information needed for the diagnosis process. Linear autoregressive 

modelling is a process which has been developed primarily for stationary time series. As 

it was mentioned above differencing is applied to bring the non stationary sub-signal to 

stationarity. However, applying further differencing can introduce high frequency noise, 

it is suggested to check the signal for stationarity and then apply the differencing to the 

nonstationary sub-signals just once. A number of tests have been developed for testing 

the stationarity of a signal. In this study, each reconstructed sub-signal was first tested 

for stationarity using the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [58]. This 

test is used for testing the null hypothesis that the sub-signal is stationary around a 

deterministic trend. If the sub-signal is recognised as non-stationary then it is subjected 

to stationarisation. After applying the test, the differencing technique is applied for the 

purpose of stationarisation only to those signals which were recognized as non-

stationary. The differencing technique  be described using the following equation [57]: 

𝑥𝑟𝑑𝑖𝑓(𝑚) = 𝑥𝑟(𝑚) − 𝑥𝑟(𝑚 − 1),where 𝑚 = 2,3, …𝑛                      (6) 

http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Stationary_process
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𝑥𝑟𝑑𝑖𝑓 is the new stationarised sub-signal. The primary aim of differencing is to 

remove the stochastic trends responsible for the sub-signal non-stationarity (i.e. to 

stabilise the mean of a non-stationary sub- signal [59]). This is the simplest method that 

can be used for the purposes of stationarisation. It is clear that the new transformed sub-

signal (i.e.𝑥𝑟𝑑𝑖𝑓) is shorter than the original one.  

The order of differencing depends on the complexity of the signals.  More specifically, 

if a signal lacks a tendency to return to its mean value then higher order of differencing 

might be required. In general the differencing method is a rather simple but powerful 

process so on most occasions quite high stationarity is achieved through just one 

application. In most studies which apply differencing for other purposes not related to 

fault diagnosis and machinery dynamics the process is applied just once [60-62].  

In this work, one application of differencing was sufficient to bring the sub-signals to 

stationary ones. 

The differencing technique has been used for purposes of stationarisation in climate 

research [63]; to the knowledge of the authors, however, it has not been used in the field 

of machinery fault diagnosis. 

 

2.4 Linear AR Modelling 

Once the sub-signals (i.e. bearing vibration signals) are stationarised they can be 

represented by the linear autoregressive (AR) model. 

 The structure of a linear AR model can be described as follows [64]: 

𝑥𝑟(𝑚) = 𝑎𝑜 + 𝑎1. 𝑥𝑟(𝑚 − 1) + 𝑎3. 𝑥𝑟(𝑚 − 2) +⋯+ 𝑎𝑝. 𝑥𝑟(𝑚 − 𝑝) + 𝜀(𝑚)         (7) 
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where 

 xr(m) is the predicted signal value at time m which is linearly related to (p) previous 

values; 

 p is the order of the model; 

 ai (i =0,1,2…,p) are weighting coefficients (i.e. model coefficients); 

𝜀(𝑚) is the error term, which represents the difference between the actual and linearly 

predicted values. 

The model coefficients can be estimated using different algorithms. In this research, the 

least square algorithm was used. The performance of the model (i.e. goodness of fit) in 

representing the experimental signal data is measured by calculating normalised loss 

function based on the normalised mean square error (NMSE), as given by the equation 

below: 

𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝐹𝑖𝑡|𝑁𝑀𝑆𝐸 =

(

 1 −
√∑ (𝑥𝑟𝑝𝑟(𝑖) − 𝑥𝑟𝑚𝑠(𝑖))

2
𝑖=𝑛
𝑖=1

∑ 𝑥𝑟𝑝𝑟(𝑖) −
𝑖=𝑛
𝑖=1 𝑥𝑟̅̅ 𝑚̅𝑠

)

 ∗ 100%                  (8) 

where: 

𝑥𝑟𝑝𝑟 is predicted sub-signal; 

𝑥𝑟𝑚𝑠 is the real time measured sub-signal; 

𝑥𝑟̅̅ 𝑚̅𝑠 is the mean value of real time sub-signal; 

n is the number of data points (i.e. sub-signal length). 
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The calculations for the least square algorithm and the NMSE values mentioned above 

were carried out using MATLAB. 

