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Abstract. Given a single network of interactions, asymmetry arises when the links are directed. For example,
if protein A upregulates protein B and protein B upregulates protein C, then (in the absence of any further
relationships between them) A may affect C but not vice versa. This type of imbalance is reflected in
the associated adjacency matrix, which will lack symmetry. A different type of imbalance can arise when
interactions appear and disappear over time. If A meets B today and B meets C tomorrow, then (in
the absence of any further relationships between them) A may pass a message or disease to C, but not
vice versa. Hence, even when each interaction is a two-way exchange, the effect of time ordering can
introduce asymmetry. This observation is very closely related to the fact that matrix multiplication is not
commutative. In this work, we describe a method that has been designed to reveal asymmetry in static
networks and show how it may be combined with a measure that summarizes the potential information flow
between nodes in the temporal case. This results in a new method that quantifies the asymmetry arising
through time ordering. We show by example that the new tool can be used to visualize and quantify the
amount of asymmetry caused by the arrow of time.

1 Introduction

The success of Network Science as a research discipline
shows that there is great value in studying a complex sys-
tem through the connectivity of its components [1]. How-
ever, even after simplifying down to the level of nodes
and edges, there is typically too much information for us
to digest, and we must rely on tools that further reduce
the dimension of the system so that we can summarize
and visualize key properties. The need to reveal hidden
structure and substructure within a complex network has
motivated a plethora of quantitative tools aimed at, for
example, discovering significant nodes or edges, and topo-
logical features such as well-connected communities, bi-
partite structures, bottlenecks, motifs, hubs and authori-
ties [2–9]. In this work we focus on the idea of quantifying
and visualizing the level of asymmetry in a network, and
in particular, studying asymmetry caused by the arrow of
time in a dynamic network sequence.

First, we introduce some notation. To be general, we
allow edges to be directed, and we consider an unweighted,
directed network consisting of N nodes. We denote by
A ∈ R

N×N the corresponding adjacency matrix. So A has
aij = 1 if there is an edge from node i to node j, and
aij = 0 otherwise. We assume aii = 0 for i = 1, . . .N , so
there are no self-loops. The out and in degree of node n
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are defined as

degout
n :=

∑

j

anj and degin
n :=

∑

i

ain,

respectively. We use P to denote the set of all permuta-
tions of the integers 1, 2, . . . , N , with pi recording the ith
component of an element p ∈ P . A permutation vector
p ∈ P can be used to relabel the network nodes; that
is, to reorder the rows and columns of the adjacency ma-
trix, so that node n becomes node pn. Typically, such a
p is induced from a real-valued vector v ∈ R

N , where the
component vn is a weight assigned to node n. From v, we
generate a permutation p ∈ P by the natural procedure of
ordering the nodes according to these weights. More pre-
cisely, we compute p ∈ P such that

vi ≤ vj ⇐⇒ pi ≤ pj , (1)

with some rule for treating ties.
In the case where we have a time-ordered sequence of

networks, based on the same set of N nodes, we introduce
a superscript. So A[k] is the adjacency matrix at time tk.
Here t0 < t1 < t2 · · · < tM is a sequence of discrete time
points. So, for example, if we are recording “who texted
whom,” we may choose (A[k])ij = 1 if i texted j at least
once in the period [tk−1, tk) and (A[k])ij = 0 otherwise.

The remainder of the article proceeds as follows. In
Section 2 we explain how the widely used Fiedler vector
is relevant to the problem of ordering nodes via its role in
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solving an optimization problem. In this case, we are re-
ordering the network in a way that brings together nodes
with similar connectivity patterns. We then introduce the
“in minus out” vector that solves an alternative, one-sum,
optimization problem designed to reveal network asym-
metry. Section 3 then describes how a dynamic commu-
nicability matrix can be computed that summarizes, in
a single matrix, the flow of information associated with
a time-dependent network sequence. Based on the im-
portant observation that the one-sum optimization prob-
lem, and its solution, generalize naturally to the case of
weighted edges, in Section 4 we then combine these ideas
in order to develop a new tool that can reveal network
asymmetry caused by time’s arrow. The new technique
is illustrated on a synthetic data set, with further results
given for voice call data. In Section 5 we conclude with a
discussion.

