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We construct a fluid-dynamical model for the flow of a solution with a free surface at which
surface tension acts. This model can describe both classical surfactants, which decrease the surface
tension of the solution relative to that of the pure solvent, and ‘anti-surfactants’ (such as many salts
when added to water, and small amounts of water when added to alcohol) which increase it. We
demonstrate the utility of the model by considering the linear stability of an infinitely deep layer
of initially quiescent fluid. In particular, we predict the occurrence of a novel instability driven by
surface-tension gradients, which occurs for anti-surfactant, but not for surfactant, solutions.

I. INTRODUCTION

The surface tension of a solution generally differs from
that of the pure solvent. The molecules or ions of many
solutes accumulate preferentially at free surfaces, where
they lower the surface tension [1]; such substances are
consequently known as surfactants. However, it is also
well known that there are other solutes that have the op-
posite effect: as increasing amounts of these solutes are
added to the solvent, the surface tension increases. Ex-
amples include many salts when added to water [1, 2],
and small amounts of water when added to alcohol [3].
For fluid-dynamical purposes, such solutes may conve-
niently be described as ‘anti-surfactants’.
Since this anti-surfactant behaviour may play a signif-

icant role in the flow of solutions with free surfaces, it is
perhaps surprising that it has not yet been incorporated
into fluid-dynamical models, especially as corresponding
models for both soluble and insoluble surfactants are now
well established and have been widely studied [4–8]. It
should be noted that, in general, a model for an anti-
surfactant cannot be obtained from one for a surfactant
simply by reversing the dependence of the surface ten-
sion on the surface concentration of solute, because, as
we shall explain below, this is not in general consistent
with the underlying physical mechanisms by which so-
lutes affect surface tension.
In this contribution we construct a fluid-dynamical

model which builds on existing models for surfactants but
which, unlike them, can also describe anti-surfactants.
By considering a simple linear stability problem we
demonstrate that the new model is tractable and predicts
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a novel instability driven by surface-tension gradients,
which occurs for anti-surfactant, but not for surfactant,
solutions.

II. MODEL CONSTRUCTION

A. Bulk–surface flux and surface tension

We follow many well-established fluid-dynamical mod-
els of coupled flow and surfactant transport [4–8] by dis-
tinguishing between the surface region of the fluid, taken
to have a notional thickness η of the order of ångströms,
and the remaining bulk region of the fluid. The bulk re-
gion may include a ‘subsurface’ region of high concentra-
tion gradients, which mediates solute exchange between
the surface and the deeper regions of the fluid [9]; for sim-
plicity we assume that such a region may be described by
the same governing equations as the rest of the bulk. The
bulk concentration of solute cb is measured in molm−3,
while the surface concentration of solute cs is measured
in molm−2. The concentration in each region obeys an
appropriate transport equation, and the exchange of so-
lute between the bulk and the surface is described by
the bulk–surface flux J measured in molm−2 s−1. When
the flux is zero, J = 0, the surface concentration is in
equilibrium with the bulk concentration at the top of
the bulk region; this is a good approximation when flow
and transport processes are slow compared with the ki-
netics of bulk–surface exchange. We will refer to this
state as ‘bulk–surface equilibrium’, noting that a system
that is in bulk–surface equilibrium may still be evolving
slowly through diffusion-controlled adsorption [9–11]. In
the more general situation in which the flux is non-zero,
J ̸= 0, both kinetics and diffusion play a part in solute
transfer between the bulk and the surface: this is some-
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times referred to as ‘mixed-kinetic adsorption’ [9].
It is usual in existing models of surfactants to treat

the surface tension σ as a decreasing function of the sur-
face concentration cs. This approach was developed orig-
inally for insoluble surfactants [e.g. 4] and subsequently
extended to soluble surfactants [e.g. 5–7]. However, as
we shall see, in general σ also depends on the bulk con-
centration cb evaluated at the top of the bulk region, or,
equivalently, on the surface excess Γ, defined as

Γ = cs − ηcb, (1)

where again the concentration cb is evaluated at the top
of the bulk region. The sign of Γ indicates whether the
molecules of solute preferentially accumulate at the sur-
face (Γ > 0), as they do for surfactants, or in the bulk
(Γ < 0), as they do for anti-surfactants. Note that when
the surface concentration is high relative to the bulk con-
centration (specifically, when cs ≫ ηcb) the surface ex-
cess Γ is well approximated by cs, justifying the usual
approach for surfactants. However, as we shall now de-
scribe, in general, and particularly for anti-surfactants,
it is necessary to account for the dependence on cb, i.e.
to distinguish between Γ and cs.
Although the details of the electrochemical mecha-

nisms that lead to the exclusion of particular species from
the surface remain the topic of ongoing research [12, 13],
the qualitative mechanism by which they affect the equi-
librium surface tension is clear. Solvent molecules in the
bulk interact with the dissolved solute; those near the
surface have less interaction with the solute, as well as
with other solvent molecules, and hence have higher en-
ergy than in the bulk, the excess being exhibited as sur-
face energy. What determines the net effect of the added
solute is then not the absolute values of cs and cb, but the
effective difference between these, i.e. the surface excess
Γ defined by (1).
More quantitatively, the surface excess plays a fun-

damental thermodynamic role described by the Gibbs
isotherm [1, 9], which requires that in equilibrium the
gradient of surface tension with respect to bulk concen-
tration can be positive only if the surface excess is neg-
ative. For surfactants, the equilibrium surface excess is
positive and so the equilibrium surface tension decreases
with increasing bulk concentration; conversely, for anti-
surfactants the equilibrium surface excess must be neg-
ative to lead to the experimentally observed increase in
the equilibrium surface tension with bulk concentration.
Starting from standard expressions for the bulk–

surface flux of solute, we may employ the Gibbs isotherm
to obtain a relationship between surface tension and sur-
face excess when bulk–surface equilibrium holds. We
will then extend this relationship to situations in which
bulk–surface equilibrium does not hold. The new fluid-
dynamical model that emerges is able to capture both
surfactant and anti-surfactant behaviour, and thus al-
lows us to explore the essential differences between
flows driven by surfactants and flows driven by anti-
surfactants.