 

2.5 Model order selection  

The determination of the optimum model order is of great importance, as an incorrect 

model order can lead to either over-fitting or under-fitting, which both give poor model 

prediction and result in a poor and/or false diagnosis [34, 65] Thus, a proper order 

selection can reduce the errors of over-fitting or under-fitting considerably. Several 

methods, based on increasing the model order and calculating an error criterion function 

of model prediction, have been developed for determining the optimum model order. 

This function is primarily based on the calculations of the residual sum of squared errors 

between the predicted and measured data. The optimum model order minimises the 

error criterion function. In this research, the final prediction error (FPE) criterion is 

used. This FPE criterion can be defined in the following way (Eq. (9)): 

𝐹𝑃𝐸 = 𝑉. (1 + 𝑝 𝑛⁄ ) (1 − 𝑝 𝑛⁄ )                                                  (9)⁄  

where 

V is the loss function which is the variance of the residuals (i.e. the difference between 

the predicted and the actual signal); 

p is the model order; 

n is the number of data points.  
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According to this criterion, the model order corresponding to the minimum value of 

FPE is selected as the optimum order 

 

2.6 Dealing with model orders  

There might be some cases where the model orders for different signals/signal 

categories are not the same as some fault types may require a different model order. As 

these model orders will represent the lengths of the feature vectors formed for the 

diagnosis stage, it means the lengths of the feature vectors will not be the same.   In this 

case, the equalising step is necessary in order to apply the NN rule properly in the fault 

diagnosis stage. Three different possibilities are investigated to see whether the way of 

equalising can affect the performance of the methodology or not.  Assuming that the 

minimum and maximum optimum orders for several signals/categories are (pmin) and 

(pmax) respectively, the equalising possibilities are:- 

2.6.1 Zero padding. In this procedure the feature lower order vectors (l< pmax) 

are transformed by adding (pmax – l) zero elements at the ends (see Figure 

1). Eventually all the feature vectors acquire the maximum length  pmax..  

 

 

 

2.6.2 Variance Threshold Method: In this method, it is proposed to select the 

model coefficients which have the highest variance contribution among 

the feature vectors. This can be done using the variance threshold method 

(pmax – l) elements 

[𝑎𝑜 𝑎1 𝑎2   ….    𝑎𝑙  0 0 0  0] 

[𝑎𝑜 𝑎1 𝑎2……  ….    𝑎𝑝𝑚𝑎𝑥
] 

 

Figure 1: Illustration of zero padding. 
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(VTM), which proposes to select only the model coefficients with a 

variance higher than the mean value of all the features vectors variances. 

2.6.3 Trimming. It is proposed to trim/cut the features vectors of length l, 

where l> pmin, to length (pmin). If [ao a1 a2…….al] is a longer feature 

vector (i.e. l> pmin), then its last l- pmin components are removed and the 

new vector is [ao a1 a2…….a Pmin] (see Figure 2). 

 

 

 

In this research, all the three possibilities above were applied during the detection and 

the fault identification stage. The best one in terms of highest correct classification rate 

was selected and used further for the next stage of fault severity estimation. 

 

3 Diagnosis Method 

 In this study feature vectors, which are made of the coefficients of the autoregressive 

models (see Section 2.4) of the sub-signals, are used in the diagnosis stages.  The 

coefficients of each LTIVAR model, after being subjected to one of the above 

procedures in order to equalise their numbers, are ordered to form the feature vectors. 

Thus each feature vector is made of the coefficients corresponding to a certain sub-

signal. In the first stage, the sub-signal is assigned to one of the categories 

corresponding to different bearing conditions mentioned above. Once a signal was 

identified as faulty in the first stage, it is further classified in the second stage into one 

cut (l-pmin) elements 

[𝑎𝑜 𝑎1 𝑎2   ….    𝑎𝑙−3  𝑎𝑙−2  𝑎𝑙−1  𝑎𝑙  

[𝑎𝑜 𝑎1 𝑎2…    𝑎𝑝𝑚𝑖𝑛
] 

 

Figure 2: Illustration of trimming. 
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of the fault severity levels (small, medium and large). According to the introduced 

stages the following signal categories are adopted. For the first stage four categories are 

used, namely healthy bearings signals (H), Inner race fault signals (IRF),Outer race fault 

signals (ORF) and ball bearing fault signals (BF). For the second stage of the severity 

estimation only three categories are used, namely small faults (S), medium faults (M) 

and large faults (L). For both stages, the identification and the severity estimation, the 

feature vectors are divided into two samples: a training and a testing sample. The 

feature vectors from the training sample were used to define the matrices corresponding 

to each signal category (Ka matrices for the first stage and Kb for the second stage). 

