
This version is available at https://strathprints.strath.ac.uk/56039/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
PMU (algorithm) Testing to C37.118.1(a) in software

Dr. Andrew Roscoe

Work package 2 of EURAMET EMRP ENG52 “Smart Grids II”

Webex “training” session
June 3rd 2015
Rough Agenda

• C37.118.1 (2011) & C37.118.1a (2014)
 – Description of the six main tests in order
 – Making references to C37.118.1a and the new IEEE Synchrophasor Measurement Test Suite (TSS)
 – Problems with the tests
 – An introduction to some of the snags & ambiguities
 – Recent Synchrophasor Working Group debates
 » E.g. Frequency ramp time-exclusion zone and limits
 » Undershoot and Overshoot definitions

• Testing in software
 – Example of Strathclyde software environment

• Possible IEC extensions, including real-world effects
References

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent Synchrophasor Working Group (WG) emails and meeting minutes.</td>
</tr>
</tbody>
</table>
Standard C37.118.1a Tests

1. Steady state - balanced sinusoids
 - Hardware, ADC sampling quality/timing, signal/noise ratio.
2. Steady state – single “balanced” harmonic at f_0
 - Very loose stopband rejection test.
3. Out of band (interharmonics $<2f_0$) testing (close to f_0)
 - Very strict stopband rejection test.
4. Bandwidth (modulation)
 - Very strict passband flatness test
5. Frequency ramp test
 - Tests for excessive uncompensated frequency and ROCOF post-filtering, or timestamp calibration errors in them.
6. Step tests
 - Restrict the time window lengths of the total filter paths for phasors, frequency and ROCOF calculation. Limits on overshoot and undershoot.
7. Latency
Test 1: Steady state - balanced sinusoids

- The test is the ONLY C37.118.1a test done across the PMU bandwidth (2 to 5 Hz)
- The waveforms are always balanced sinusoids
- For P class, the signal applied is as low as 0.8pu
- For M class, the signal applied is as low as 0.1pu

TVE compliance is “easy” so long as the PMU timing is working correctly.

Frequency (±0.005 Hz) and ROCOF (±0.4 Hz/s for P, ±0.1 Hz/s for M) are much harder.

The crux points are P class (~2 cycle window) at 0.8pu, and M class \(F_s = 50 \text{ Hz} \) (~10 cycle window) at 0.1pu.

Table 3—Steady-state synchrophasor measurement requirements

<table>
<thead>
<tr>
<th>Influence quantity</th>
<th>Reference condition</th>
<th>Minimum range of influence quantity over which PMU shall be within given TVE limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P class</td>
</tr>
<tr>
<td>Signal frequency range—(f_{dev}) ((f_0 \pm f_{dev}))</td>
<td>(f_{nominal} (f_0))</td>
<td>(\pm 2.0 \text{ Hz})</td>
</tr>
</tbody>
</table>

The signal frequency range tests above are to be performed over the given ranges and meet the given requirements at three temperatures: \(T = \text{nominal (\sim23 \, ^{\circ}C)} \), \(T = 0 \, ^{\circ}C \), and \(T = 50 \, ^{\circ}C \)

<table>
<thead>
<tr>
<th>Influence quantity</th>
<th>100% rated</th>
<th>80% to 120% rated</th>
<th>1</th>
<th>10% to 120% rated</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal magnitude—Voltage</td>
<td>100% rated</td>
<td>10% to 200% rated</td>
<td>1</td>
<td>10% to 200% rated</td>
<td>1</td>
</tr>
</tbody>
</table>
Test 1: Steady state - balanced sinusoids

The crux points are P class (~2 cycle window) at 0.8pu, and M class $F_s=50$ Hz (~10 cycle window) at 0.1pu.

In my experience (agreed with Bill Dickerson of Arbiter), you need about 12-13 bits of IDEAL ADC sampling across the ±pu signal input range to achieve compliance in those cases. Allowing for analogue circuit noise, and ADC non-linearity/noise, a 16-bit ADC is probably just enough.

$$SNR(dB) = 1.76 + 6.02n = 74dB$$ for n=12 bits, with a 1pu signal applied

In the M class test, at 0.1pu, 20dB is immediately lost so SNR in the PMU will only be 54dB.

In a software test environment, you should DEFINITELY model realistic noise and/or ADC quantisation, otherwise the algorithm may be too optimistically treated. It could pass in simulation, but be unsuitable for any realistic application.
Test 1: Steady state - balanced sinusoids

8.1.2 Test plan for signal frequency range

See IEEE Std C37.118.1-2011 Table 3 and Table 4 for the required TVE, FE, and RFE limits for the given reporting rate (F_s).

a) Apply input signals at nominal magnitude at the frequency range limit: nominal frequency minus the lesser of $F_s/5$ or 5 Hz.

b) Wait for the system to settle.

c) Capture the PMU output for 5 s; allow for the settling period to elapse before changing the input signal.

d) Calculate the errors: ME, PE, FE, and RFE for each report.

e) Calculate the max TVE, FE, and RFE.

f) Increase the frequency by 0.1 Hz.

g) Repeat step b) through step f) until the upper frequency range limit is reached.

h) Compare the results to the class limits in the relevant standard.

i) Perform steps a) through h) at temperatures $T = 23 \, ^\circ C$, $0 \, ^\circ C$, and $T = 50.0 \, ^\circ C$. Allow PMU to reach temperature equilibrium within 3 °C before running the test.
Test 1: Steady state - balanced sinusoids

8.2.1 Test plan for signal magnitude—voltage and current

For both current and voltage input ranges, apply \textit{steady-state, nominal frequency (50 Hz or 60 Hz)}, balanced three-phase inputs. Compare the measurement with the input. Depending on the level or class, the PMU must operate over a range of voltages and currents, usually given as magnitudes relative to the nominal values. See Table 3 and Table 4 of IEEE Std C37.118.1-2011 for magnitude values and test limits.

a) Begin at the low magnitude limits:
 - P class: voltage = 80\% of nominal, current = 10\% of nominal.
 - M class: voltage = 10\% of nominal, current = 10\% of nominal.

b) Wait for the system to settle.

c) Capture the PMU output for 5 s; allow for the settling period to elapse before changing the input signal.

d) Calculate the errors: ME, PE, FE, and RFE for each report.

e) Calculate the max TVE.

f) Increase the input magnitudes by 10\% of the nominal value (not a percentage of the actual value).

g) Repeat step b) through step f) until the upper magnitude limits are reached: 120\% of nominal voltage, 200\% of nominal current (P and M class).

h) Compare the results to the class limits in the relevant standards.
Test 2: Single “balanced” harmonic at f_0

The lack of ANY required uncertainty makes it a useless measurement from a network operators perspective!