2 Static reordering

From the perspective of computational linear algebra, the
idea of reordering rows and columns of a matrix has a long
history that is typically motivated through

– avoiding the breakdown of an algorithm, for exam-
ple, ensuring that a nonzero pivot sequence exists in
Gaussian elimination [10];

– reducing storage and computation costs associated
with “fill-in;” that is, the unnecessary creation of
nonzero elements in a sparse matrix [11].

Our aim here is different. We wish to reorder as a means to
reveal structure. (However, there is overlap between these
aims, and hence between the resulting tools that have been
developed.)

To begin, we consider the two-sum [12,13]

N∑

i=1

N∑

j=1

(i − j)2aij . (2)

In this expresson, any edge in the network, where aij �= 0,
makes a contribution to the overall sum. Edges connecting
nodes that are far apart, that is, where (i − j)2 is large,
make correspondingly large contributions. We emphasize
that this quantity is not a graph invariant – it typically
depends very strongly on the given node ordering. The
two-sum (2) is nonnegative, and is small when the pres-
ence of edges is biased towards nodes that have nearby
indices. In other words, it is small when the nonzeros in
the adjacency matrix live near the diagonal. The task of
node reordering to minimize the two-sum may then be
written

min
p∈P

N∑

i=1

N∑

j=1

(pi − pj)2aij . (3)

To make this problem feasible it is attractive to consider
a relaxed version where p is replaced by a real-valued vec-
tor v. In taking this step, we must rule out the trivial
solution where vi ≡ 0, and also factor out the redundancy

Fig. 1. Upper left: nonzero pattern in the adjacency matrix of
an instance of an undirected range-dependent random graph,
with two-sum of 16 518. Upper right: an arbitrarily shuffled
version of this matrix, with two-sum of 269 646. Lower left:
reordering of this matrix using the Fiedler vector, with two-
sum of 13 304.

whereby all components of v are shifted uniformly. To do
this we add the constraints ‖v‖2 = 1 and vT 1 = 0, where
‖ · ‖2 denotes the Euclidean vector norm and 1 ∈ R

N is
the vector with all components equal to one. This gives

min
v∈RN , ‖v‖2=1, vT 1=0

N∑

i=1

N∑

j=1

(vi − vj)2aij . (4)

This problem can be solved analytically through the graph
Laplacian, L := D − B, where B := 1

2 (A + AT ) and the
diagonal matrix D has dii =

∑
k bik. In the general case

where the graph represented by sign(B) is connected, L is
symmetric positive semi-definite with a single eigenvalue
equal to zero and corresponding eigenvector proportional
to 1. The problem (4) is then solved by taking v to be
the Fiedler vector – the eigenvector corresponding to the
second smallest eigenvalue of L; see [14–16] for further
details. Having obtained the relaxed solution v, we may
recover a permutation p ∈ P via (1).

To illustrate this idea, the upper left picture in Fig-
ure 1 shows the adjacency matrix for a network that has
a strong preference for short-range edges. More precisely,
we used a sample of the undirected range-dependent ran-
dom graph class from [17], where the independent prob-
ability of an undirected edge between node i and j de-
pends on |i − j|. In our case, we used the functional form
0.8|i−j|. Here, there are N = 60 nodes, so we have a sym-
metric adjacency matrix in R