Each of these matrices is formed by arranging the corresponding feature vectors in 

rows, (see Eq (10)). Ka =1, 2…4 and Kb=1,2,3) 

For each matrix, the number of columns equals the number of model coefficients which 

is the optimum model order (p), while the number of rows (N) equals number of sub-

signals in that category: 

𝐇𝐾𝑖 = [

𝑎𝐾𝑖11 𝑎𝐾𝑖12 .
𝑎𝐾𝑖21 𝑎𝐾𝑖22 .
.

𝑎𝐾𝑖𝑁1

.
𝑎𝐾𝑖𝑁2

.

.

    𝑎𝐾𝑖1𝑝
    𝑎𝐾𝑖2𝑝.
     𝑎𝐾𝑖𝑁𝑝

]                                                (10) 

                                                                           
 

where Ki corresponds to one of the categories in the diagnosis stages (i.e. fault 

identification 𝐾𝑖 ∈ 𝐾𝑎 and quantification 𝐾𝑖 ∈ 𝐾𝑏). 

For both fault classification stages, the nearest neighbour (NN) method [66]was used. 

According to this method, a feature vector is assigned to its nearest category. In this 

study, the distances of a feature vector to each of the categories (represented by matrix 

𝐇𝐾𝑖 (see Eq. (10)) were measured by using the Mahalanobis distance. The Mahalanobis 

distance measures the distance between a vector and a set of vectors. Here it was used to 

measure the distance between a feature vector and a matrix 𝐇𝐾𝑖 . 
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The mean of the row feature vectors for each of the matrices 𝐇𝐾𝑖  is calculated as 

follows:
 

         𝐄𝐾𝑖 =
∑ (𝑎𝐾𝑖𝑗1……………

𝑎𝐾𝑖𝑗𝑝
)𝑁

𝑗=1

𝑁
                                                           (11) 

The Mahalanobis distance to the mean vectors EK  is measured according to: 

𝐷𝐾𝑖(𝐟𝐯, 𝐄𝐾𝑖) = (𝐟𝐯 − 𝐄𝐾𝑖). 𝐒
−1. (𝐟𝐯 − 𝐄𝐾𝑖)

′
                                    (12) 

where  

𝐷𝐾  is Mahalanobis distance; 

𝐟𝐯 is a feature vector from the testing sample; 

𝐒−1 is the inverse of the category covariance matrix 𝐇𝐾𝑖. 

The prime ( ′ ) denotes the transpose of the vector (𝐟𝐯 − 𝐄𝐾𝑖). 

It is important to mention that both (𝐟𝐯, 𝐄𝐾𝑖) lengths are already equalised using one of 

the procedures described in Section 2.6.  

When the distances of a new feature vector to each of the categories are obtained, 

the vector is classified to the category for which the distance above (see Eq. (12)) has a 

minimum; that is, fv belongs to the category for which 𝐷𝐾𝑖(𝐟𝐯, 𝐄𝐾𝑖) has minimum over 

all Ki. 

Figure 3 shows the stages of the diagnosis procedure. It is clear from the figure that in a 

case in which the new feature vector is assigned as healthy, it will not go further for the 

second stage of diagnosis. 
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Figure 4 shows the block diagram of the whole process of the methodology. There are 

three main blocks in the flow chart (1, 2 and 3), each bordered by a dashed rectangle.  

 Block 1: the stages of signal pretreatment. 

 Block 2: Fault identification. 

 Block 3: Fault severity estimation. 