We now describe the simplest model that may be con-
structed within this framework. Incorporating other ef-
fects, such as a maximum surface concentration due to
packing effects or a critical micelle concentration in the
bulk [7], is straightforward in principle but in practice
it introduces distracting complications and so is not dis-
cussed further here. Similarly, we do not attempt to rep-
resent the underlying molecular or ionic interactions that
control the surface excess and its effects [13], but in the
spirit of established surfactant models [4–8] we subsume
these into a simple kinetic description.

We consider the bulk–surface flux

J = k1ηcb − k2cs (2)

for some adsorption and desorption rate constants k1 and
k2. In bulk–surface equilibrium, J = 0, equation (2) re-
duces to the Henry isotherm [9], i.e. ceqs = Kηceqb , where
K = k1/k2 and the superscript ‘eq’ denotes an equilib-
rium value.

Using the definition (1), the equilibrium surface excess
Γeq is given by

Γeq = ceqs − ηceqb = (K − 1) ηceqb . (3)

Under isothermal conditions, the Gibbs isotherm [1, 9]
relates the equilibrium surface tension σeq of a dilute
solution to Γeq according to

ceqb
dσeq

dceqb
= −RTΓeq, (4)

where R denotes the gas constant and T the (constant)
temperature [14]. Substituting (3) into (4) and integrat-
ing with respect to ceqb we obtain σeq in terms of ceqb ,

σeq(ceqb ) = σ0 +RT (1−K) ηceqb , (5)

where σ0 is the surface tension of pure solvent (i.e. σeq =
σ0 when ceqb = 0). If 1−K < 0 then (5) corresponds to
a surfactant for which σeq decreases with ceqb , whereas if
1−K > 0 then it corresponds to an anti-surfactant with
the opposite behaviour [15]. The conditions 1 − K ≶ 0
correspond, respectively, to k1 ≷ k2, i.e. to conditions on
the relative sizes of the adsorption and desorption rate
constants.

In the absence of a thermodynamic theory for non-
equilibrium surface tension, the equilibrium equation for
σ given by (5) can be extended to non-equilibrium situ-
ations in various ways. In general we may expect σ to
depend instantaneously on both cb and cs, but we can-
not expect there to be a non-equilibrum relation between
them corresponding to the Henry isotherm. In principle,
any function that reduces to (5) in equilibrium could be
considered but, following the usual modelling principle
that the model should be the simplest one capable of
capturing the key physical mechanisms, we consider a
general linear surface-tension law

σ = σ0 +RT (1−K)

(
1− θ

K
cs + ηθcb

)
, (6)
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where θ is an artificial parameter which is included in
order to allow us to explore the sensitivity of our model
to the relative importance of cs and cb. As required, in
bulk-surface equilibrium (i.e. when J = 0 and hence cs =
Kηcb), equation (6) reduces to σ = σ0 + RT (1−K)ηcb
for any value of θ. The particular choice θ = 1 makes σ a
function of cb only, the particular choice θ = 0 makes σ
a function of cs only, recovering the equation used in the
standard surfactant models, while the particular choice
θ = 1/(1 − K) makes σ a function of the surface ex-
cess Γ only. By considering all three of these choices, we
will demonstrate that our stability results are not qual-
itatively sensitive to the value of θ, and thus that they
are not an artefact of the details of the specific surface-
tension law chosen. We will, however, demonstrate that
the choice of θ may have experimentally observable con-
sequences. Of course, within the confines of the linear
stability analysis described in §III below, essentially any
choice of the functional form of the surface-tension law
will reduce to a linear expression and so, at least as far
the linear stability results are concerned, the expression
used in (6) is completely general.

B. Hydrodynamics and solute transport

Having obtained equation (6) for the surface ten-
sion σ, we incorporate it into a standard hydrodynamic
model based on the Navier–Stokes equations along with
advection–diffusion equations for solute transport.

The governing equations are

∇ · u = 0, (7)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u, (8)

∂cb
∂t

+ (u · ∇)cb = Db∇2cb, (9)

∂cs
∂t

+ (u · ∇2D)cs + cs(∇s · u) = Ds∇2
s cs + J, (10)

where n̂ is the outward unit normal to the free surface,
∇s = ∇ − n̂(n̂ · ∇) is the surface gradient operator,
∇2D is an appropriate two-dimensional gradient opera-
tor [16], u and p denote the velocity and pressure of the
fluid, respectively, t denotes time, ρ and µ are the con-
stant density and viscosity of the fluid, respectively, and
Db and Ds are the bulk and surface diffusivities, respec-
tively. Note that (10) differs in the advective term from
the transport equation derived by Stone [17] and used
in many subsequent studies of surfactants; the corrected
version of this equation employed here was derived by
Wong et al. [18], and is used in more recent studies [e.g.
8]. For simplicity, body forces are neglected throughout,
but they could readily be incorporated.

Equations (7)–(10) are to be solved subject to ap-
propriate boundary conditions at the free surface z =

h(x, y, t), namely

∂h

∂t
+ (u · ∇)(h− z) = 0, (11)

n̂ ·T · n̂ = −(∇s · n̂)σ, (12)

n̂ ·T · t̂ = t̂ · ∇sσ, (13)

Dbn̂ · ∇cb = −J, (14)

where t̂ denotes any unit tangent vector lying in the tan-
gent plane to the free surface, T is the total stress tensor,
and all bulk quantities are evaluated on z = h.

Equations (7)–(14) with the bulk–surface flux J given
by (2) and the surface tension σ given by (6) constitute
our new fluid-dynamical model. This model can repre-
sent both surfactants and anti-surfactants, and can be
‘tuned’ through the choice of the parameter θ to repre-
sent different generalisations of the equation for the equi-
librium surface tension (5) to non-equilibrium situations,
including (as a special case) that used in the standard
surfactant models.

III. STABILITY OF AN INFINITELY DEEP
LAYER

We now consider a simple stability problem, which
demonstrates that the new model (2), (6)–(14) is
tractable and predicts a novel instability driven
by surface-tension gradients, which occurs for anti-
surfactants but not for surfactants.