NOTE. Some M-class PMUs can make very GOOD measurements in this particular test, and even across wide frequency ranges with simultaneous applied harmonics, if the algorithms are suitably adaptive to off-nominal frequency and use suitable filters/algorithms.

<table>
<thead>
<tr>
<th>Influence quantity</th>
<th>Reference condition</th>
<th>Error requirements for compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P class</td>
</tr>
<tr>
<td>Harmonic distortion (same as Table 3 - single harmonic)</td>
<td><0.2% THD</td>
<td>1% each harmonic up to 50th</td>
</tr>
<tr>
<td></td>
<td>$F_s > 20$</td>
<td>Max FE</td>
</tr>
<tr>
<td></td>
<td>0.005 Hz</td>
<td>0.001 Hz/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4 Hz/s</td>
</tr>
<tr>
<td></td>
<td>$F_s \leq 20$</td>
<td>0.005 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.4 Hz/s uncertainty makes it a useless measurement from a network operators perspective!

5.5.4 Reference and test conditions

All compliance tests are to be performed with all parameters set to standard reference conditions, except those being varied as specified for the test. The reference condition specified for each test is the value of the quantity being tested when not being varied. Only the parameters specified for each requirement shall be varied as the effects shall be considered independent. Reference conditions for all tests are as follows:

a) Voltage at nominal
b) Current at nominal
c) Frequency at nominal

So in this test, harmonics are being varied so frequency is left at nominal!
And, only one harmonic at a time is applied.
It is a very restrictive test!
8.4.1 Test plan for harmonic distortion

Response to harmonic distortion is specified for 2nd harmonic to 50th harmonic individually.

a) Apply input signals at nominal magnitude with the addition of one harmonic, starting with the second harmonic, with the magnitude set to the level specified by IEEE Std C37.118.1-2011 for Class P or M PMUs:
 — 1% of nominal magnitude for P class.
 — 10% of nominal magnitude for M class.

b) Wait for the system to settle.

c) Capture the PMU output for 5 s; allow for the settling period to elapse before changing the input signal.

d) Calculate the errors: ME, PE, FE, and RFE for each report.

e) Calculate the max TVE, FE, and RFE.

f) Change to injecting the next harmonic.

h) Repeat step b) through step f) until all harmonics between 2nd harmonic and 50th harmonic have been tested.

h) Compare the results to the class limits in Table 3 and Table 4 of IEEE Std C37.118.1-2011.
Test 2: Single “balanced” harmonic at f_0

8.4.2 Harmonic distortion test ambiguities

The phase sequence of the harmonics is not specified by IEEE Std C37.118.1-2011. For the purposes of this TSS, the harmonic sequence shall NOT be positive sequence for all harmonics but shall be in-phase with the fundamental frequency for all three phases. In other words, when the fundamental power signal of each phase crosses zero in the positive going direction, the injected harmonic signal shall also be crossing zero in the positive direction. In this case, the second harmonic will be negative sequence, the third harmonic will be zero sequence, and the forth harmonic will be positive sequence. The cycle repeats with the fifth harmonic being negative sequence and so on (see Table 4).

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>+</td>
<td>−</td>
<td>0</td>
</tr>
<tr>
<td>Harmonic</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Sequence</td>
<td>+</td>
<td>−</td>
<td>0</td>
</tr>
<tr>
<td>Harmonic</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>Sequence</td>
<td>+</td>
<td>−</td>
<td>0</td>
</tr>
<tr>
<td>Harmonic</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>+</td>
<td>−</td>
<td>0</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
</tbody>
</table>

This leads to the same waveshapes on all phases. It is the most “usual” symptom in power systems. Of course, there are many other permutations which are not explored by this approach.

The reason for specifying the phase sequence of harmonic signals is to provide a common reference for all PMU testing. PMUs have been shown to have different results when subjected to the same harmonics with different phase relations.
Test 2: Single “balanced” harmonic at f_0

The WGH11 discussed requiring this test to be done with multiple harmonics at one time, to more accurately simulate how harmonics appear in the power systems and to possibly reduce the testing time. Issues of signal crest factor and rise times and their impact on measurement were raised. Different power system operating scenarios produce different combinations of harmonics. The question of whether the test limits should apply to the total power of the harmonics or the individual amplitudes was raised. Without general agreement on these questions, the WGH11 decided the best approach is still to perform the test with one harmonic applied at a time. The 2014 amendment suspended the ROCOF error requirement for harmonic testing of M class PMUs, after testing of actual PMUs indicated that this requirement might be a driving factor in PMU design which could impair the phasor measurement capability. P class PMUs still have a ROCOF error limit for harmonic tests, though relaxed to 0.4 Hz/s.
Test 2: Single “balanced” harmonic at f_0

The limits for RFE for class M have been suspended for the Harmonics and Out-of-Band tests. The interactions between the phasor, frequency and ROCOF computations are not well enough developed at the time of this standard’s publication to assure that fixed limits for ROCOF in these tests will not constrain phasor or frequency measurement. This standard focuses on phasor and frequency measurement to best serve the user community. However, for sinusoidal interfering signals such as these, the limit on FE also implies a limit on RFE.

This implied limit can be calculated as:

$$\text{RFE} = \text{FE} \times 2 \times \pi \times |f_{\text{int}} - f_0|$$

where:
- f_{int} is the interfering signal frequency
- f_0 is the nominal frequency

For example, for the 2nd harmonic of $f_0 = 50$ Hz (100 Hz), the difference $(100 - 50)$ is 50 Hz, and the resulting implied limit is 7.85 Hz/s. In other words, a PMU which is at the FE limit with exactly 0.025 Hz frequency error due to the 100 Hz harmonic will produce a ROCOF error (RFE) of 7.85 Hz/s.

- Typical RFE results for the “Reference” algorithm are! 0.02 Hz/s to 50 Hz/s! depending on the additional post-processing (following the Hamming/Sinc window) applied to frequency and ROCOF.
Test 2 : Single “balanced” harmonic at f_0

- Personally, I run my own tests where I also sweep nominal frequency over the whole valid input range, as well as checking every harmonic.
- It is a long test – 49 harmonics times the number of frequency steps.
- But, it is often revealing.
- The standard test done only at f_0 is, in my opinion, too much of an “easy ride” for PMUs, and in no way certifies them for use in any real environments.