 

 

Figure 3: A scheme illustrating the bearing condition categories for 

both the diagnosis stages 

A new feature vector 

Stage 1 

Stage 2 

Class 1(i.e H) Class2 ……..… Class Ka 

… 

 
𝑆𝑖𝑧𝑒1(𝑖. 𝑒 S) 𝑆𝑖𝑧𝑒𝐾𝑏  … 

 
𝑆𝑖𝑧𝑒1(𝑖. 𝑒 S) 𝑆𝑖𝑧𝑒𝐾𝑏  
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Figure 4: A block diagram illustrating the proposed classification method 
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3 

Calculation of the Kb 
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(12)) 

1 
mo

Kb 

 

Fault severity 
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Ka 

2 
Identify the bearing 

condition according 

to the minimum 𝐷𝐾𝑖 
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The performance of the methodology was estimated by using the so-called confusion 

matrix. The confusion matrix is a square (Kk x Kk) matrix, where Kk (i.e, either Ka or Kb) 

is the number of sub-signal categories. The columns represent the predicted classes, 

while the rows represent the actual classes. Thus, the main diagonal represents the 

correctly categorised signals, while all the other elements represent the miscategorised 

signals. The name ‘confusion’ stems from the fact that this matrix makes it easy to 

evaluate whether the proposed methodology confuses two or more classes (i.e. 

mislabelling one category as another). Table 1 shows the structure of a confusion 

matrix: 

Actual 

class/predicted 

class 

1 2 ...... Kk 

1 C11% C12% …… C1Kk% 

2 C21% C22% …… C2Kk% 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Kk CKk1% CKk2% …… CKkKk% 

 

Table 1: An example of a confusion matrix 
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Cij (i and j =1,2…Kk) refers to the percentage of vectors from class i which are 

classified as class j. It is clear that if i=j, then Cij represents the percentage of correct 

classification. If i≠j, then Cij represents the percentage ratio of the misclassification. 
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4 Method verification-case studies 

The methodology was tested and validated using several bearing vibration datasets 

obtained from different test rigs. 

4.1  Case Study 1 

The bearing vibration data were obtained from the test rig of Case Western Reserve 

University (CWRU). The data-bearing centre [67] shown in Figure 5 consists of a 2 HP 

three-phase induction motor: a dynamometer. The drive end bearing (SKF 6025 deep 

grove ball bearing) data were used in this analysis. An electrical discharge machine was 

used to introduce single point faults in the bearing raceways and ball elements of 

different bearings with fault diameters of 0.007, 0.014, and 0.021 inches and a depth of 

0.011 inches. The bearing vibration data were obtained at a sampling rate of 12 kHz for 

different fault sizes, with speed varying from 1797 rpm (0 HP) to 1730 rpm (3 HP). The 

data for the outer race fault were taken with the fault position centred at the 6 o’clock 

position with respect to the load zone. 

 

 

 

           

 

 

 
Figure 5: The bearing test rig [65] 

 

 



25 

 

4.2 Case Study 2 

The test data for this case study was acquired from a bearing test rig at Strathclyde 

University/Department of Mechanical and Aerospace Engineering, shown in Figure 6. 

The test rig consists of a 1Hp shunt DC motor, bearing assembly and a mechanical 

loading system. The bearings used in the experiment are SKF deep grooves 6308. The 

motor shaft’s torque is transmitted to the test bearing assembly by a pinion-toothed belt 

mechanism. As the pinions at the motor and the entrance of the bearing assembly are of 

different diameters, the rotational speed of the test bearing shaft is measured by a 

contactless tachometer. Faults were introduced using an electrical discharge machine on 

the inner raceway and outer raceway using different bearings with a fault diameter of 

0.05 inches. The bearing vibration data were obtained for healthy, inner raceway and 

outer raceway fault conditions at two rotational speeds (350 and 500 rpm).  Signals 

were obtained at a 2.5 kHz sampling rate.  

 

 

Figure 6: Bearing test rig at Strathclyde University 
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4.3  Case Study 3 

The data were acquired from a test assembled at the Department of Mechanical and 

Aerospace Engineering of Politecnico di Torino by the Dynamics & Identification 

Research Group (DIRG) (Figure 7) [68]. The signals were acquired at a 102.4 kHz 

sampling frequency for both healthy, defective inner raceway and defective roller 

bearings at 500 Hz speed and 1.8 kN load. The fault diameters were 0.006, 0.0098 and 

0.0178 inches. 

 

 

 

 

 

 

 

5   Results and discussion 

The bearing vibration signal sets that were considered in the validation of the 

methodology are labelled as (CW) for the data corresponding to Case Study 1 (i.e. 