60×60. It is clear from the
picture that, in this given ordering, nonzeros are concen-
trated near the diagonal – nodes tend to link to nodes
that are close by in this ordering. The two-sum (2) in this
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case is 16 518. The upper right picture shows an arbitrar-
ily shuffled version of this matrix; rows and columns have
undergone a common reordering with a permutation vec-
tor chosen unformly at random. In MATLAB notation,
we have A(p,p), where p = randperm(60). This picture
illustrates the type of data that we would see if we were
given nodes in arbitrary order, with no information about
the underlying range-dependency structure. In this case
the two-sum has increased dramatically to 269 646. The
lower left picture shows the effect of reordering with the
Fiedler vector. Visually, we have reconstructed the concen-
tration effect. In fact, this reordering reduces the two-sum
to 13304, below the level of the original matrix. We see
that the Fiedler vector can be a powerful tool for uncov-
ering hidden structure of this type.

In [18] a reordering approach was introduced based on
the concept of the directed one-sum

N∑

i=1

N∑

j=1

(i − j)aij . (5)

Here, an edge connecting nodes i and j makes a large
positive contribution to the sum if i 	 j; that is, if the
adjacency matrix entry resides far into the lower triangle.
Similarly, for i 
 j, where the entry is far into the upper
triangle, we have a large negative contribution to the sum.
So, in order to emphasize any inherent asymmetry, it is
reasonable to introduce the minimization problem

min
p∈P

N∑

i=1

N∑

j=1

(pi − pj)aij . (6)

In solving this problem, we are attempting to concentrate
nonzeros in the upper right-hand corner of the adjacency
matrix, and in particular, to force nonzeros into the up-
per triangle. Whereas the two-sum minimization (3) was
relaxed into (4) in order to produce a tractable prob-
lem, the one-sum version (6) is easily solved in its dis-
crete form. A solution is given by the permutation (1)
induced by the “in-degree minus out-degree” vector v =
degin − degout [18], (see also Sect. 4 for a more general
case). Loosely, this reordering makes the adjacency matrix
appear as upper triangular as possible, and hence reveals
inherent asymmetry in the network.

This reordering approach is illustrated in Figure 2. In
the upper left picture, we show the adjacency matrix for
an instance of the directed range-dependent graph model
introduced in [18], where a directed edge from node i to
j is generated with an independent probability that de-
pends on i − j. In our case, we used the functional form
0.95i−j+N . We see that the resulting adjacency matrix
has nonzeros concentrated in its upper right corner. In
this case the one-sum is −8 900, the two-sum is 365 908
and there are 30 entries in the lower triangle. The upper
right picture of Figure 2 shows the effect of an arbitrary
node shuffle. Here, the one-sum is −1 971, the two-sum is
210 305 and 130 entries lie below the diagonal. In the lower
left picture, we show the Fiedler vector reordering. It is
intuitively clear that this reordering is trying to bring ele-
ments closer to the diagonal. We have a one-sum of −429,

Fig. 2. Upper left: nonzero pattern in the adjacency matrix of
an instance of a directed range-dependent random graph, with
one-sum of −8 900, two-sum of 365 908 and 30 entries below
the diagonal. Upper right: an arbitrarily shuffled version of this
matrix, with one-sum of −1971, two-sum of 210 305 and 130 en-
tries below the diagonal. Lower left: reordering of this matrix
using the Fiedler vector, with one-sum of −429, two-sum of
98 687 and 152 entries below the diagonal. Lower right: re-
ordering of this matrix using in-degree minus out-degree, with
one-sum of −9 357, two-sum of 384 333 and 26 entries below
the diagonal.

a two-sum of 98 687 and 152 nonzeros below the diago-
nal. Fiedler reordering has reduced the two-sum, but has
not revealed the inherent asymmetry. In the lower right
picture, we show the “in minus out” reordering, which
solves (6). In this case, we see that nonzeros are moved up
and to the right. The two-sum has increased to 384 333,
showing that this reordering is not trying to put similarly
connected nodes together. But the one-sum is reduced to
−9 357 and just 26 entries lie below the diagonal. Hence,
this ordering has revealed the inherent hierarchical struc-
ture, and indeed has improved on the original ordering in
terms of these two concrete measures.