- I also like to run my own tests where multiple harmonics (e.g. to EN 50160) are applied at the same time, over non-linear frequency ramps!
Test 3 : Out of Band (OOB) (interharmonics between 10 Hz and \(2f_0\) eg flicker)

- This test is “dressed up” as testing digital anti-aliasing filtering before the decimation to the reporting rate.
- The out of band test is really a test of the STOPBAND attenuation.
- It tests the ability of the algorithm/filter/window to reject signals between \(F_s/2\) and \(f_0\) removed from the fundamental.
- The filter “stopband start frequency” is defined as \(F_s/2\) which is the Nyquist frequency at the reporting rate.
Test 3: Out of Band (OOB)
(interharmonics between 10 Hz and $2*f_0$ eg flicker)

- This test is “dressed up” as testing digital anti-aliasing filtering before the decimation to the reporting rate.
- The out of band test is really a test of the STOPBAND attenuation.
 - It tests the ability of the algorithm/filter/window to reject signals with $(f_{IH} - f_0) \geq F_s/2$.
 - The filter “stopband start frequency” is defined as $F_s/2$ which is the Nyquist frequency at the reporting rate.

The required stopband attenuation in C37.118.1(2011) was just 20dB, but it was nowhere near enough to attain 0.01Hz accuracy with the applied interharmonics at 10% of fundamental.

The stopband attenuation at $F_s/2$ required to comply with C37.118.1a is closer to 54dB for a fixed-filter PMU.
Test 3 : Out of Band (OOB) (interharmonics between 10 Hz and 2\(f_0\) eg flicker)

- The test exercises the PMU by testing the filtering with fundamental frequency varied over a reduced range.
 - This is somewhat of a “cheat”, and it acknowledges that the stopband rejection for a PMU which does not tune itself to the fundamental will be much poorer if frequency is at the edge of the actual quoted PMU range of operation.

- Achieving a TVE of 1.3% in this test is quite easy for the PMU filter if it has >20dB of attenuation in the stopband.

<table>
<thead>
<tr>
<th>Influence quantity</th>
<th>Reference condition</th>
<th>Minimum range of influence quantity over which PMU shall be within given TVE limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Out-of-band interference as described below (See NOTES 2 and 3)</td>
<td><0.2% of input signal magnitude</td>
<td>None</td>
</tr>
</tbody>
</table>

Out-of-band interference testing: The passband at each reporting rate is defined as \(|f - f_0| < F_s / 2\). An interfering signal outside the filter passband is a signal at frequency \(f\) where \(|f - f_0| \geq F_s / 2\).

For test the input test signal frequency \(f_{in}\) is varied between \(f_0\) and \(\pm (10\%)\) of the Nyquist frequency of the reporting rate.

That is \(f_0 - 0.1 \left(F_s / 2\right) \leq f_{in} \leq f_0 + 0.1 \left(F_s / 2\right)\)

where
\[
F_s = \text{phasor reporting rate} \\
f_0 = \text{nominal system frequency} \\
f_{in} = \text{fundamental frequency of the input test signal} \]
Test 3: Out of Band (OOB) (interharmonics between 10 Hz and $2f_0$ eg flicker)

NOTE 3—Compliance with out-of-band rejection can be confirmed by using a single frequency sinusoid added to the fundamental power signal at the required magnitude level. The signal frequency is varied over a range from below the passband (at least down to 10 Hz) and from above the passband up to the second harmonic ($2f_0$). If the positive sequence measurement is being tested, the interfering signal is a positive sequence.

The standard requires that when measuring the interference effects on a positive sequence phasor from the PMU, the interfering signal harmonics must be positive sequence. The need to make the interharmonics positive sequence arises from the fact that a PMU calculates symmetrical components from the phase components. Any non-positive sequence component of the interharmonics would be highly attenuated in the computation of the positive sequence phasor.

Synchrophasor Measurements under the IEEE Standard C37.118.1-2011 with amendment C37.118.1a
Working Group H11 on the Synchrophasor Standard, C37.118.1 of the Relay Communications Subcommittee of the IEEE Power System Relaying Committee
Test 3: Out of Band (OOB) (interharmonics between 10 Hz and $2f_0$ eg flicker)

Out-of-band compliance shall be confirmed by adding a single frequency sinusoid to the fundamental power signal at the required amplitude level and measuring the TVE and FE for 5 s. A series of tests increments the frequency of this signal over the out-of-band range from below the in-band (at least down to 10 Hz) and above the in-band to the second harmonic ($2 \times f_0$) for each reporting rate. This test shall be repeated three times with input signal (f_{in}) frequency at nominal (f_0), at $f_{in} = f_0 \pm 0.10$ times the reporting rate Nyquist frequency. Table 5 shows the bandwidth and the in-band range for each reporting rate and nominal frequency. The in-band range is the range in which interfering signals will not be injected.

<table>
<thead>
<tr>
<th>F_s</th>
<th>Bandwidth</th>
<th>$F_s/2$ (Nyquist)</th>
<th>10% Nyquist of F_s</th>
<th>In-band $f_0 = 60$</th>
<th>Out-of-band $f_0 = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 or less</td>
<td>±2 Hz</td>
<td>5 Hz</td>
<td>±0.5 Hz</td>
<td>55–65 Hz</td>
<td>10–55, 65–120</td>
</tr>
<tr>
<td>12</td>
<td>±2.4 Hz</td>
<td>6 Hz</td>
<td>±0.6 Hz</td>
<td>54–66 Hz</td>
<td>10–54, 66–120</td>
</tr>
<tr>
<td>15</td>
<td>±3 Hz</td>
<td>7.5 Hz</td>
<td>±0.75 Hz</td>
<td>52.5–67.5 Hz</td>
<td>10–52.5, 67.5–120</td>
</tr>
<tr>
<td>20</td>
<td>±4 Hz</td>
<td>10 Hz</td>
<td>±1 Hz</td>
<td>50–70 Hz</td>
<td>10–50, 70–120</td>
</tr>
<tr>
<td>30</td>
<td>±5 Hz</td>
<td>15 Hz</td>
<td>±1.5 Hz</td>
<td>45–75 Hz</td>
<td>10–45, 75–120</td>
</tr>
<tr>
<td>60</td>
<td>±5 Hz</td>
<td>30 Hz</td>
<td>±3 Hz</td>
<td>30–90 Hz</td>
<td>10–30, 90–120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F_s</th>
<th>Bandwidth</th>
<th>$F_s/2$ (Nyquist)</th>
<th>10% Nyquist of F_s</th>
<th>In-band $f_0 = 50$</th>
<th>Out-of-band $f_0 = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 or less</td>
<td>±2 Hz</td>
<td>5 Hz</td>
<td>±0.5 Hz</td>
<td>45–55 Hz</td>
<td>10–45, 55–100</td>
</tr>
<tr>
<td>25</td>
<td>±5 Hz</td>
<td>12.5 Hz</td>
<td>±1.25 Hz</td>
<td>37.5–62.5 Hz</td>
<td>10–37.5, 62.5–100</td>
</tr>
<tr>
<td>50</td>
<td>±5 Hz</td>
<td>25 Hz</td>
<td>±2.5 Hz</td>
<td>25–75 Hz</td>
<td>10–25, 75–100</td>
</tr>
</tbody>
</table>