CWRU), (ST) for those data corresponding to Case Study 2 (i.e. Strathclyde) and (PT) 

for those corresponding to Case Study 3 (i.e. Politecnico di Torino) 

 

Figure 7: DIRG test rig, the triaxial accelerometers (X, Y, Z) and the damaged roller 

used in the tests [56] 
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5.1   Signal pretreatment  

In this section, the steps of the signal pretreatment stage are illustrated visually. A 

sub-signal from a bearing with a small fault on the inner race (e.g case study3) is 

used as an example.  Figure 8 shows the raw sub-signal in the time domain. The x-

axis represents the number of points (2048) and the y axis represents the 

acceleration of the bearing vibration in m/s
2
. 

 
 

  

 

 

As mentioned in Section (2.2), the signal is decomposed by the singular spectrum 

analysis into a number of components. Figure 9 shows the original sub-signal as well as 

the first five components obtained by the SSA. It is clear that the first component 

corresponds to the trend of the signal. 

Figure 8: A signal from data set 3, a bearing with inner race fault 
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As mentioned above in Section 2.2, a number of the PCs are selected so that at least 

90% of the original sub-signal variance is recovered in the new reconstructed signal.  In 

this example 19 out of the 43 components (e.g contains nearly 90 %) are selected. The 

structure-less noise is removed by rejecting the low contribution components. 

In the Figure 10 shows the effect of the noise cleaning by SSA. The blue and red lines 

refer to the raw and noise cleaned signal respectively where the signal becomes 

smoother due to removing the structure-less noise. 

Figure 9: Original sub-signal and the first five components obtained from the 

singular spectrum analysis 
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When the sub-signal fails at the test of stationarity (Section 2 .3), it is then subjected to 

differencing to stabilize its mean and to be transformed to a stationary. It is important to 

know that not all the sub-signals are differenced, but only those which fail in the test of 

stationarity. The differenced sub-signals are subjected again to the test of stationarity to 

see whether one differencing is sufficient to bring it to stationarity. For all the cases, 

differencing was applied once. Figure 11 shows the signal after differencing.  It can be 

seen from the figure that the sub-signal mean is less fluctuated compared to the sub-

signal shown in the Figure 10.  

 

Figure 10: Raw signal verses noise cleaned signal by singular spectrum 

analysis (SSA) 
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The sub-signal is then subjected to modelling by the LTIVAR model (Eq.7).  

Figure 12 shows both the differenced (black line) and the modelled sub-signal   (red 

line). It can be seen that the model is accurately representing the differenced sub-signal 

(e.g NMSE is 97.6% see Eq.(8)).  

 

Figure 11: A differenced sub-signal 
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5.2   Signal Diagnosis 

5.2.1 Case Study 1  

The data obtained from the drive end bearing and used for validating the methodology 

for fault type identification and fault severity estimation are shown in Table 2. The 

notations are as follows: H - healthy bearing; IRF - bearing with a fault on the inner 

raceway; BF - bearing with a fault on the rolling element; ORF - bearing with a fault on 

the outer raceway; S - small fault (0.007 inch diameter); M – medium-size fault (0.014 

inch diameter) and L - large fault (0.021 inch diameter).  

 

 

Figure 12: a differenced sub-signal versus modelled sub-signal 
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The cases (from CW1 to CW4) were used in the first stage of classification (fault 

identification), while the others were used in the second stage of diagnosis (fault 

estimation). 

For each case in Table 2, the signals were segmented into a number of segments of 2048 

points each. Each segment was then decomposed by the singular spectrum analysis into 

Case no. Motor speed(rpm) Signal Category 

CW1 1797 Healthy, (IRF, BF and ORF)  small fault  0.007’’  

CW2 1772 Healthy, (IRF, BF and ORF) small fault  0.007’’  

CW3 1750 Healthy, (IRF, BF and ORF) small fault  0.007’’  

CW4 1730 Healthy, (IRF, BF and ORF) small fault  0.007’’  

CW5 1797 IRF (S,M and L) 

CW6 1797 BF (S,M and L) 

CW7 1797 ORF (S,M and L) 

CW8 
1772 

IRF (S,M and L) 

CW9 
1772 

BF (S,M and L) 

CW10 
1772 

ORF (S,M and L) 

CW11 
1750 

IRF (S,M and L) 

CW12 
1750 

BF (S,M and L) 

CW13 
1750 

ORF (S,M and L) 

