

Abstract— PISim is a new piece of software for process control

teaching and learning. The software allows control structures to

be designed on a piping and instrumentation diagram and, as the

structure is created, the software automatically spawns device

mimics representing the real physical HMIs that operators

would see. These can be placed on a control panel and a

simulation of the process can be operated using the student’s

control scheme. The use of PISim in an introductory control

class at Strathclyde University is described and student feedback

is presented.

I. INTRODUCTION

Dynamic simulation has been used in control teaching for

many years. Even before the early days of microcomputer

simulators some brave souls were teaching control using a

mainframe based SCADA system over a dedicated land-line

[1].

Nowadays there is unlikely to be a chemical engineering

process control class or training situation that does not make

some use of dynamic simulation. The most common types of

these simulators can be grouped into three categories:

1. Block-based dynamic simulation languages, e.g.

Matlab/Simulink; VisSim; Scicos.

2. Process unit based simulators, e.g. Aspen Dynamic;

CHEMCAD; DYNSIM.

3. Fixed simulation exercises, e.g. Hyperion; GSE

Systems; TCS Simulations.

The block-based systems are probably the most flexible of

the three as they essentially only supply a user interface and

the integration algorithms. It is up to the user to formulate

and encode the continuity balances and other equations that

are required to produce a model. This is great when the

object is to teach students about dynamic simulation but it is

less useful when trying to illustrate full-scale plant control.

The process unit simulators are industrial grade systems

and are used to perform simulation tasks in real situations.

They are very powerful but that power comes at the cost of a

significant learning curve. Classes using these process unit

simulators often turn into training programmes on the

software itself, rather than on the control principles that were

the original educational aim.

 Fixed simulator exercises, where the simulation is of a

fixed plant and controller configuration, are often used in

*Bruce Postlethwaite is with the Department of Chemical Engineering,

University of Strathclyde, Montrose St, Glasgow, Scotland, UK. email:
b.postlethwaite@strath.ac.uk

industrial training but also find their way into the classroom

[2, 3]. These simulators will usually have a user interface

that is very similar (or the same, in the case of operator

training simulators) to that which the operators would see on

a production plant. The downside is that the fixed process

and controller structure limit their usefulness for anything

other than the simplest of control classes.

 At the University of Strathclyde, we have used all of three

of the simulation categories at one time or another. We were

one of the group of UK Universities involved in the IBM

ACS experiment in the 1980s, and we’ve created in-house

‘operator station’ type simulators using Lab-view and other

software. We have attempted to use Aspen-Dynamics in a

process control design class (as an adjunct to our process

design), but gave up after a couple of academic years when

we found that all the student questions we were getting

concerned the software and not the design process. Most

recently we have been using block-oriented simulators:

VisSim for a number of years; and Simulink for the last four.

 When teaching a subject it is often very difficult to get a

student’s perspective on the material that is being presented.

When producing dynamic simulation material for a class it is

easy to forget that the way in which we perceive the material

is from the point of view of an expert. We already

understand what is being represented and have no problem

in dealing with the abstractions that different software

systems present to us.

 Student see things very differently and find it difficult to

link abstractions with real-world systems. Although this

seems obvious it is easy to forget, and it was a letter from a

former student complaining that he hadn’t been taught about

P&IDs (pipeline and instrumentation diagrams) that

triggered a bit of reflection for me. P&IDs are one of the

primary design documents for control in the chemical and

process industries and the student definitely had been taught

about them. However after thinking about this and talking to

some current students I could see that he had actually spent

most of his simulation time in the control classes looking at

Simulink blocks, which look very different to a P&ID.

Further thinking about this led me back towards software

that we had used for teaching in the late 1980’s-early 1990’s

called UCONLINE/SIGNAL.

The use of simulation in chemical process control learning and the

development of PISim

Bruce Postlethwaite*

II. UCONLINE AND SIGNAL

UCONLINE was a DOS-based program for control
teaching initially developed by Prof. Alan Foss and some of
his students at UC Berkeley [4]. UCONLINE was software
that was specifically designed for teaching and learning. It
allowed learners to take a pre-coded process model and then
add a control system over the top. Once the control system was
complete the whole thing, process plus control system, could
be run as a simulation and produce trends and other control
displays for students to look at.

The main intention of UCONLINE was to allow students
to investigate multi-loop configurations, but it turned out to be
really useful for illustrating introductory concepts such as
basic process dynamics and simple loop configuration too. We
adopted UCONLINE at Strathclyde as our main teaching
software for control and used it for seven years, with students
in the basic control class doing a one hour simulation class
every week over a ten week period.