We consider the stability of an infinitely deep, initially
quiescent layer of fluid with a flat free surface which, re-
ferred to the natural Cartesian coordinates (x, y, z), occu-
pies the region z < 0, and is initially in bulk–surface equi-
librium and at constant atmospheric pressure pa. The
far-field conditions are taken to be

u → 0 and
∂cb
∂z

→ 0 as z → −∞, (15)

and hence the base state for the stability analysis is

u = 0, p = pa, cb = cb0, cs =
k1η

k2
cb0, h = 0,

(16)
where cb0 is the uniform base-state value of cb. For
simplicity, we will consider only two-dimensional pertur-
bations, and neglect any variation or velocity in the y-
direction.

We note that, by taking the depth of the fluid layer
to be infinite, we exclude the possibility of finding solu-
tions with a characteristic length scale proportional to
the depth of the layer as in, for example, classical steady
Marangoni convection [19, 20]. For surfactants, this is
problematic, because all perturbations have this length
scale; the infinite-depth problem is therefore degenerate.
However, for anti-surfactants the perturbations with the
greatest growth rate have a boundary-layer structure,
and so do not degenerate in the limit of infinite depth. In
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the following analysis we will therefore generally confine
the discussion to anti-surfactants, 0 < K < 1; appendix
A investigates the finite-depth problem, and explains the
degeneracy in more detail for both 0 < K < 1 andK > 1.

A. Non-dimensionalisation

We non-dimensionalise the problem by choosing a nat-
ural scaling with a characteristic velocity scale U and a
characteristic length scale L which reflects the following
four assumptions. First, the flow will be driven prin-
cipally by surface-tension gradients, which thus set the
characteristic velocity scale so that the Marangoni num-
ber Ma = RTηcb0/(µU) = 1, and hence U is given by

U =
RTηcb0

µ
. (17)

Second, the characteristic concentration scale is set by
the bulk and surface concentrations in the base state.
Third, there is an approximate balance between advec-
tive and diffusive transport, so that the bulk Peclet num-
ber Pb = UL/Db = 1, and hence L is given by

L =
µDb

RTηcb0
. (18)

Finally, following recent work on surfactants [e.g. 7] we
also assume that Ds = Db, so that the surface Peclet
number Ps = UL/Ds = Pb = 1.
The scaled quantities are therefore defined via

x = Lx∗, z = Lz∗, u = (u,w) = Uu∗ = U(u∗, w∗),

t =
L

U
t∗, p− pa =

µU

L
p∗, T =

µU

L
T∗,

cb = cb0c
∗
b, cs = ηcb0c

∗
s , h = Lh∗.

(19)

With the scalings (19), the hydrodynamic equations
(7) and (8) become

∇∗ · u∗ = 0, (20)

Re

(
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= −∇∗p∗ +∇∗2u∗, (21)

where the Reynolds number Re = ρUL/µ.
The bulk and surface concentration equations (9) and

(10) become

∂c∗b
∂t∗

+ (u∗ · ∇∗)c∗b = ∇∗2c∗b, (22)

∂c∗s
∂t∗

+ (u∗
s ·∇∗

2D)c
∗
s + c∗s (∇∗

s ·u∗) = ∇∗2
s c∗s +Da1(Kc∗b−c∗s ) ,

(23)

where the advective Damköhler number Da1 = k2L/U ,
and, as before, K = k1/k2.

The surface boundary conditions (11)–(14) become

∂h∗

∂t∗
+ u∗ ∂h

∗

∂x∗ = w∗, (24)

n̂ ·T∗ ·n̂ = −(∇∗
s ·n̂)

[
1

Ca
+
(1−θ)(1−K)

K
c∗s+θ(1−K)c∗b

]
,

(25)

n̂ ·T∗ · t̂ = t̂ · ∇∗
s

[
(1− θ)(1−K)

K
c∗s + θ(1−K)c∗b

]
,

(26)

n̂ · ∇∗c∗b = −Da2(Kc∗b − c∗s ), (27)

where the capillary number Ca = µU/σ0 and the diffu-
sive Damköhler number Da2 = ηLk2/Db, and where all
bulk quantities are evaluated on z∗ = h∗.

The far-field conditions (15) become

u∗ → 0 and
∂c∗b
∂z∗

→ 0 as z∗ → −∞. (28)

Finally, the base state (16) becomes

u∗ = 0, p∗ = 0, c∗b = 1, c∗s = K, h∗ = 0. (29)

Substituting for U and L from (17) and (18), respec-
tively, we are left with the dimensionless parameters

Re =
ρDb

µ
, K =

k1
k2

, Ca =
RTηcb0

σ0
,

Da1 =
k2µ

2Db

(RTηcb0)2
, Da2 =

µk2
RTcb0

,

(30)

together with the parameter θ.
For sodium chloride in water at room temperature [21],

we have the approximate parameter values

ρ ≈ 103 kgm−3, µ ≈ 10−3 kgm−1s−1,

Db ≈ 2× 10−9 m2s−1, σ0 ≈ 7× 10−2 kg s−2,
(31)

while for water in a short-chain alcohol at room temper-
ature [3, 22, 23], we have

ρ ≈ 8× 102 kgm−3, µ ≈ 5× 10−4 kgm−1s−1,

Db ≈ 10−9 m2s−1, σ0 ≈ 2× 10−2 kg s−2.
(32)

In both cases, R ≈ 8 kgm2 s−2 mol−1 K−1 and T ≈
300K. In addition, we take the surface thickness η ≈
10−9 m [9]. The desorption rate constant k2 is the pa-
rameter that can be stated with least certainty, because
of the well-established difficulties in measuring kinetic
parameters associated with rapid adsorption and desorp-
tion [24]. A rough upper bound is provided by the rate at
which molecules or ions diffuse across a distance η in the
absence of potential barriers; this leads to k2 ≈ Ds/η

2

and thus to an upper bound of k2 ≈ 1010 s−1. Because of
this uncertainty we will consider a wide range of values
of k2, and we will demonstrate that its magnitude does
not generally have a critical effect on the stability of the
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layer. Finally, in order to see a substantial effect of the
solute on surface tension, for sodium chloride in water we
consider the regime in which the base concentration is a
substantial fraction of the saturation concentration; we
thus take cb0 ≈ 5×103 molm−3, corresponding to a mass
concentration of roughly 25% [21]. For water in alcohol,
a similar value of cb0 ensures that the surface-tension–
concentration relation remains roughly linear [3]. Thus,
for both situations we have, to the nearest decimal order
of magnitude,

Re ≈ 10−3, Ca ≈ 0.1, Da1 . 0.1, Da2 . 1. (33)

To simplify the analysis, we will henceforth take the limit
Re = 0. The parameters K and θ are expected to be of
order unity.