CW14 
1730 

IRF (S,M and L) 

CW15 
1730 

BF (S,M and L) 

CW16 
1730 

ORF (S,M and L) 

 

Table 2: The drive end bearing vibration datasets obtained from case study 1 

used in the bearing condition diagnosis 
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a number of components equal to the ratio of sampling rate to the minimum bearing 

fault frequency. For example, in case CW2 (speed=1772 rpm; see Table 2) the 

minimum bearing fault frequency was that of the fault on the outer race, which equals 

3.5848*rotational speed (in Hz) [67]. The number of decomposed components therefore 

equals (12000 / (3.5848*1772/60)) = 114 components. The number of the selected 

components for reconstruction purposes was determined so that at least 90% of the 

original signal variance was contained by the reconstructed signal. The model optimum 

order and goodness of fit values for CW2 are given in Table 3.  

 

 

 

 

 

It can be seen from Table 3 how well the model predicts the majority of de-noised sub-

signals.  

Samples of the confusion matrices (CW2) described in Section 3 are shown below in 

Tables 4-6, based on the different possibilities of equalisation of feature vector length 

discussed in Section 2.6. The number of the feature vectors used in the first stage of 

diagnosis is 232 (4 signal categories*58 segments for each category, made by dividing 

the length of original signal by the segment length (2048)). Half of them (116) are used 

for forming the signal category matrices (see Section 3) while the remaining 116 are 

used as testing feature vectors. 

Signal Category Model optimum order (p) NMSE  (Eq. (8)) 

H 5     99.96%     

IRF 12   99.2%        

BF 8 98.96%     

ORF 6 99.94%     

 

Table 3: The model optimum order and NMSE values for data 

obtained at 1772 rpm 
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Prediction  

H IRF BF ORF 
A

ct
u
al

 

H 100% 100% 0% 0% 

IRF 0% 100% 0% 0% 

BF 0% 0% 100% 0% 

ORF 0% 0% 0% 100% 

Table  4  : The confusion matrix using feature vectors modified by 

zero padding: 116 feature  vectors at 1772 RPM  

 Prediction  

H IRF BF ORF 

A
ct

u
al

 

H 100% 0% 0% 0% 

IRF 0% 100 0% 0% 

BF 0% 0% 89.65% 10.35% 

ORF 0% 0% 79.3% 20.7% 

         Table (5) : The confusion matrix using feature vectors 

modified by variance threshold method   : 116 feature vectors at 

1772 RPM 

 

Prediction  

H IRF BF ORF 

A
ct

u
al

 

H 100% 0% 
0% 0% 

IRF 
0% 

100% 
0% 0% 

BF 
0% 0% 

100% 0% 

ORF 
0% 0% 

0% 100% 

Table (6) : The confusion matrix using feature vectors 

modified using trimming: 116 feature vectors at 1772 

RPM 
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For the data used in this analysis, it is found that using any of   the zero padding and 

trimming ensures a very high correct classification rate.  Accordingly, one of these two 

methods was selected (e.g trimming) and   all subsequent results shown in this paper 

were obtained following it.  

An example of the confusion matrix for fault size estimation (CW8) using trimming is 

shown in Table 7. In the stage for fault severity diagnosis, the number of feature vectors 

was 174 (3 categories*58). The number of the feature vectors from the testing sample 

was 87 (0.5*174). 

 

 

 

 

 

In order to present the correct classification rates (%), the average of the values on the 

diagonal on each confusion matrix are shown rather than the entire confusion matrix, as 

the values on the diagonals represent those of correct classification (see Table 1). 

For example, for the confusion matrix in Table 7, corresponding to the case CW8, the 

average of diagonal values is (100%+100%+100%)/3 = 100%. Table 8 shows the 

correct classification rates (in percent) for all the cases mentioned in Table 2. 

 

 

predicted    

S M L 

A
ct

u
al

 

S 100% 0% 
0% 

M 
0% 

100% 
0% 

L 
0% 0% 

100% 

 

Table 7: Correct classification rate using features vectors based on trimming method 

for estimation of different fault sizes on the inner raceway at 1772 rpm. 
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Case 

no. 