Although, as instructors, we loved UCONLINE it must
have been pretty painful for our students. In common with all
DOS-based programs of the time UCONLINE made use of
command lines such as:

VD, DVR, ASUM, D*

ASUM, AL=+, V1=DM, V2=LM, A0=1.0, A1=1.0, etc

(this is part of an example from Alan’s paper showing how
easy it is to use UCONLINE!)

Once you got used to it, it was fine, but the interface is not
something that today’s students would be happy using.

 Alan did recognize that the UCONLINE interface could be
a bit cryptic and in his last years at Berkeley had started work
on SIGNAL [5].

 SIGNAL was a preprocessor for UCONLINE. Instead of
configuring the control system using difficult to understand
command lines students could instead draw it onto a P&ID-
like representation of the process. Once the student was happy
with the configuration SIGNAL would generate the necessary
UCONLINE configuration commands to produce the system.
These could then be loaded into UCONLINE and the control
system tested.

 SIGNAL was a great idea, and it kind of worked, but it was
cumbersome and we never used it at Strathclyde. When Alan
retired from Berkeley there was no-one to take over the
development of UCONLINE/SIGNAL and the software
became unsupported and quickly went out of date as the new
Windows operating systems came along. In many ways the
team at Berkeley was too far ahead of its time as the operating
systems and hardware of the early 1990’s weren’t powerful
enough to let them adequately realize their vision.

III. SPECIFICATION OF PISIM

Memories of UCONLINE/SIGNAL, and the realization

that students were not engaging properly with simulation

content in the software that was currently used led to me

rethinking the UCONLINE vision in terms of modern

hardware and operating systems. I decided that a good

system would be able to:

 Represent the process in a standard P&ID and allow
control and instrumentation systems to be configured
on top of this diagram using standard P&ID symbols.

 Automatically generate on-screen devices that
mimicked the HMI of devices being specified by the
P&ID, e.g. indicators represented by a LED display or
dial, controllers represented by a faceplate.

 Allow the on-screen devices to be combined onto
backgrounds to allow the creation of control panels or
simulated SCADA displays. The idea here was to
include consideration of the plant HMI as part of the
control system design.

 Allow the whole system to be simulated easily and
directly from the main window with the on-screen
devices updating in real or accelerated time.

I discussed this loose specification with some friends (who
prefer to remain anonymous) who had worked with me on a
previous software project and the PISim (P&I Simulator)
development team was born.

IV. PISIM DEVELOPMENT

The programming team had experience in a variety of

languages including C++ and Visual Basic. We took some

time to think about what an appropriate environment would

be for this project, and ended up picking Xojo. Xojo is very

similar to the old (pre-NET) Visual Basic in terms of the

ease of producing basic user interfaces, but is much more

strongly object-oriented. Xojo also has the advantage that it

is designed for cross-platform development and so the same

code for a Windows application should, in theory, be

capable of generating OS X and Linux programs.

We have stuck to object-oriented programming

throughout the project. Since all of us came from a

FORTRAN background (we are all a bit old) this went a

little against the grain, but has paid dividends in speeding the

programming process.

 The initial test version of PISim was ready in July 2015

(about fourteen months after project start). The program

went out to beta testers in August, and was used ‘live’ for

Figure 1 - PISim main window

the first time in the Sept-Dec 2015 academic session in an

introductory control class with around 130 students.

V. PISIM USER INTEFACE

The main window for PISim (Figure 1) includes some

menus to load and save simulation configurations and to add

backgrounds to allow control panels to be created.

Underneath the menu bar are the simulation control

buttons. The simulation is completely controlled using these

buttons. There are no other menus or options for the learner

to worry about.

 On the left of the window is the tools palette, which is

rather sparse at the moment as we currently only have a

bubble for discrete, panel-mounted, devices. Additional

devices such as shared display and computational units will

be added in the future.

 The main part of the window contains the basic P&ID for

the process. Before a control system is configured the P&ID

only contains transmitters and control valves. These symbols

have hotspots that allow connections to be made to and from

the process simulation when instrumentation is added to the

diagram. A configured control scheme is shown in Figure 2.

 Adding components simply involves selecting the

appropriate tool and then clicking on the diagram. The

components are configured by right-clicking, which brings

up a configuration menu. Components are connected to the

process by clicking on an output port and dragging the signal

line to the desired input.