Interfering signals are injected within the out-of-band frequencies above.
Test 3 : Out of Band (OOB)
(interharmonics between 10 Hz and $2*f_0$ eg flicker)

a) Add an interharmonic signal at $f_i = f_0 - F_s/2$ at 10% nominal magnitude.

b) Wait for the system to settle.

c) Capture the PMU output for 5 s; allow the settling period to elapse before changing the input signal.

d) Calculate the errors: ME, PE, FE, and RFE for each report.

e) Calculate the max TVE, and FE.

f) Run step b) through step e) repeatedly, decreasing the interharmonic frequency exponentially until it reaches 10 Hz:

For each test run, the interharmonic frequency decrements exponentially, thus providing many tests near $f_i = f_0 - F_s/2$ and fewer tests further away from $f_i = f_0 - F_s/2$. For example, the first decrease should be 0.1 Hz ($f_0 - F_s/2 - 0.1$), the next decrease 0.2 Hz ($f_0 - F_s/2 - 0.2$), the third decrease 0.4 Hz ($f_0 - F_s/2 - 0.4$), then 0.8 Hz ($f_0 - F_s/2 - 0.8$) until an interharmonic frequency below 10 Hz is reached. For the last frequency, use 10 Hz rather than the frequency below 10 Hz.

g) Add an interharmonic signal at $f_i = f_0 + F_s/2$ at 10% nominal magnitude.

h) Run step b) through step e) repeatedly, increasing the interharmonic frequency exponentially until it reaches $2 \times f_0$:

For each test run, the interharmonic frequency increments exponentially, thus providing many tests near $f_i = f_0 + F_s/2$ and fewer tests further away from $f_i = f_0 + F_s/2$. For example, the first increase should be 0.1 Hz ($f_0 + F_s/2 + 0.1$), the next increase 0.2 Hz ($f_0 + F_s/2 + 0.2$), the third increase 0.4 Hz ($f_0 + F_s/2 + 0.4$), then 0.8 Hz ($f_0 + F_s/2 + 0.8$), until an interharmonic frequency above $2 \times f_0$ is reached. For the last frequency use $2 \times f_0$ rather than the frequency above $2 \times f_0$.

i) Compare the results to the class limits in the amended IEEE Std C37.118.1-2011 and IEEE Std C37.118.1a-2014.

j) Run all steps a) through h) two more times with the input signal frequency at nominal frequency plus and minus 10% of $F_s/2$ (the Nyquist frequency of the reporting rate, F_s).
Test 3 : Out of Band (OOB)
(interharmonics between 10 Hz and $2f_0$ eg flicker)

NOTE—Out-of-band interfering signal testing requires many test runs. Increasing the increment of interharmonic frequency change exponentially rather than at small, constant increments reduces the total number of individual test runs while ensuring that many tests are run near the bandwidth limits.

For example:

$$f_i = \max \left(\left(f_0 - \frac{F_s}{2} - (0.1 \times 2^i) \right), 10 \right) \text{Hz}$$

$$f_i = \min \left(\left(f_0 + \frac{F_s}{2} + (0.1 \times 2^i) \right), 2 \times f_0 \right) \text{Hz}$$

where

- f_i is the frequency of the interfering signal
- f_0 is the nominal frequency
- F_s is the reporting rate
- i is the index beginning at 0

Closer points here, to check the edge of the stopband

Points further apart here, to save time
Test 3: Out of Band (OOB) (interharmonics between 10 Hz and $2f_0$ eg flicker)

- The passing or failing of this test will usually be determined by the FE limit, since the RFE limit is suspended. For a given filter, FE at 0.01Hz will fail long before TVE fails at 1.3%

<table>
<thead>
<tr>
<th>Influence quantity</th>
<th>Reference condition</th>
<th>Error requirements for compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P class</td>
</tr>
<tr>
<td>Out-of-band interference (same as Table 3)</td>
<td><0.2% of input signal magnitude</td>
<td>No requirements</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Max FE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01 Hz</td>
</tr>
</tbody>
</table>

- Typical RFE results for the “Reference” algorithm are up to 0.9 Hz/s.
- Achievable RFE results for “Better” algorithms are <0.15 Hz/s
Test 3: Out of Band (OOB)
(interharmonics between 10 Hz and $2f_0$ eg flicker)

- The way the test is applied is not “correct” for a PMU which adapts (tunes) itself so that its filter is centred on the ACTUAL frequency f, instead of being fixed at the the nominal f_0.
- For “adaptive PMUs”, a better regime would be to test:
 - The ability of the algorithm/filter/window to reject signals with $(f_{IH} - f) \geq \frac{F_S}{2}$.
 - Not the subtle difference between this and $(f_{IH} - f_0) \geq \frac{F_S}{2}$.

Determining the required filter Mask for OOB testing

- Minimum separation of the interharmonic from the tuned (heterodyne) frequency. Sets the width of the mask.