Motor 

speed 

(rpm) 

Signal Category 

No of testing FVs Average % correct 

classification rate 

CW1 1797 

Healthy, (IRF, 

BF and ORF) small 

fault  0.007’’ diameter 

116 100% 

CW2 1772 

Healthy, (IRF, 

BF and ORF) small 

fault  0.007’’ diameter 

116 100% 

CW3 1750 

Healthy, (IRF, 

BF and ORF) small 

fault  0.007’’ diameter 

116 100% 

CW4 1730 

Healthy, (IRF, 

BF,ORF) small fault  

0.007’’ diameter 

116 100% 

CW5 1797 IRF (S,M and L) 87 100% 

CW6 1797 BF (S,M and L) 87 100% 

CW7 1797 ORF (S,M and L) 87 100% 

CW8 1772 IRF (S,M and L) 87 100% 

CW9 1772 BF (S,M and L) 87 100% 

CW10 1772 ORF (S,M and L) 87 100% 

CW11 1750 IRF (S,M and L) 87 100% 

CW12 1750 BF (S,M and L) 87 98.8% 

CW13 1750 ORF (S,M and L) 87 100% 

CW14 1730 IRF (S,M and L) 87 100% 

CW15 1730 BF (S,M and L) 87 100% 

CW16 1730 ORF (S,M and L) 87 100% 

Table 8: The average correct classification rates based on trimming as equalisation 

of feature vectors for case study 1 
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It can be seen that the average correct classification rates are 100% for all of the cases 

except one, CW12, in which one feature vectors has been misclassified. 

 Case Study 2  

The data obtained from the test rig presented in Section 4.2 are also used for validating 

the methodology for fault type identification. The data considered are shown in the 

Table 9. 

 

 

 

 

The notation (ST) refers to the test rig at Strathclyde University from which the test data 

were acquired.    

The number of signals used for classification was 375 (125 signals*3 classes). Each of 

these signals is made of 2048 points. Table 10 illustrates how the performance of the 

methodology for Case Study 2. 

  

Case no. Motor speed (rpm) Signal Category 

ST1 350 Healthy, IRF, ORF 

ST2 500 Healthy, IRF, ORF 

 

Table 9: The bearing vibration datasets obtained from case study 2 used for fault 

type identification   
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It can be seen from Table 10 that very few signals have been misclassified. At 350 rpm, 

only 6 feature vectors from faulty inner race (IRF) category were misclassified as 

healthy (H) category. At 500 rpm, only 8 feature vectors from the healthy (H) category 

were misclassified as faulty outer race (ORF) category faulty (outer raceway fault). 

5.3 . Case Study 3  

Table 11 shows the data acquired from the test rig introduced in Section 4.3. 

 

 

 

 

 

Case 

no. 

Motor 

speed 

(rpm) 

Signal Category 

No of testing 

FVs 

Average % 

correct 

classification 

rate 

ST1 
350 Healthy, IRF and  

ORF 

375 98.4% 

ST2 500 
Healthy, IRF and 

ORF 

375 
98% 

 

Table 10: The average correct classification rates based on trimming as 

equalisation of feature vectors for case study 2 

 

 

 

Case no. Motor speed (rpm) Signal Category 

PT1 30000 (Healthy, IRF and  BF) small fault  0.006 inch diameter 

PT2 30000 IRF (S, M and L) 

PT3 30000 BF (S, M and L) 

 

Table 11: The bearing vibration datasets obtained from case study 3 used for the 

bearing condition diagnosis 
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The number of feature vectors (FVs) used for classification in any case (PT1, PT2 and 

PT3) was 597 (3 signal categories*199 FVs).Table 12 illustrates the performance of the 

methodology for the data from Case Study 3. 

 

 

 

 

 

It can be seen from Table 12 that all the 597 feature vectors corresponding to the cases 

PT1 &PT2 were correctly classified. For the case PT3 only one feature vector from the 

small fault signal category was classified as a medium fault signal category.  

 

6 Comparison with published work 

The Table 13   shows the precision of the present method as compared to some other 

recent methods which are based on different time series analysis but they use the same 

part of datasets of CWRU.   Several information regarding such as the datasets details, 

number of testing and training FVs and average correct classification rates are presented 

in Table 13 presented for these methods and for the method suggested here.   

The methods are listed below: 

Case 

no. 