B. Linear stability analysis

We define a perturbation parameter ϵ ≪ 1 and seek
perturbations to the base state (29) in the form

u∗ = ϵu1, w∗ = ϵw1, p∗ = ϵp1,

c∗b = 1 + ϵcb1, c∗s = K + ϵcs1, h∗ = ϵh1.
(34)

In the usual manner, we now seek solutions of the form

u1 = est
∗
eikx

∗
U(z∗), w1 = est

∗
eikx

∗
W (z∗),

p1 = est
∗
eikx

∗
P (z∗), cb1 = est

∗
eikx

∗
C(z∗),

cs1 = est
∗
eikx

∗
Cs, h1 = est

∗
eikx

∗
H,

(35)

where k > 0 is the wavenumber of the perturbations and
where the growth rate s is to be determined.
The governing equations (20)–(22) become

ikU +W ′ = 0, (36)

ikP + k2U − U ′′ = 0, (37)

P ′ + k2W −W ′′ = 0, (38)

sC + k2C − C ′′ = 0, (39)

while the surface concentration equation (23) reduces to
the boundary condition

sCs +KikU(0) + k2Cs −Da1(KC(0)− Cs) = 0. (40)

The surface boundary conditions (24)–(27) become

sH −W (0) = 0, (41)

2W ′(0)− P (0) + k2σbH = 0, (42)

U ′(0) + ikW (0)− ikθ(1−K)C(0)

− ik
(1− θ)(1−K)

K
Cs = 0,

(43)

C ′(0) +Da2(KC(0)− Cs) = 0, (44)

where for convenience we have defined the dimensionless
base surface tension as

σb =
1

Ca
+ 1−K. (45)

Note that for 0 < K < 1 (anti-surfactants), σb > 0.
However, for K > 1 (surfactants) the linear dependence
of σ on cb must break down at higher concentrations,
and so the validity of our model is restricted to initial
concentrations such that 0 < K < 1 + 1/Ca.

The far-field conditions (28) become

U → 0, W → 0, C ′ → 0 as z∗ → −∞. (46)

We can eliminate P and U from the hydrodynamic
equations (36)–(38) to obtain

P =
1

ik

(
U ′′ − k2U

)
, U = − 1

ik
W ′, (47)

and thus W satisfies

W (4) − 2k2W ′′ + k4W = 0. (48)

The most general solution of (48) consistent with the
far-field conditions (46) is

W (z∗) = (A1 +A2z
∗)ekz

∗
, (49)

where A1 and A2 are arbitrary constants. Similarly, the
most general solution of (39) consistent with the far-field
conditions (46) is

C(z∗) = A3e
ξz∗

, (50)

where A3 is an arbitrary constant and where ξ =
√
k2 + s

(for the usual definition of
√
· with a branch cut on the

negative real axis). To satisfy the far-field condition, we
require that ℜ(ξ) > 0; this is automatically the case for
unstable modes with ℜ(s) > 0, and indeed it remains the
case as long as k2 + s ̸∈ R−. If k2 + s ∈ R− then there
are no non-trivial solutions to (39) that decay in the far
field. This restriction reflects the degeneracy discussed
in appendix A.

The surface boundary conditions (41)–(44) become

sH −W (0) = 0, (51)

W ′′′(0)− 3k2W ′(0)− k4σbH = 0, (52)

−W ′′(0)− k2W (0) + k2θ(1−K)C(0)

+ k2
(1− θ)(1−K)

K
Cs = 0,

(53)

C ′(0) +Da2(KC(0)− Cs) = 0, (54)

while the surface concentration equation (40) becomes

ξ2Cs −KW ′(0)−Da1(KC(0)− Cs) = 0. (55)

Substituting the solutions (49) and (50) into (51)–(55)
produces a 5 × 5 system for the coefficients A1, A2, A3,
Cs and H. Requiring non-trivial solutions then yields the
solvability conditions

k4σb + 2k3s = 0 (56)



6

or

2ξ3 + 2Da2Kξ2 + [(K − 1)(1− θ)k + 2Da1] ξ

−Da2K(1−K)k = 0. (57)

These two conditions correspond to two distinct eigenso-
lutions with different physical interpretations.
The condition (56) gives a growth rate s = − 1

2σbk,
and corresponds to eigensolutions of the form

W (z∗) =
1

2
σbk(kz

∗ − 1)Hekz
∗
, C(z∗) = 0, Cs = 0,

(58)
so this mode represents classical levelling under constant
surface tension [25], with no variations in the concentra-
tion either in the bulk or on the free surface.
In contrast, the eigensolutions corresponding to the

condition (57) have the form

W (z∗) = k(1−K)
Da2K + (1− θ)ξ

2K(ξ +Da2K)
Csz

∗ekz
∗
,

H = 0, C(z∗) =
Da2Cs

ξ +Da2K
eξz

∗
,

(59)

where Cs ̸= 0. This mode represents the evolution of the
system with an undeformed free surface in which the flow
is driven entirely by surface-tension gradients [cf. 19].