3 Dynamic communicabilty

The dynamic communicability measures introduced in [19]
were designed to capture the potential flow of information
through the time-dependent edges over the period [t0, tM ].
The idea is motivated by the concept of dynamic walks. A
dynamic walk of length w from node i to node j is defined
to be any traversal from i to j along w edges that respects
the arrow of time; so, having used an edge at time tr, the
next edge that we use must exist at time tr or later. The
ability of node i to broadcast information to node j is then
summarized as the total number of dynamic walks from i
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to j, where a walk of length w is downweighted by the
factor αw. Here α ∈ (0, 1) is a free parameter whose role
is to reduce the influence of longer walks. When there is
only one time point, this measure reduces to the classical
Katz centrality [20], and the pairwise summaries can be
computed through the matrix resolvent (I − αA)−1. This
expression can be understood from the basic linear algebra
fact that the matrix power entry

(Aw)ij

gives a count of the number of walks from i to j us-
ing w edges. Generalizing to an ordered sequence of time
points, [19] arrived at a product of resolvents

Q =
(
I − αA[0]

)−1 (
I − αA[1]

)−1

. . .
(
I − αA[M ]

)−1

.

(7)
Here, Qij measures how well node i can broadcast infor-
mation to node j by forming a weighted sum of all dynamic
walks that start at i and finish at j, with walks using w
edges downweighted by a factor αw . To understand how
Q arises, we note that, for example,

–
(
A[0]A[2]A[4]

)
ij

counts the number of walks from i to
j using one edge in time window 0, one edge in time
window 2 and one edge in time window 4; and

–
(
(A[5])2A[7]

)
ij

counts the number of walks from i to j

using two edges in time window 5 and one edge in time
window 7.

The ordered product of resolvents in (7) captures all such
terms – the key feature is the nondecreasing set of time
indices. Just as in the original Katz version, the dynamic
communicability matrix Q involves a parameter, α. In or-
der for the matrix inverses to exist, we impose the condi-
tion that α is below

α� := min
0≤k≤M

((
ρ

(
A[k]

))−1
)

, (8)

where ρ(·) denotes the spectral radius.
Because matrix multiplication is not commutative, the

dynamic communicability matrix Q depends on the time
ordering of the adjacency matrices. Also, even when each
A[k] is symmetric, the resulting summary Q will be un-
symmetric in general, reflecting the directional nature of
time’s arrow.

We also note that products of temporal adjacency ma-
trices were used later in [21] for the weaker concept of
accessibility (the existence of at least one dynamic walk
that uses at most one edge per time step).

4 Dynamic asymmetry

Our aim is now to show that the concepts in Sections 2
and 3 can be extended to provide a method for quan-
tifying and visualizing dynamic asymmetry. To motivate
this task, we note that there are a number of on-line and
off-line circumstances where dynamic, pairwise human in-
teractions have been observed to take place within a hi-
erarchical structure. For example, in the context of online

forums, Graham and Wright [22] empirically investigated
three types of superparticipants. One type was agenda-
setters ; participants who are responsible for new thread
creation, and thereby exert a disproportionate influence
on subsequent interactions. Quoting from [22]: “the inclu-
sion of agenda-setting reflects our view that influence is
not limited to the volume of posts alone.” In an empirical
study of small teams tackling simulated logistics tasks,
Duchon and Patterson [23] looked for emergent thought
leaders; that is, individuals who have not been assigned
to a leadership position, but emerge over time as domi-
nant in power, decision-making, and communications with
respect to a particular topic. Huffaker et al. [24] studied
the use of chat features between players in a Massive Mul-
tiplayer Online (MMO) role-playing game, and found that
in general “players send messages to higher-level experts.”
We point out three common features of these examples:
– there is an inherent node ordering that is either explicit

(e.g., status within an on-line game) or implicit (e.g.,
perceived level of expertise);

– the asymmetry manifests itself not through single peer-
to-peer communication but through longer threads of
interactions, where knock-on effects are at play;

– to keep track of such threads we must respect the tem-
poral nature of the interactions.