- Maximum separation of the interharmonic from the fundamental frequency, when \((f_{IH} - f_T)\) is minimum, sets the gain (attenuation) Required at the "closest" mask point.

\[
F(f_{IH} - f_T) < \frac{FE_{max}}{A \cdot (f_{IH} - f)}
\]
Out-of-Band testing, \(f = f_0 \)

All algorithms

\(f_0 = \) Nominal frequency (Hz)
\(f = \) Actual fundamental frequency (Hz)
\(f_T = \) Tuned frequency (Hz)

Frequency in filter = \((f_{IH} - f_T)\)

Minimum \(f_{IH} \) (upper) = \(f_0 + \frac{F_s}{2} \)

Minimum \((f_{IH} - f_T)\) = \(f_0 + \frac{F_s}{2} - f_0 = \frac{F_s}{2} \)

Maximum \((f_{IH} - f)\) = \(f_0 + \frac{F_s}{2} - f_0 = \frac{F_s}{2} \)

Mask width is “normal” \(\frac{F_s}{2} \) and \((f_{IH} - f)\) tracks exactly with \((f_{IH} - f_T)\).
Out-of-Band testing, $f = f_0 - \frac{F_S}{20}$

Fixed-filter algorithm

$f_0 =$ Nominal frequency (Hz)
$f =$ Actual fundamental frequency (Hz)
$f_T =$ Tuned frequency (Hz)

Frequency in filter = $(f_{IH} - f_T)$

Minimum f_{IH} (upper) = $(f_0 + \frac{F_S}{2})$

Minimum $(f_{IH} - f_T) = (f_0 + \frac{F_S}{2}) - f_0 = \left(\frac{F_S}{2}\right)$

Maximum $(f_{IH} - f) = (f_0 + \frac{F_S}{2}) - (f_0 - \frac{F_S}{20}) = \left(1.1 \frac{F_S}{2}\right)$

Mask width is “normal” $(\frac{F_S}{2})$ but gain needs to be reduced by $20 \cdot \log \left(\frac{1}{1.1}\right) = 0.83$ dB, at the closest frequency, from what you might expect.
Out-of-Band testing, \(f = f_0 + \frac{F_S}{20} \)

Frequency-tracking algorithm

\(f_0 \) = Nominal frequency (Hz)

\(f \) = Actual fundamental frequency (Hz)

\(f_T \) = Tuned frequency (Hz)

Frequency in filter = \((f_{IH} - f_T) \)

Minimum \(f_{IH} \) (upper) = \(f_0 + \frac{F_S}{2} \)

Minimum \((f_{IH} - f_T) = \left(f_0 + \frac{F_S}{2} \right) - \left(f_0 + \frac{F_S}{20} \right) = 0.9 \left(\frac{F_S}{2} \right) \)

Maximum \((f_{IH} - f) = \left(f_0 + \frac{F_S}{2} \right) - \left(f_0 + \frac{F_S}{20} \right) = \left(0.9 \frac{F_S}{2} \right) \)

Mask frequency width is reduced by 10% from \(\left(\frac{F_S}{2} \right) \) but gain can be \(20 \log \left(\frac{1}{0.9} \right) = 0.92 \) dB higher, at the closest frequency, from what you might expect.
Simplified OOB requirements and examples, \(f_0 = 50 \text{ Hz} \), \(F_S = 50 \text{ Hz} \)
Simplified OOB requirements and examples, $f_0=50$ Hz, $F_S=50$ Hz

- Gain (dB): 0.92 dB
- Gain (dB): 0.83 dB
- Frequency in filter (Hz): 14.8% narrower

- Frequency in filter (Hz): $f_0 = 50$ Hz
- Frequency in filter (Hz): $F_S = 50$ Hz
Test 3: Out of Band Examples with $F_s = 50$ Hz

Closer points here, to check the edge of the stopband

Points further apart here, to save time
Test 4: Modulation (bandwidth, passband flatness)

- The out of band test is really a test of the PASSBAND flatness.
- The PASSBAND for M class is defined as $F_R = F_S / 5$ ($F_S =$ reporting rate), but limited to a maximum value of 5 Hz.
- But, it is only 2 Hz for P class (this is not very useful – what happens at 47.5 Hz?!)
The effect of modulation in the bandwidth test

\[V = \frac{M}{2} e^{j2\pi f_M t} + \frac{M}{2} e^{-j2\pi f_M t} \]

\[V_{Meas} = F(f_M) \frac{M}{2} e^{j2\pi f_M t} + F(-f_M) \frac{M}{2} e^{-j2\pi f_M t} \]

\[TVE = |V_{Meas} - V| \]

\[|F(f_M) - 1| < \frac{TVE_{Limit}}{M} \]

\[|F(f_M)| > 1 - \frac{0.03}{0.1} \]

\[|F(f_M)| > 0.7 \]

\[F(f_M) > -3.098 \, \text{dB} \]
Attenuation must be <3dB at passband edge
Example for M class 50 Hz reporting
Test 4 : Modulation (bandwidth, passband flatness)

- There are also limits for FE and RFE, but in general these will pass for most PMUs unless substantial post-filtering is applied to these (relative to the Phasor outputs).
- If the PMU applies post-filtering, or uses different filters/algorithms to determine FE and RFE, than were used to determine the phasors, then FE and RFE could still fail, even if TVE passes.

<table>
<thead>
<tr>
<th>Reporting Rate F_S (Hz)</th>
<th>P Class</th>
<th>M Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_r (Hz)</td>
<td>Max FE</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>0.04</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>0.05</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>Formulas</td>
<td>$\min(F_S/10,2)$</td>
<td>$0.03 * F_{FL}$</td>
</tr>
</tbody>
</table>
Test 4: Modulation (bandwidth, passband flatness)

The test plan for measurement bandwidth is as follows:

a) Begin with amplitude modulated input at $\omega/2\pi = 0.1$ Hz, $k_x = 0.1$, $k_a = 0$.

b) Wait for the system to settle.

c) Capture the PMU output for at least 2 full cycles of modulation or 5 s, whichever is greater; allow for the settling period to elapse before changing the input signal.

d) Calculate the errors: ME, PE, FE, and RFE for each report.

e) Calculate the max TVE, FE, and RFE.

f) Increase the modulation frequency $\omega/2\pi$ by 0.2 Hz.

g) Repeat steps b) through f) until the upper frequency range limit is reached.

h) A test at the upper frequency range limit must be included despite the fact that the modulation frequency increment is 0.2 Hz.

i) Compare the results to the class limits in the amended Table 5 and Table 6 in IEEE Std C37.118.1a-2014.