C. The eigenmodes with an undeformed free
surface

We now consider in more detail the modes correspond-
ing to (57) and (59), recalling that we require ℜ(ξ) > 0
to satisfy the far-field condition, and that instability (i.e.
ℜ(s) > 0) corresponds to ℜ(ξ2) > k2.
It is straightforward to obtain numerical solutions to

(57) and thus to plot the perturbation growth rates s(k).
Figure 1 illustrates the perturbation growth rates for var-
ious parameter values, including three values of the pa-
rameter θ. In all cases in which instability occurs, it does
so at rather small dimensionless wavenumbers, while typ-
ical maximum growth rates are of the order of s = 10−4 to
10−3; the corresponding dimensional timescales L/(sU)
for the instability to develop are therefore of the order of
10−8 to 10−7 s. Changing the value of θ does not qual-
itatively affect the growth rates, but changing the ratio
of the Damköhler numbers can alter the stability; we will
investigate this further below.
Guided by the numerical evidence that s ∈ R, we may

postulate that the principle of the exchange of stabilities
holds. This allows us to obtain marginal stability curves
for various parameters simply by setting s = 0, and thus
ξ = k, in (57), and solving for the appropriate param-
eter. (We omit the details here for brevity.) Figure 2
shows typical results, for reference parameter values that
correspond to the solid line in figure 1 b.
A key feature of figures 2 a–d is that in each case the

unstable region is largest when k = 0. In other words,

the transition to instability first occurs for long-wave
perturbations, although within the unstable region the
maximum growth rate generally occurs for a non-zero
wavenumber (figure 1). We will use this result below to
obtain an explicit stability criterion. Small values of Da1
favour instability (figure 2 a), as do large values of Da2
(figure 2 b); in each case there is a critical value of k be-
yond which no instability is possible. The situation for K
(figure 2 c) is more interesting: for a given wavenumber
k, only a finite band of values of K permit instability.
This is reasonable in physical terms: as K → 1 the anti-
surfactant properties of the solute are lost, whereas when
K = 0 the solute is completely excluded from the free
surface, and so no surface advection is possible. We will
see below that surface advection is an essential part of
the instability mechanism. Finally, figure 2 d indicates
that larger values of the parameter θ tend to suppress
instability for non-zero k, but as k → 0 no value of θ is
sufficient to suppress the instability completely.

Equipped with these results we can now interpret fig-
ure 3, which shows the structure of a typical unstable per-
turbation. The bulk and surface concentration perturba-
tions are in phase, with the bulk concentration pertur-
bation confined to a boundary layer of thickness O(1/k).
Since k is small, the lengthscale is considerably larger
than L, and so diffusion is weak compared with advec-
tion. The flow along the free surface is divergent in the
centre of the plot, where cs and cb have maxima, and
convergent at the edges of the plot, where cs and cb have
minima.

We can understand the structure of the perturbation
as follows. Near the centre of the plot, where the per-
turbations to the surface and the bulk concentrations are
negative, the surface tension is lowered since 0 < K < 1
(anti-surfactant behaviour); similarly, the surface tension
is higher at the edges of the plot. The resulting flow
along the free surface is from the centre of the plot to-
wards the edges, where the maxima of cs and cb occur.
Surface concentration is advected outwards by this sur-
face flow, reinforcing the negative perturbation to cs; the
coupling between cs and cb means that the perturbation
to cs induces a corresponding perturbation to cb. Thus
the perturbation reinforces itself and grows.

Opposing this positive feedback are the effects of diffu-
sion and viscosity, which tend to eliminate perturbations,
and (more subtly) the loss of solute from the surface.
The instability mechanism relies on a substantial quan-
tity of solute being present in the surface layer, because
it is surface advection that causes solute to accumulate
in regions of high surface tension; there is no mecha-
nism by which advection in the bulk can do so. All other
things being equal, the flux between bulk and surface will
tend to reduce this accumulation over a dimensionless
timescale 1/Da1, and so higher values of Da1 will tend
to inhibit the instability. On the other hand, higher val-
ues ofDa2 mean that the bulk concentration will respond
more rapidly to changes in the flux, and so higher values
of Da2 will tend to assist the instability. This competi-
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tion between the effects of increasing the two Damköhler
numbers can be seen in figures 2 a and b, and explicitly
in the long-wave stability criterion (65) derived below.

1. The long-wave limit

Motivated by figure 2, and further supported by the
small range of k for which instability occurs in figure
1, we now investigate the long-wave limit k → 0+, in
which the task of analysing the condition (57) becomes
somewhat easier.
When k = 0, the condition (57) reduces to the condi-

tions ξ = 0 or ξ2 + Da2Kξ + Da1 = 0; the latter has

no solutions for which ℜ(ξ) > 0. Proceeding, we seek an
asymptotic expansion of the form ξ ∝ kα for some α > 0,
and it is straightforward to show by balancing terms that
α = 1. This motivates the expansion

ξ = ξ1k + ξ2k
2 +O(k3), (60)

where ℜ(ξ1) > 0 so that the condition ℜ(ξ) > 0 holds in
this limit.

Substituting the expansion (60) into the condition (57)
leads to

ξ1 =
Da2K(1−K)

2Da1
(61)
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and

ξ2 = −Da2K(1−K)2(Da22K
2 +Da1(θ − 1))

4Da31
. (62)

When 0 < K < 1, the coefficient ξ1 is real and pos-
itive, and so the expansion remains consistent with the
condition ℜ(ξ) > 0. However, when K > 1 the expansion
is no longer consistent with this condition. We therefore
consider only the case 0 < K < 1, corresponding to anti-
surfactants. (Appendix A discusses the case K > 1 in
more detail.)
Using (60), the expansion for s = ξ2 − k2 becomes

s =

(
Da22K

2(1−K)2

4Da21
− 1

)
k2

− Da22K
2(1−K)3(Da22K

2 +Da1(θ−1))

4Da41
k3 +O(k4).

(63)

The instability criterion for long waves (k → 0+) is thus

Da22K
2(1−K)2

4Da21
> 1, (64)

which, recalling that 0 < K < 1, reduces to

Da2
Da1

>
2

K(1−K)
. (65)

When ξ2 > 0, we can also obtain an estimate for the
typical unstable wavenumber,

ktyp ≈ 1− ξ21
ξ1ξ2

=
2(Da22K

2(1−K)2 − 4Da21)Da21
Da22K

2(1−K)3(Da22K
2 +Da1(θ−1))

.

(66)

Numerically, for values of the parameters similar to those
given in (33), ktyp is of the order of 0.04, correspond-
ing to dimensional wavelengths of the order of 2πL/k ≈
3×10−8 m. This is small, but remains significantly larger
than the surface layer thickness η = 10−9 m, so the dis-
tinction between bulk and surface regions remains con-
sistent.