A tool for quantifying and visualizing dynamic asymmetry
will therefore allow us to
– discover hidden structure and track its evolution

through time: for example, who are currently the
key thought leaders in a particular on-line social
community?

– monitor the performance of the network players within
an imposed hierarchy: for example, given the manage-
rial structure in a company, are any employees punch-
ing above or below their weight?

– compare the inherent level of hierarchy in different so-
cial networks.

To summarize how our new algorithm works, we note that
the dynamic communicability matrix Q in (7) defines a
single weighted, unsymmetric network that represents the
pairwise ability of nodes to exchange information using
the time-ordered edge sequence. Having constructed Q for
the dynamic data, we may then use a generalization of
the network reordering approach described in Section 2 in
order to quantify and visualize the asymmetry.

To explain this idea in more detail, we first note that in
order to avoid numerical overflow, it is preferable to work
with a normalized version of the dynamic communicability
matrix. We will therefore compute

Q̂ :=
Q
‖Q‖ ,

where ‖·‖ denotes the Euclidean matrix norm. To do this,
we set

Q̂[0] = I (9)

and, for each new time point tk, form

Q̂[k] = Q̂[k−1]
(
I − αA[k]

)−1

, (10)
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and then reset

Q̂[k] �→ Q̂[k]

‖Q̂[k]‖ . (11)

The final matrix
Q̂[M ] =: Q̂ (12)

is then our overall summary. Normalizing all entries in Q
by the same scalar value is not an issue since we are only
concerned with their relative sizes.

To reveal the asymmetry in this dynamic network sum-
mary, we may then exploit the observation that the op-
timization problem (6) and its exact solution continue to
make sense when we have directed and weighted edges,
even allowing for negative values. We make this precise as
follows.

Result. Given any B ∈ R
N×N the problem

min
p∈P

N∑

i=1

N∑

j=1

(pi − pj)bij

is solved by taking p to be the ordering induced in (1) by
the vector

v = Bcoli − Browi,

where

Browi :=
N∑

j=1

bij and Bcoli :=
N∑

j=1

bji

are the row and column sums of B, respectively.
Proof. The sum

N∑

i=1

N∑

j=1

(pi − pj)bij

may be manipulated straightforwardly into the form

N∑

i=1

pi [Browi − Bcoli] .

The result then follows immediately.

In summary, having computed the normalized dynamic
communicability matrix Q̂ from (9)–(12), we then reorder
this matrix using the result above with B = Q̂. By con-
struction, this reordering forces large (i.e., more positive)
values of Q̂ into the top right corner. In the language
of [19] we are ordering nodes according to the difference
between their broadcast and receive centralities.

We first illustrate this idea on a synthetic data set
where the results can be interpreted clearly. We take
N = 31 nodes and allow edges to evolve according to
a temporal, directed binary tree, with some added noise;
in a similar way to the test in [25]. We cycle with period
four across 16 time windows:

– at time windows 1, 5, 9, 13, a directed edge is inserted
from node 1 → 2 and 1 → 3;

Fig. 3. Heat map showing entries in the dynamic communi-
cability matrix for a binary tree cascade. Here the nodes are
ordered according to the aggregate number of directed edges
that they have produced. Because this ordering does not take
account of the temporal hierarchy, there is no evidence of asym-
metry. The one-sum for this ordering is 39.1.

– at time windows 2, 6, 10, 14, a directed edge is inserted
from node 2 → 4, 2 → 5, 3 → 6 and 3 → 7;

– at time windows 3, 7, 11, 15, a directed edge is inserted
from node 4 → 8, 4 → 9 up to 7 → 14, 7 → 15;

– at time windows 4, 8, 12, 16, a directed edge is inserted
from node 8 → 17, 8 → 18 up to 15 → 30, 15 → 31.