j) Repeat the entire test for phase modulation only: $k_x = 0$, $k_a = 0.1$.
• If you have a PMU to test, the hardest PMU to make is:
 – For $f_0=50$ Hz, the M class device which reports at $F_S=25$ Hz
 – For $f_0=60$ Hz, the M class device which reports at $F_S=60$ Hz
• This is because the PMU bandwidth required is a full ±5 Hz, but the stopband (OOB test) will test the stopband starting at $F_S/2=25/2=12.5$ Hz
• This is only a 2.5:1 ratio.
 – For $f_0=50$ Hz, $F_S=50$ Hz, ratio = $(50/2)/5 = 5:1$
 – For $f_0=50$ Hz, $F_S=25$ Hz, ratio = $(25/2)/5 = 2.5:1$
 – But this is slightly harder than $F_S=10$ because the bandwidth is bigger.
 – For $f_0=50$ Hz, $F_S=10$ Hz, ratio = $(10/2)/2 = 2.5:1$
Bandwidth test example – M class Frequency Error (FE) & ROCOF ERROR (RFE)

The low reporting rate devices are much harder to make compliant. Reporting rate 50 Hz is much easier.
OOB vs Bandwidth

- The Bandwidth and OOB tests check passband flatness and stopband attenuation. The general frequency-domain shape of the filter response is tested against the “mask”.

- If these tests both pass, it is likely the PMU will also pass the response-time tests.
Test 5: Frequency ramp

- In general, a PMU which passes the previous tests OUGHT to pass the Frequency ramp test.
- BUT, the frequency ramp test can catch out PMUs which apply excessive post-filtering to frequency or ROCOF outputs, especially if these are not carefully implemented with corrections for the timestamp.
Test 5: Frequency ramp

Table 7—Synchrophasor performance requirements under frequency ramp tests

<table>
<thead>
<tr>
<th>Test signal</th>
<th>Reference condition</th>
<th>Minimum range of influence quantity over which PMU shall be within given TVE limit does not include the exclusion interval multiplied by the ramp rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear frequency ramp</td>
<td>100% rated signal magnitude, and f_{nominal} at a non-excluded point during the test</td>
<td>$\pm 1.0 \text{ Hz/s}$, Class P: $2/F_s$, Exclusion interval: $\pm 2 \text{ Hz}$, Ramp range: $1%$;</td>
</tr>
</tbody>
</table>

aFor $F_s = 12 \text{ fps}$, ramp range shall be $\pm 2 \frac{1}{3}$ (two and one-third) Hz to allow for an integer number of samples in the result.

Table 8—Frequency and ROCOF performance requirements under frequency ramp tests

<table>
<thead>
<tr>
<th>Signal specification</th>
<th>Reference condition</th>
<th>Transition time Exclusion interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp tests—same as specified in Table 7</td>
<td>100% rated signal magnitude and 0 radian base angle</td>
<td>$\pm 2/F_s$ for the start and end of ramp Same as specified in Table 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error requirements for compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>P class</td>
</tr>
<tr>
<td>Max FE</td>
</tr>
<tr>
<td>0.01 Hz</td>
</tr>
<tr>
<td>0.4 \pm Hz/s</td>
</tr>
</tbody>
</table>
Test 5: Frequency ramp example
M Class 50 Hz reporting rate
Test 5: Frequency ramp example
M Class 50 Hz reporting rate

In this example, the ramp starts at $t=2.000s$.

The reports with TIMESTAMPs around 2.000s are perturbed by the step in ROCOF.

In this example, 3-4 reports either side of the step time contain “non-ideal” data.
Test 5: Frequency ramp example
M Class 50 Hz reporting rate

The exclusion interval is 7/50 seconds.

i.e. 7 cycles, 7 reports

So the report which coincides with the ramp start or stop time is excluded from the analysis, plus also 7 reports are excluded either side of the ramp start/stop times.

The working group have agreed that it is normative that the ramp always starts and stops at times which coincide exactly with expected report timestamps.
Test 5: Frequency ramp - Exclusion interval

Dear All,

The subgroup that agreed on the 7 key points from my email of May 6th, has now also agreed (with one abstention) that there is a set of normative requirements that define which reports are to be excluded when the ramp leaves and reaches the frequency range limits coincident to a report. In this case, N reports AFTER the report coincident with the signal leaving the range limit shall be excluded where N is 7 for M class and 2 for P class.

From C37.118.1a-2014 clause 5.5.7

The exclusion interval is the time interval after the ramp leaves or before the ramp reaches a frequency range limit at a point where ROCOF changes (point 1).

Measurements made during an exclusion interval shall not be used when determining measurement compliance (point 2).

We all agreed that the exclusion interval is a fixed period of time N/3 (point 4). If the ramp begins coincident with a report, the exclusion interval begins AFTER that report and ends AFTER N reports later. If the ramp ends coincident to a report, the exclusion interval ends BEFORE that report and begins BEFORE a report N reports earlier.

This should resolve the original issue with ICAP testing and testing and certification should now be able to proceed using the above interpretation.

The example from C37.118.1a-2014 (quoted in the email below with **) is agreed upon but the subgroup to be ambiguous and may conflict with the above interpretation. However, the IEEE SA style manual states that examples cannot be normative and therefore there may be no normative requirements stated in an example.

Cordially,
Allen Goldstein, NIST
(301) 975-2191 office/lab
(202) 276-7347 cell
allen.goldstein@nist.gov

From: Goldstein, Allen R.
Sent: Wednesday, May 6, 2015 9:24 AM
To: Bill Dickerson, Bill Subramaniam
Cc: Nilesh_Skedlich@linc.com; Kirkham, Harold; Ashish Kulkarni; Jose Eduardo
Subject: Andrew, Ron; Tian-Bih, B.; Brian Kebu; Sanita Chokodi; Chris Hunt; Paul

Allen Goldstein
The formulas for computing the phasor, frequency, and ROCOF values are based on an integer time step that only works when the ramp starts at nominal and with the count $n=0$ when the ramp starts ... time must be $t=0$ when the ramp is at the nominal frequency. This is not stated. That further requires a report at that point since there is always a report at the second rollover which also means there will be a report at the limit since the limits are at integer frequencies (except 12 fps). I think that is your argument that the ramp has to start at a report time.

I think this is explicitly normative. Special consideration is even given in Table 7 for $F_s=12$ to satisfy this normative requirement.

Dan Dwyer, Ken Martin : 6th May 2015

i.e. the ramp should start and end exactly on a valid report time.

We all agreed that the exclusion interval is a fixed period of time N/F_s (point 4). If the ramp begins coincident with a report, the exclusion interval begins AFTER that report and ends AFTER N reports later. If it the ramp ends coincident to a report, the exclusion interval ends BEFORE that report and begins BEFORE a report N reports earlier.