We may rewrite the instability criterion (65) in terms
of dimensional quantities as

η∆σb

µDb
>

2

K
, (67)

where we have written the difference between the surface
tension in the base state and the surface tension of pure
solvent as

∆σb = RTηcb0(1−K). (68)

It is useful to rearrange this further, noting that in equi-
librium experiments bulk quantities rather than surface
quantities are measured, and to write (67) as

∆σb

RTµDb

dσ

dcb
>

2(1−K)

K
, (69)

where in our linear model dσ/dcb = ∆σb/cb0. The left-
hand side of (69) now consists solely of experimentally
measurable quantities, while the right-hand side depends
only on K, which in practice must be determined as a
fitting parameter along with η. Since the right-hand side
is a monotonically decreasing function of K, we conclude
that the instability becomes easier to trigger the closer
the value of K becomes to K = 1. A final but important
point is that, since they enter (69) only through their
ratio K, it is the relative rather than the absolute values
of the adsorption and desorption rate constants k1 and
k2 that affect the stability.

2. The limit of small Damköhler numbers

The Damköhler numbers used to plot figures 1–3 are
not far below unity, and correspond to the upper end of
the range of plausible values for the desorption rate con-
stant k2. Since, as previously discussed in §IIIA above,
this rate constant could be several orders of magnitude
smaller than its upper value, it is of interest to consider
the predictions of the stability analysis for 0 < K < 1 as
the Damköhler numbers become small.

Figures 4 a–c illustrate typical perturbation growth
rates for cases in which θ < 1, θ = 1 and θ > 1, re-
spectively. (In figures 4 b and c, the growth rates and
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wavenumbers have been scaled in a manner that will be
discussed below.) The general behaviour of the pertur-
bation growth rates is similar, but there is one difference,
illustrated in figure 4 a: for θ < 1, as the Damköhler num-
bers become smaller the growth rate s can become pos-
itive for intermediate wavenumbers even in cases where
s remains negative for smaller wavenumbers. We will
discuss this further below.
To obtain analytical results, we consider the asymp-

totic limit in which both Damköhler numbers become
small, while their ratio remains of order unity. Accord-
ingly, we write Da1 = δD̂1 and Da2 = δD̂2 and consider
the limit δ → 0 with D̂1 and D̂2 of order unity. Equation
(57) becomes

2ξ3 + 2δD̂2Kξ2 +
[
(K − 1)(1− θ)k + 2δD̂1

]
ξ

− δD̂2K(1−K)k = 0. (70)

We first consider a näıve expansion, in which all quan-
tities other than δ are of order unity. Seeking an expan-
sion of the form ξ = Ω0+Ω1δ+O(δ2), where ℜ(Ω0) > 0,
we obtain the leading-order equation

2Ω3
0 + (K − 1)(1− θ)kΩ0 = 0, (71)

and thus

Ω2
0 =

(1− θ)(1−K)

2
k. (72)

Since 0 < K < 1, this is consistent if and only if θ < 1,
and the corresponding asymptotic expansion for s = ξ2−
k2 is

s =
(1− θ)(1−K)

2
k − k2 +O(δ). (73)

Figure 4 a illustrates how well (73) captures the be-
haviour of s(k) as the Damköhler numbers become small.
Although, with the choice of Da1/Da2 employed in this
figure, the system is always stable for small wavenum-
bers, s(k) is positive for intermediate wavenumbers k ≈
(1− θ)(1−K)/4 (which in this case gives k ≈ 0.125).
When θ ≥ 1, the näıve expansion is not consistent with

the condition ℜ(ξ) > 0, so we need to seek alternative ex-
pansions in this regime. Motivated by the small-k results
(63) and (66), we define rescaled variables via s = δ2ŝ and

k = δk̂, and thus ξ = δξ̂, and we seek an expansion of the

form ξ̂ = ξ̂0 + ξ̂1δ + O(δ2). Substituting this expansion
into (70), we obtain

ξ̂0 =
D̂2K(1−K)k̂

(K − 1)(1− θ)k̂ + 2D̂1

. (74)

This expression for ξ̂0 remains finite for all k̂ as long as
(K−1)(1−θ) ≥ 0, and so since 0 < K < 1 this expansion

can be uniform in k̂ only if θ ≥ 1; it thus complements

the näıve expansion described above. The corresponding
expression for ŝ is

ŝ =

( D̂2K(1−K)

(K − 1)(1− θ)k̂ + 2D̂1

)2

− 1

 k̂2 +O(δ). (75)

When θ > 1, equation (75) successfully captures the be-
haviour of s, as illustrated in figure 4 c. In particular, for

small k̂ it predicts instability precisely when (65) holds,

and as k̂ → ∞ the growth rate decays as ŝ ∼ −k̂2.
However, when θ = 1, equation (75) fails to capture the

decay terms which determine the position of the maxi-
mum of s, and it is necessary to seek a different rescaling
of ξ and k. Under any such scaling, the term in (70) pro-
portional to ξ2 is asymptotically smaller than the term
proportional to ξ; on the other hand, to obtain a non-
trivial dependence of ξ on k it is necessary to include
all three remaining terms. This motivates the scaling
ξ = δ1/2ξ̄, s = δs̄ and k = δ1/2k̄, and the expansion
ξ̄ = ξ̄0 + ξ̄1δ

1/2 +O(δ) then leads to the depressed cubic
equation

ξ̄30 + D̂1ξ̄0 − q = 0, where q =
D̂2K(1−K)

2
k̄ > 0.

(76)
The real root may be found explicitly by Cardano’s
method, giving

s̄ =


√q2

4
+
D̂3

1

27
+
q

2

1/3

−

√q2

4
+
D̂3

1

27
− q

2

1/3

2

− k̄2 +O(δ1/2). (77)

When θ = 1, equation (77) successfully captures the be-
haviour of s, as illustrated in figure 4 b.

In summary, we find that in the limit in which both
Damköhler numbers become small while their ratio re-
mains of order unity, the stability depends on the pa-
rameter θ. For θ < 1, so that the surface tension de-
pends principally on the surface concentration, instabili-
ties occur at wavenumbers k of order unity, corresponding
to preferred wavelengths roughly an order of magnitude
greater than the thickness η of the surface layer, and can
do so even when the system remains stable as k → 0. In
contrast, for θ ≥ 1 the preferred wavenumbers k decrease
along with the Damköhler numbers; thus the long-wave
stability criterion (65) continues to capture the behaviour
of the system, and the preferred wavelength of instabili-
ties becomes much larger than the thickness of the surface
layer.