 Part of the component configuration involves selecting

what sort of devices (i.e. indicator, recorder, controller and

alarms) are represented by the component. When this is done

PISim produces an on-screen representation of each device.

These devices initially are loaded into their own windows

but can easily be transferred onto backgrounds that represent

a control panel. The backgrounds can be loaded with any

background image that the user desires. Figure 3 shows a

control panel that was produced from the Figure 2

configuration.

All of the devices are ‘active’ and present information

from the simulation and allow interaction (e.g. by

responding to button presses).

VI. USE OF PISIM IN AN INTRODUCTORY CONTROL CLASS

PISim was used on the introductory control class for

chemical engineers at Strathclyde University last fall (2015).

The students had some basic introductions to control

integrated into classes in earlier years but this year four class

(Scottish engineering undergraduate degrees are normally

five year courses) was the first formal control teaching they

had.

Our control class was updated two years ago to bring it in

line with the IChemE (the UK Institution of Chemical

Engineers) model syllabus for control teaching. This model

syllabus was introduced after industry concerns that

‘academic’ control and the needs of industry were diverging.

This is not a phenomenon that is unique to the UK, and

Edgar et al [6] describe a very similar situation in the USA.

 The control class is split into six blocks each of two-week
duration (the semester lasts for twelve weeks). In each block
there are three hours of fairly standard lecture content (that is
recorded and available to students after class), an hour of
guided individual problem solving, and two hours of group
workshops. The workshops are used to introduce students to
slight more involved problems than they have to deal with in
the individual sessions.

 The topics covered in the six blocks are:

1. Introduction to control, basic instruments, control
valves and communication.

2. Diagrams and responses. P&IDs are covered in some
depth and some typical process responses
(integrating, self-regulating and unstable) are
introduced

3. Modelling and Laplace transforms. Dynamic
modelling, deviation variables, linearization, transfer

Figure 2 - a configured control system in PISim

Figure 3 - Control panel

functions and solution of first-order response to step
changes.

4. PID control. Algorithms, control system analysis and
tuning

5. Control system design. Multi-loop systems, material
balance control, control system architecture.

6. Safety Instrumented Systems including cause and
effect diagrams (taught by a lecturer from industry).

 In addition to formal class time students are also expected
to carry out work in their own time. One of these activities uses
Moodle lessons (Moodle is the on-line learning system used at
Strathclyde) to guide students through simulation exercises
using PISim. The exercises are tied very closely to the content
of the block they are in, and don’t require a special ‘PISim
training’ module. Instead the use of the software is introduced
gradually in a way that is integrated with the rest of the class
material. Each of the Moodle lessons takes a student one to
two hours to complete. We’ve installed PISim on computers
in our Departmental computing labs, but have also made it
available for students to install in their own machines.

The content of the Moodle lessons for each block is:

1. Introduction to control. Students are presented with a
pre-configured control system with the devices
arranged on a control panel. They get to play with
servo control and disturbance rejection (and also see
the difference between AUTO and MANUAL
controller modes). They also get a chance to think
about inputs and outputs from a control (rather than
chemical engineering) perspective.

2. Diagrams and responses. The students learn about the
application of direct and reverse acting controllers.
They get to try step inputs on pure integrating and on
first and higher order processes. They explore various
possible reasons for instability. Finally they are asked
to estimate approximate gains and time constants
from a process dynamic response.

3. Modelling and Laplace transforms. This is the most
mathematical part of the course, but in the simulation
lesson I’ve chosen to explore the limits of linearized
models of non-linear processes. The students are
asked to estimate model parameters (gains and time
constants) for a process around a particular operating
point, and then to make some small input changes to
test their estimates. They are then asked to make
much bigger changes to see if their model still works.

4. PID controllers. In the simulation work the students
configure a PID loop and look at the different
controller modes, and the effects of changing the
algorithm. They tune their controller using two (or
more) different methods. They also do a bit of
analysis of P-only and I-only controlled systems and
compare their predictions with simulation results.

5. Control system design. Students configure a multi-
loop control system, paying attention to mass balance
control and to the need to meet operational
objectives. They tune and test the control system.

6. Safety Instrumented Systems. At the moment PISim
lacks the capability to handle discrete signals and so
there is no simulation content for this block. We will
be adding discrete signal processing in the near
future.