In this structure nodes 1 to 15 have the same level of ac-
tivity, in terms of aggregate out degree. However, there is
a built-in cascade of walks down the directed binary tree.
From a message passing perspective, we may view this
structure as arising from a hierarchy between the nodes:
there is a chain of command such that nodes pass infor-
mation to lower-level individuals. To disrupt this structure
slightly, we also add some noise: at each time window any
other edge has an independent probability 1/N of arising.
So we expect one unstructured directed edge per node per
time window.

Taking the Katz parameter α to be 90% of the upper
limit α� in (8), Figure 3 shows the entries of Q̂ using a
gray-scale heatmap. Here, we have ordered the nodes ac-
cording to their overall activity, that is, the aggregate out
degree. We see that ordering with respect to this measure
does not uncover the temporal pattern of information flow.
The one-sum of Q̂ in this ordering is 39.1.

In Figure 4 we show the result from in-minus-out re-
ordering. Comparing with Figure 3, we see that the hier-
archical structure has been highlighted, as quantified by
the one-sum of Q̂ being reduced to −199.4.

To investigate further, in Figure 5 we show how Fig-
ure 3 changes when we arbitrarily shuffle the time points.
From an application of MATLAB’s randperm function, we
took timepoints in the order 5, 16, 1, 11, 9, 14, 13, 3, 7,
10, 4, 2, 6, 12, 8, 15. In this case, the cascade effect is
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Fig. 4. As for Figure 3, but with the nodes ordered according
to the difference between the row and column sums of the
dynamic communicability matrix. The hierarchy caused by the
temporal flow of edges is now apparent. The one-sum for this
ordering is −199.4.

Fig. 5. As for Figure 3, but with the time points arbitraily
shuffled to dilute the cascade effect. The one-sum for this or-
dering is 27.2.

likely to be reduced and it is of interest to quantify how
much asymmetry remains. Ordering on aggregate activity
is uniformative again, in this case giving a one-sum of 27.2.
Figure 6 shows the result of “broadcast minus receive” or-
dering on Q̂. Because the directed flow of information has
been diluted, the algorithm reveals a reduction in the vi-
sual evidence of asymmetry, as reflected in the one-sum
of −171.9.

We next give results on voice call interactions from
the IEEE VAST 2008 Challenge [26]. This synthetically
generated set was designed to reflect interactions between
members of a socio-political movement. We are given time-

Fig. 6. As for Figure 4, but with the time points arbitraily
shuffled to dilute the cascade effect. The one-sum for this or-
dering is −171.9.

Fig. 7. Number of directed network edges (voice call interac-
tions) in each 30 min time window.

stamped information for 400 cell phone users over a ten
day period. There are 9 834 calls, with IDs for the send
and receive nodes, a start time in hours/minutes and a
duration in seconds. For our experiment, we discretized
into 30 min time windows, so the directed adjacency ma-
trix A[k] is such that (A[k])ij = 1 when ID number i initi-
ated a phone conversation with ID number j at least once
in that 30 min period.

In Figure 7, we show the number of calls in each time
window. There is a clear 24 h period in the activity.

In Figure 8 we highlight the large entries in the ma-
trix Q̂ by showing those entries that are greater that the
mean (that is, the arithmetic average over all entries). We
see that in the ordering supplied with the data, there is no
visual sign of asymmetry. However, the matrix is highly
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Fig. 8. Dominant entries in the normalized dynamic commu-
nicability matrix Q̂ in its original ordering. Dots denote entries
that are greater than the overall mean. The one-sum for this
ordering is 1750.9.

Fig. 9. Dominant entries in the normalized dynamic commu-
nicability matrix Q̂ with node ordering determined by in minus
out degree. Dots denote entries that are greater than the over-
all mean. The one-sum for this ordering is −9 547.7.

asymmetric, in the sense that

‖Q̂‖ = 1 and ‖Q̂ − Q̂T ‖ = 0.9968.