IV. SUMMARY AND CONCLUSIONS

We have described the construction of a new fluid-
dynamical model of coupled flow and solute transport
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FIG. 4. (a) Perturbation growth rates s(k) for K = 0.5 and θ = 0, with Da1/Da2 = 0.2 and Da2 = 1, 0.1, 0.01 and 0.001
(solid lines), together with the asymptotic result (73) (dashed lines). (b) Scaled perturbation growth rates s̄(k̄) for K = 0.5
and θ = 1, with Da1/Da2 = 0.1 and Da2 = 1, 0.1, 0.01, 0.001 and 0.0001 (solid lines), together with the asymptotic result (77)

(dashed lines). (c) Scaled perturbation growth rates ŝ(k̂) for K = 0.5 and θ = 2, with Da1/Da2 = 0.1 and Da2 = 1, 0.1, 0.01
and 0.001 (solid lines), together with the asymptotic result (75) (dashed lines). The arrows show the direction of decreasing
Da2 in each case.

which naturally accommodates both classical surfac-
tants and solutes with anti-surfactant properties. Un-
der kinetic equilibrium between the free surface and
the bulk, such models must agree with the surface-
tension–concentration relationship described by the
Gibbs isotherm (4) together with a suitable condition,
such as the Henry isotherm, relating the equilibrium bulk
and surface concentrations. When bulk–surface equilib-
rium does not hold, there is, in principle, freedom to
extend the model in various ways. However, care must
then be taken to distinguish artefacts of the extension
from genuine physical phenomena, and in the model pre-
sented here we have included the parameter θ, which al-
lows this point to be investigated.
Considering the stability of an infinitely deep, initially

quiescent layer of fluid suggests that, in contrast to sur-
factant solutions, anti-surfactant solutions may experi-
ence an instability driven by the accumulation of solute
in the surface at points of surface flow convergence. The
preferred spatial scales of this instability are rather small,
but are sufficiently large relative to the thickness of the
surface layer that the model remains consistent. For fast
bulk–surface kinetics, for which the Damköhler numbers
are of order unity, the parameter θ is irrelevant to the sta-
bility. For slower bulk–surface kinetics, θ plays a role in
setting the spatial scale of the instability, and the version
of the model for which surface tension depends solely on
surface concentration (corresponding to θ = 0) predicts
the shortest preferred wavelengths. This demonstrates
that the precise formulation of the surface-tension law
for anti-surfactants may have observable consequences,
and deserves further investigation. It is possible, for ex-
ample, that measurements using cantilever instruments
could resolve the small-scale variations associated with
the instability, while non-equilibrium surface-tension be-
haviour may also become apparent in the development of
foams [26].
The existence of a linear instability naturally raises the

question of the state towards which the perturbed system
evolves. Since this instability is essentially driven by per-

turbations to the concentration fields, we may speculate
that the first variable to evolve beyond the linear regime
will be either the surface or the bulk concentration. The
instability could be restrained by the breakdown of the
linear bulk–surface flux or through changes to the trans-
port rates; ultimately, it could manifest itself through
precipitation of the solute in regions where the perturbed
concentration exceeds the saturation concentration of the
solute. One experimentally observable signature of this
instability, therefore, might be a tendency for solutes to
precipitate from solution in the vicinity of a free surface,
under conditions when the bulk concentration is some-
what lower than its saturation value. An experimental
investigation of this possibility would be of considerable
interest.

Finally, we note that although the model presented
here is consistent with the basic thermodynamics repre-
sented by the Gibbs isotherm, it remains essentially an
extension of the established modelling framework for sur-
factants, and a gap still exists between fluid-dynamical
models such as ours and more fundamental descriptions
of salt solutions [12]. More sophisticated models, which
take account of distinct species and their electrochem-
ical interactions as well as appropriate non-equilibrium
thermodynamics, may be required to bridge this gap.
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Appendix A: The infinite-depth limit of the
finite-depth stability problem

In this appendix we briefly discuss the finite-depth ver-
sion of the stability problem with an undeformed free
surface, focussing on the limit in which the depth of the
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fluid layer becomes infinite. We will demonstrate that
the finite-depth problem is well posed for both surfac-
tants and anti-surfactants, but that the only family of
solutions available for surfactants becomes degenerate as
the depth tends to infinity. A full investigation of finite-
depth effects is ongoing.
For a layer of dimensionless depth d∗, the far-field con-

ditions (28) are replaced by

u∗ = 0 and
∂c∗b
∂z∗

= 0 on z∗ = −d∗. (A1)

In turn, the far-field conditions (46) are replaced by the
conditions

U(−d∗) = 0, W (−d∗) = 0, C ′(−d∗) = 0, (A2)

while the general solutions to (48) and (39) consistent

with these boundary conditions become

W (z∗) =

(
A1 +A2

z∗

d∗

)
sinh(k(z∗ + d∗))

− kd∗(A1 −A2)

(
1 +

z∗

d∗

)
cosh(k(z∗ + d∗)) (A3)

and

C(z) = A3 cosh(ξ (z
∗ + d∗)), (A4)

where, as before, we have written ξ =
√
k2 + s. Note

that we require that ξ ̸= 0, i.e. s ̸= −k2, but impose no
further condition on ξ. Henceforth we drop the star on
d∗ for brevity.