This should resolve the original issue with ICAP testing and testing and certification should now be able to proceed using the above interpretation.

Allen Goldstein: 7th May 2015
Test 5 : Frequency ramp

The test plan for ramp of system frequency is as follows:

a) Begin with input at nominal magnitude and lower frequency range.
b) Wait for the system to settle.
c) Begin ramping the frequency with a positive ramp rate of 1 Hz/s, ramp until the upper frequency range is reached and hold at that frequency for at least the settling period.
d) Calculate the errors: ME, PE, FE, and RFE for each report.
e) Calculate the max TVE, FE, and RFE excluding data during the exclusion intervals as required by the standard.
f) Hold the frequency constant for at least the settling period, and then begin ramping the frequency at the negative ramp rate.
g) Calculate the max TVE, FE, and RFE excluding data during the exclusion intervals as required by the standard.
h) Compare the results to the class limits in IEEE Std C37.118.1-2011 and IEEE Std C37.118.1a-2014.

Note that the positive and negative ramps are not required to be contiguous as shown in step f). As long as the settling period is observed both before and after the frequency ramp, the signal may or may not be removed from the PMU between the frequency ramps.
Test 5 : Frequency ramp
Limitations

• It should ideally test for phasor phases not corrected for ROCOF (as the phase profile across the measurement window is parabolic, the waveform is a “chirp”), but the TVE limit is too large to detect this. For metrological units, a much tighter TVE limit could (and should?) be applied in this test.

• The C37.118.1a Reference PMU TVE is 0.05-0.5% during this test.

• It is possible to achieve significantly better results (<0.01%) if the PMU contains the appropriate corrections to apply during ROCOF events.

• There is no consideration of non-linear frequency ramps.
Test 6: Dynamic step test

- The step test applies amplitude and phase steps.
 - The undershoot and overshoot tests evaluate the window shapes. Failures will occur if the windows contain a high proportion of negative weights.
 - The delay parameter tests that the window is correctly centred and symmetric about the timestamp issued with the report.
 » Or it could be asymmetric but correctly calibrated/corrected
Test 6: Dynamic step test - undershoot, overshoot, delay

- The step test applies amplitude and phase steps.
 - The undershoot and overshoot tests evaluate the window shapes. Failures will occur if the windows contain a high proportion of negative weights.
 - The delay parameter tests that the window is correctly centred and symmetric about the timestamp issued with the report
 » Or it could be asymmetric but correctly calibrated/corrected
Test 6: Dynamic step test – response

- Response can fail if:
 - The filter window is too long in the time domain
 - Too much post processing is applied to frequency and/or ROCOF outputs
 - The steady-state measurements are too close to the TVE, FE and RFE limits in the first place.
Test 6: Dynamic step test – limits

Table 9—Phasor performance requirements for input step change

<table>
<thead>
<tr>
<th>Step change specification</th>
<th>Reference condition</th>
<th>Maximum response time, delay time, and overshoot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response time (s)</td>
</tr>
<tr>
<td>Magnitude = ± 10%, k_b = ± 0.1, k_a = 0</td>
<td>All test conditions nominal at start or end of step</td>
<td>2 (\frac{4.7}{f_0})</td>
</tr>
<tr>
<td>Angle ± 10°, k_b = 0, k_a = ± (\pi/18)</td>
<td>All test conditions nominal at start or end of step</td>
<td>2 (\frac{4.7}{f_0})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step change specification</th>
<th>Reference condition</th>
<th>Maximum response time, delay time, and overshoot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response time (s)</td>
</tr>
<tr>
<td>Magnitude = ± 10%, k_b = ± 0.1, k_a = 0</td>
<td>All test conditions nominal at start or end of step</td>
<td>See table 11</td>
</tr>
<tr>
<td>Angle ± 10°, k_b = 0, k_a = ± (\pi/18)</td>
<td>All test conditions nominal at start or end of step</td>
<td>See table 11</td>
</tr>
</tbody>
</table>

Table 10—Frequency and ROCOF performance requirements for input step change

<table>
<thead>
<tr>
<th>Signal specification</th>
<th>Reference condition</th>
<th>Maximum response time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency (s)</td>
</tr>
<tr>
<td>Magnitude test as in Table 9</td>
<td>Same as in Table 9</td>
<td>(\frac{3.45}{f_0})</td>
</tr>
<tr>
<td>Phase test as in Table 9</td>
<td>Same as in Table 9</td>
<td>(\frac{3.45}{f_0})</td>
</tr>
</tbody>
</table>

		Class M	
		Frequency (s)	ROCOF Response time (s)
Magnitude test as in Table 9	Same as in Table 9	See table 11	Greater of \(14/F_3 \) or \(14/F_0 \)
Phase test as in Table 9	Same as in Table 9	See table 11	Greater of \(14/F_3 \) or \(14/F_0 \)

EDITOR’s NOTE—Class P ROCOF changed from 4 to 6 in Table 10 (strike through not clear).
Test 6: Dynamic step test – under/overshoot definitions

Look in the Test Suite Specification!
Lots of information, specifying undershoot, overshoot, etc.

Test 6: Dynamic step test – Test Plan – equivalent time sampling

The test plan for step change in phase and magnitude is as follows:

a) For the first test, let \(n = 0 \).

b) Begin with three-phase balanced input at nominal amplitude and frequency. Hold steady state for at least the greater of 1 s plus two response time periods or the settling period.

c) At the beginning of a reporting cycle plus \(n/(10 \times F_r) \) (i.e., \(n \times \text{reporting period}/10 \)) step the magnitude by \(+10\%\) of the nominal magnitude and hold steady state for at least the greater of 1 s plus two response time periods or the settling period.

d) Gather the PMU data, return the influence quantity to nominal, and wait for at least the greater of 1 s plus two response time periods or the settling period.

e) Increment \(n \) by one (\(n = n + 1 \)), then repeat step c) through step d) until \(n = 10 - 1 \).

f) Index and overlay the PMU data to obtain a smooth response curve.

g) Repeat the tests for negative magnitude step, then for positive and negative 10° steps in phase.

The delay time is the time from the step in influence quantity until the point at which the linearly interpolated response curve exceeds 50% of the difference between the nominal value before the step and the value after the step. Note that delay time can be positive (after the step) or negative (before the step) depending on the PMU algorithm.