Motor speed 

(rpm) 
Signal Category 

No of 

testing FVs 

Average % 

correct 

classification 

rate 

PT1 30000 Healthy, IRF and  BF 597 100% 

PT2 30000  IRF (S, M and  B)   597 100% 

PT3 30000  BF (S, M and  B)   597 99.8% 

 

Table 12: The average correct classification rates based on trimming as 

equalisation of feature vectors for case study 3 

 

 



40 

 

1) Difference histograms (DHs) and feed forward neural network (FFNN) [69]:  The 

difference histograms (DHs) based method includes the formation of scaled 

representation for histograms of increased segment lengths. Some of the    first 

histogram bins are used as inputs to a FFNN for classification purpose of faults. 

2) SSA and back propagation neural network (BPNN) [46]:In this study two sets of 

feature vectors are developed using SSA.   The first FV includes the singular values of 

some of the first several principal components and the other FV uses the energy of the 

time domain of sub-signal components corresponding to these principal components. 

These feature vectors are used as input to the BPNN classifier. 

3) In [70], signals from two different accelerometers are used to create a two  

dimensional representation of the bearing condition. The minimum volume ellipsoid 

(MVE) method is used to extract the features.  Principal component analysis (PCA) is 

used for selecting the most important features. The last step is to input the selected 

features to the nonlinear nearest neighbour classifier. 

 It can be seen from Table 13 that all the compared methods achieve a rather good 

classification rate. From all the four methods compared it can be seen that the method 

suggested here demonstrates the best classification rate, which is between 98.8-100% 
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Method Dataset(single point 
defect size 
width; load; signal length) 

Training and 
testing datasets 

Condition 
classified 

Average testing 
accuracy (%) 

Fault features 

1)DH and FFNN[69]      0.18, 0.36,0.53mm; 
0–3 HP load;30000 data 
points 
 

Both 144  (IF, OF and BF 
classification 
only) 
 
 

92-95 First 6 histogram 
bins 
 

2)SSA and BPNN   [46] 0.18, 0.36, 0.53, 0.71 mm; 
0– 3 HP load;6100 data 
points 
 

Train—336 
test—144 
 

H, IF,OF 
and BF 
 

96.53–100  
95–100 
 

4 singular values 
3 energy features 

 3)MVE, PCA and nonlinear  
neighbour classifier  [70] 

0.18, 0.36,0.53mm , 0-3 
HP, 2000 data points 

- Healthy and 
faulty. 
It was reported 
by the author 
that there is 
some 
overlapping 
among some 
fault classes  

 94.68-99.98 - 

4)Differencing, SSA and AR 
[present work] 

0.18, 0.36,0.53 mm; 0-3 
HP loads; 2048 data 
points 

Train-464 
Test-464 

H, IF, OF and BF 98.8-100  coefficients of 
LTIVAR model 

Table 13: A comparison of the performance of the present methodology with other published work using the same parts of CWRU data 
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7 Conclusions 

The present work suggests a new methodology for rolling element bearing fault 

diagnosis based on linear time invariant autoregressive modelling and pattern 

recognition. The suggested method is relatively simple in the sense that it uses a 

combination of simple processes to first transform the signal and then determine the 

condition of the bearing. A new signal pretreatment process is applied before subjecting 

the signals to modelling. This process includes noise cleaning, using singular spectrum 

analysis (SSA), and stationarisation of the bearing vibration signal by the differencing 

procedures. The methodology aims to transform the signal to bring it close to a 

stationary one, rather than complicating the model to bring it closer to the signal.  The 

signal pretretment proposed enhances the precision of the model prediction, which is 

influenced by the presence of noise and non-stationary parts in the signal. The LTIVAR 

model coefficients are extracted using the least squares method and used as FVs for 

signal classification purpose.   The FVs are then presented to the 1-NN algorithm based 

on the Mahalanobis distance. The signals were assigned to the category of their nearest 

neighbour. The performance of the methodology is then assessed on the basis of 

confusion matrices, which provide the percentage of correctly- and incorrectly-

classified signals. 

The methodology suggested encompasses several relatively simple procedures, which 

facilitates its potential practical application and its possible automation.  

The developed methodology is intended to serve as a stepping-stone towards the 

development of a new process for bearing fault diagnosis which will not require the 

availability of sample signal data from the different categories. This will be based on a 

study of the behaviour of the AR coefficients with the presence and the growth of 

different faults, which the authors are currently conducting. 
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