In Figure 9 we show the result of the “broadcast minus
receive” reordering exercise, again marking entries that

Fig. 10. As in Figure 9, but with all voice call interactions
regarded as undirected. Dominant entries in the normalized
dynamic communicability matrix Q̂ with node ordering deter-
mined by in minus out degree. Dots denote entries that are
greater than the overall mean. The one-sum for this ordering
is −4 543.2.

exceed the overall mean. The one-sum of this reordered
version of Q̂ is −9 547.7, in contrast with the value 1 750.9
arising from the original ordering in Figure 8.

In Figure 10 we repeat the computations leading to
Figure 9, except that voice call interactions are regarded
as undirected. So each A[k] is such that (A[k])ij = 1 and
(A[k])ji = 1 when i engaged in a phone conversation with
j at least once in that 30 min period, independently of
who initiated the call. While the directed edge construc-
tion used above retains information about the “chain of
command,” it can be argued that this undirected alter-
native is more relevant when we are concerned about the
possible flow of information. We see in Figure 10 that there
remains a visually striking asymmetry – since each A[k] is
now symmetric, this feature of the dynamic communica-
bility matrix Q̂ arises solely from the time-ordering of the
interactions. The one-sum for the broadcast minus receive
ordering is −4 543.2 and we now have

‖Q̂‖ = 1 and ‖Q̂ − Q̂T ‖ = 0.9995.

5 Discussion

Techniques that summarize complex time-dependent net-
works must necessarily discard information in order to
focus on certain key aspects. Our emphasis here is on
the pairwise temporal asymmetry between nodes, defined
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via their propensity to exchange information through dy-
namic links. Alternative methods for extracting informa-
tion may of course be derived, depending on what features
are deemed important. Such choices of emphasis are essen-
tially a modelling issue. We note that one particular choice
is whether to respect the arrow of time. For example, the
recent work [27] is aimed at quantifying network centrality
based on a supra-centrality matrix of the form

M =

⎡

⎢⎢⎢⎢⎢⎣

εM [1] I 0 . . .

I εM [2] I
. . .

0 I εM [3] . . .
...

. . . . . . . . .

⎤

⎥⎥⎥⎥⎥⎦
. (13)

Here, M [k] is an N by N centrality matrix that is relevant
to time k and I is the N by N identity. The authors use
the simple choice M [k] ≡ A[k] to illustrate the idea. The
parameter ε is included to account for the fact that the
identity matrices represent “between layer” connections
(generally linking node i at time k to node i at times k−1
and k + 1) which are inherently different to the “within
layer” weights arising from the network data. The key idea
in [27] is to apply a standard static network centrality
algorithm to the supra-centrality matrix (13). However, we
note that if the individual network slices are undirected,
then with M [k] ≡ A[k] (or with M [k] ≡ (I − αA[k])−1

in the Katz-based setting), the supra-centrality matrix M

is symmetric. It then becomes apparent that any static
network algorithm applied to M must be oblivious to the
type of temporal asymmetry that we have discussed.

To see this another way, from a message-passing per-
spective the use of the identity matrices in (13) serves
to introduce links both backwards and forwards through
time, so that combinatoric or random walk-based algo-
rithms violate time’s arrow when interpreted on the larger
matrix.

Overall, we believe that the work described here adds
value to the current range of tools for summarisizing tem-
poral networks, and we note that there are several promis-
ing directions in which these ideas could be extended, in-
cluding

(a) the development of an algorithm that applies over ar-
bitrarily long time intervals by discarding chronologi-
cally old information, based on the technique in [25];

(b) following on from (a), the study and categorization of
individual nodes as they move dynamically through
the nodal hierarchy;

(c) using ideas from [28], a related algorithm that uses
a continuous-time network representation, thereby
avoiding the need to specify time windows.
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