The solvability condition becomes

∣∣∣∣∣∣∣∣∣∣∣

kd c(kd)− s(kd) −kd c(kd) 0 0

2k2d c(kd) −2(1 + k2d2)

d
c(kd)−2k s(kd) kθ(1−K) c(ξd)

k(θ−1)(K−1)

K
0 0 ξ s(ξd)+Da2K c(ξd) −Da2

Kk2d s(kd) −K(1 + k2d2)

d
s(kd)−Kk c(kd) −Da1K c(ξd) ξ2+Da1

∣∣∣∣∣∣∣∣∣∣∣
= 0, (A5)

where we have written s and c as shorthand for sinh and
cosh respectively.
Solving (A5) numerically in the parameter regime (33),

we typically find that if 0 < K < 1 then instability is
possible for a range of small values of k, as in the infinite-
depth problem, whereas if K > 1 then no instability
occurs. A detailed discussion of the results for finite d
lies beyond the scope of this appendix; instead, here we
will seek asymptotic results as d → ∞. The form of the
exponential terms in (A5) makes it natural to consider
four distinguished limits, depending on the combination
of k, kd, ξ and ξd that is taken to remain finite and
non-zero in this limit; we consider them in turn.
Case (i): ℜ(ξ) and k remain finite and non-zero as

d → ∞. This is the case implicitly considered in §III
by postulating an infinitely deep body of fluid. In this
limit we may approximate all of the hyperbolic terms
in (A5) by exponentials. We must consider the cases
ℜ(ξ) ≷ 0 separately in order to discard the correct ex-
ponential terms; combining the results we find that the
solvability condition (A5) reduces to

2ξ3sgn(ξ)+2Da2Kξ2+[(K−1)(1−θ)k+2Da1] sgn(ξ)ξ

+Da2Kk(K − 1) +O
(
e−2kd, e−2sgn(ξ)ξd

)
= 0, (A6)

where sgn(ξ) = ±1 if ℜ(ξ) ≷ 0.
If ℜ(ξ) > 0 then, as we have seen in §III C 1, only

the regime 0 < K < 1 permits consistent solutions for

long waves. Alternatively, if ℜ(ξ) < 0 then by defining
ξ′ = −ξ we again find that there are consistent solutions
for long waves only when 0 < K < 1. We conclude that
when K > 1, in order to find consistent solutions across
all k we must consider a different distinguished limit.

Case (ii): ℜ(ξ) and kd remain finite and non-zero as
d → ∞. We now consider the possibility that ξ remains
of order unity (maintaining the possibility that s = O(1))
as d → ∞, but that this occurs only for very long waves.
We thus define κ = kd and set κ = O(1) as d → ∞.
Again considering ℜ(ξ) ≷ 0 separately, we reduce the
solvability condition (A5) to

(
ξ3 + ξ2sgn(ξ)Da2K +Da1ξ

)
(cosh(κ) sinh(κ)− κ)

+O
(
1

d
, e−2sgn(ξ)ξd

)
= 0. (A7)

Since ξ ̸= 0 by assumption and the factor
cosh(κ) sinh(κ) − κ is strictly positive for κ > 0,
we conclude that ξ must satisfy the quadratic equation
ξ2 + ξ sgn(ξ)Da2K + Da1 = 0. Again considering
separately the cases sgn(ξ) = ±1, we conclude that there
are no consistent solutions in this distinguished limit for
any positive value of K.

Case (iii): ξd and k remain finite and non-zero as
d → ∞. We now define Ξ = ξd, where Ξ = O(1). Ap-
proximating the hyperbolic terms in kd by exponentials,
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we reduce the solvability condition (A5) to[
kd2(K − 1)(1− θ) + 2Da1d

2 + 2Ξ2
]
Ξ sinh(Ξ)

+Da2Kd
[
(K − 1)d2k + 2Ξ2

]
cosh(Ξ)+O

(
e−2kd

)
= 0.

(A8)

As d → ∞, the dominant terms are those in d3, and so
the solvability condition reduces to cosh(Ξ) = 0, with
solutions Ξ =

(
n+ 1

2

)
πi for n ∈ Z. The solutions yield

s ∼ −k2 −
(
n+

1

2

)2
π2

d2
, (A9)

which describe stable modes, independent of K and de-
caying a little faster than the rate s = −k2 set by the
diffusion of a vertically constant perturbation. Crucially,
when we take the limit of infinite depth, these modes col-
lapse onto s = −k2. The loss of these modes represents
a degeneracy in the problem, which is important only if
no other modes exist.
Case (iv): ξd and kd remain finite and non-zero as

d → ∞. In this final case, we set Ξ = ξd and κ = kd as
before, and the solvability condition (A5) reduces to

Da2K(K − 1)κ
(
sinh2(κ)− κ2

)
cosh(Ξ)

+ 2Da1 (cosh(κ) sinh(κ)− κ) Ξ sinh(Ξ) +O
(
1

d

)
= 0.

(A10)

Rearranging then yields

Ξ tanh(Ξ) ∼ Da2K(1−K)

2Da1

κ(sinh2(κ)− κ2)

(cosh(κ) sinh(κ)− κ)
.

(A11)

The function of κ on the right-hand side is strictly posi-
tive for κ > 0, so the sign of the right-hand side is identi-
cal to the sign of the factor 1−K. Hence, it can be shown
that for 0 < K < 1 we obtain modes with Ξ ∈ R+ and
thus s > −k2; these modes persist as d → ∞, although
they occur at wavelengths that scale with d, while the
growth rates scale with 1/d2. For K > 1, we must seek
imaginary solutions for Ξ. We may write Ξ = iχ so that
the left-hand side becomes −χ tan(χ), and so we obtain
a spectrum of modes with s ∼ −κ2/d2 − χ2/d2 < −k2.

The overall conclusion from this asymptotic analysis
is that although the finite-depth stability problem is well
posed for both surfactants and anti-surfactants, the limit
d → ∞ is degenerate. Only a particular family of modes
survives in this limit, and this family is available only for
anti-surfactants, 0 < K < 1, for which it provides the
dominant mode.

The modes that degenerate in the limit d → ∞ do
so because their spatial scale is naturally set by the
depth of the layer, and becomes ill-defined in this limit.
In contrast, the bulk concentration field for the non-
degenerating modes has a boundary-layer structure and
the depth of the layer becomes irrelevant. Since, from
(39), the thickness of any concentration boundary layer
must scale as ξ =

√
k2 + s, boundary layers can occur

only when ℜ(s) > −k2, i.e. when the concentration per-
turbation is not decaying as rapidly as it would by dif-
fusion alone. To resist this diffusive decay an instability
mechanism must act near or at the surface, and thus
perturbations with this structure are available only for
anti-surfactants.
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