The response times are the times between TVE, FE, and RFE exceeding the limits and the time where TVE, FE, and RFE reaches and remains within the limits as specified in IEEE Std C37.118.1-2011 and IEEE Std C37.118.1a-2014. Compare the measurement delay and response times to the limits in IEEE Std C37.118.1a-2014.

Look in the Test Suite Specification!
Lots of information, specifying undershoot, overshoot, etc.
Test 7: Latency

IEEE Std C37.118.1a-2014 clarifies the latency test, changing the name from “measurement latency” to “PMU latency” and specifying the latency as the maximum time difference between the data report time (as indicated by the timestamp) and the time when the data becomes available at the PMU output.

Table 11—PMU reporting latency

<table>
<thead>
<tr>
<th>Performance class</th>
<th>Maximum PMU reporting latency (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P class</td>
<td>$2/F_s$</td>
</tr>
<tr>
<td>M class</td>
<td>$5/F_s, 7/F_s$</td>
</tr>
</tbody>
</table>

NOTE—For optional reporting rates F_s which are higher than nominal power system frequency $F_{nominal}$, maximum PMU reporting latency is equal to Table 11-2 entry for $F_s = F_{nominal}$

- Latency can fail if:
 - The filter window is too long in the time domain
 - The PMU processing takes too long
 - The report “packetisation” and/or LAN card takes too long to send it.

- Latency can be assessed during any of the previous tests, or during a dedicated test.
 - Many measurements are taken, because LAN cards change their latency over minutes or hours.
 - The latency for PMUs which adapt or tune to fundamental frequency may change with the fundamental frequency. Lower fundamentals may result on longer time windows.
What does the standard NOT test at all?

- It doesn’t provide any overall “uncertainty” which can be applied by a **user**, in a particular network power quality condition.
- It does not test unbalance (at all).
- It is very limited in its treatment of harmonics, and the ROCOF errors can be very large in realistic power quality scenarios.
- It does not test at all for high frequency interharmonics from power electronics or HVDC.
- It does not test for any of the above, at off nominal frequencies, or during non-linear frequency ramps.
- The tested bandwidths of some PMUs (2 Hz) is not enough to cover critical network conditions (e.g. down to 47 Hz).
- The tested bandwidths of NONE of the PMUs is enough to guarantee operational capability on islanded systems (42.5 Hz is not unknown).

- A C37.118.1a-compliant PMU is not necessarily a reliable piece of equipment to be used in any power system. Each device should be independently tested to determine its suitability in a particular location with particular power quality conditions and requirements.
IEC/IEEE 60255-118-1 etc.

- Is there an opportunity to make subsequent standards (and testing) better?
- The Synchrohasor working group needs input from the PMU user community!
- E.g. minutes from last WG meeting:
 - Updating the F and ROCOF limits: No real work has been done in this area. Allen did send out a report showing the performance of 10 PMUs and the reference model. What are the applications of ROCOF? We need to know more.
 - Should we put something into the standard to test PMU handling of noise? What would such a test do? Where do we put in? What should the limits of error be? No current answers on this. A task force of Bill with anyone who wants to participate will investigate this and make a recommendation.
Non-standard tests and real-world conditions

![Graph showing Actual Frequency (Hz) over time with different error magnitudes for M Basic, M Asymmetric, and M TickTock.]
Power outage in Glasgow after worker hits live cable

A worker has been injured after making contact with a live cable at a building site in Glasgow city centre.

Police Scotland said there was a short power outage in the north of the city following the incident at Alien Glen Place at about 12:00 on Tuesday.

The injured man was taken to nearby Glasgow Royal Infirmary. Details of his condition are not yet known.

Emergency services remain at the scene. The incident has been reported to the Health and Safety Executive.

Scottish Power officials are also at the scene.

It is understood that people in the area reported hearing a “loud bang and explosion” when the incident occurred.

The power supply was restored a short time later.
Power outage in Glasgow after worker hits live cable

The worker was injured after making contact with a live cable on a building site in Allan Glen Place.

A worker has been injured after making contact with a live cable at a building site in Glasgow city centre.

Police Scotland said there was a short power outage in the north of the city following the incident at Allan Glen Place at about 12:00 on Tuesday.

The injured man was taken to nearby Glasgow Royal Infirmary. Details of his condition are not yet known.

Emergency services remain at the scene. The incident has been reported to the Health and Safety Executive.

Scottish Power officials are also at the scene.

It is understood that people in the area reported hearing a "loud bang and explosion" when the incident occurred.

The power supply was restored a short time later.
Unfinished work - Increased fault tolerance for frequency and ROCOF - 27th August 2013 example – P class
Testing in software – MATLAB environment

- MATLAB script configures and runs tests:
 - Choose PMU “brand”
 - Choose class (M or P)
 - Choose list of Reporting rates to test \([F_{S1}, F_{S2}, F_{S3} \ldots F_{SN}]\)
 - Choose list of Tests to run \([Test\#1, Test\#2 \ldots Test\#N]\)
 » [1-6 are standard tests, 6-10 are non-standard]
 - Choose options, e.g.
 » Only test the hardest points (closest OOB points, highest modulation frequencies, etc).
 » Test harmonics only at \(f_0\) (standard) or across the frequency range (non-standard)
 - Loop round \(F_{Si}\)
 » Start a summary log file for this PMU/Class/\(F_{Si}\) combination
 » Loop round \(Test_i\)
 • Define require settling times for the PMU
 • Set signal generation parameters
 • Define exclusion zones (frequency ramp test)
 • Define pass/fail limits
 • Nested loops around frequency, amplitude, modulation freq, modulation type, step type, etc. as required (custom code required for each test)
 » Use sim() to call and run the Simulink model
 » Results are collected in the workspace
 » Next loop points
 • Store the detailed results to individual files
 • Analyse results against specifications
 • Write a summary to the log file
 • Next Test
 » Close log file for that PMU/Class/\(F_{Si}\) combination
 » Next reporting rate
Testing in software – Simulink environment

Signal Generation (40 kHz)

Analogue anti-alias filter simulation (40 kHz)

Downsample to PMU sample rate (4-16 kHz)

ADC simulation ~14 bits over ±1pu

PMU algorithm

Compare results.

TVE
FE
RFE

Take known signal values (amplitudes, phases, frequency, ROCOF).

Pull back their values from the past at the Timestamp times, using memory buffers and interpolation between samples.

Timestamps of reports

Other considerations and assessments:

Settling time, Exclusion zones, Delay Time, Response Time, Latency, Undershoot, Overshoot
END