VII. FEEDBACK FROM TESTERS

The software was trialed before its use in class by a group of

testers recruited via the LinkedIn process control group. A

total of 24 participants signed up for the test, 18 downloaded

the test software, but only 4 completed the final

questionnaire.

Although the level of response was a little disappointing

we did get very useful information from those who replied.

In particular:

 Most of the testers found that making connections

between elements was a bit awkward.

 Fancy display elements such as SCADA emulation

or dial displays were low down in the testers’ wish

lists.

 Computational elements (hi/lo select, multiply, etc.)

were considered to be important things that needed

to be added.

 From the feedback we felt that there was a need to

add explicit support for instructional material.

Some of the testers seemed confused about what

PISim’s purpose actually was.

The testers reported no significant bugs or crashes while

using PISim and so I considered it worthwhile going ahead

with a test in the classroom. The software was used during

the Fall (September-December) semester 2015 in our

introductory control class. The class is taken by full-time

students (114 in 2015) and also by students taking our

distance learning degree (9 students).

Feedback from students was gathered via an on-line

questionnaire. The questionnaire consisted of 15 questions

with a mix of general questions about the course and a

number of specifically PISim questions. Ninety of the

students registered for the class completed the questionnaire.

The response of students to the PISim interactive material

in the class was overwhelmingly positive, with many

students including it in their ‘favorite parts of the class’

freeform list in the general part of the questionnaire. Some

of the students’ positive comments were:

 Working with PISim really helped me understand

the course.

 The PISim exercises and assessments were very

helpful in giving me an understanding of how the

maths is applied on a real life/practical scale.

 The PISim part of the course was good and gave

insight on how control fits into a P&ID.

 Better equipped to deal with P&IDs in the future.

There were a few negative comments too but these mainly

involved problems with access to computer rooms, the time

required for the interactive lessons, and stress due to the

nature of on-line quizzes.

However a number of students reported problems with the

connection and disconnection of the elements in the P&ID.

This is a problem that was also raised by the industry based

testers and seems to be due to small hotspot areas and

insufficient visual cueing on where the hotspots are.

There were also complaints that there was no help

available for PISim and that lessons had to be repeated if a

student forgot how to do something (e.g. to break a

connection). I was surprised by this as I made sure that the

PISim version distributed to students included a help file,

accessed from the usual ‘Help’ item on application menu-

bar. On talking to the students it seemed that most of them

hadn’t noticed that it was there and instead immediately

‘Googled’ for PISim help. It is clear that we need to add a

more internet aware help system, and the students have

suggested short video walkthroughs rather than textual

descriptions.

There were also a number of comments about bugs that

occurred during the interactive lessons. It turns out that these

bugs were mainly in the Moodle lessons rather than in PISim

itself. Moodle is an open-source system that is maintained

by the community. The lesson module seems to be an area

where development and support has been a bit lacking and

students complained of marks not being recorded and

difficulty in using the interface. The lesson module also

restricted the sort of things we could ask students to do. The

only user interaction with the lesson was pressing a button to

move through it and answering quiz questions. It was very

difficult to ask a student to do something to PISim in a

lesson and be sure that they had done it correctly.

The class performed statistically significantly better

overall than in the previous year (average of 54.4%

compared to 49% in 2014/15). The questions in the final

exam were similar in both years and the 2015/16 paper did

not contain material specifically related to PISim. Any

performance boost caused by PISim would have been

‘splash’ on other aspects of the class from the interactive

lessons.

Although the raw statistics show a significant

improvement it is of course impossible to say that the two

exam papers (2014/15 and 2015/16) and the class

assignments were of exactly the same difficulty. What was

clear was that the majority of students were more engaged

with the class material during the semester.

VIII. FUTURE DEVELOPMENT

The response from the trials clearly showed a need for a

learning system that is much more integrated with PISim,

and this is where our efforts are currently focused. We had

initially considered a script-based system but we quickly

realized that this would involve reinventing the wheel.

Rather than spend time developing methods for presenting

slides, videos, quizzes, etcetera, we are working on a system

that schedules material within a lesson and then spawns

other software (such as Powerpoint, PDF readers, etc.) to

handle the standard lesson tasks.

We will be concentrating on methods to assist students

and instructors in getting the most out of the PISim

experience. We are currently working on two lesson tools: a

configuration checker, and a control system tester.

The configuration checker loads a ‘good’ control

configuration for a particular system that has been prepared

by the instructor. When a student is undertaking a lesson and

completes their own configuration they can then check this

against the instructor configuration by pressing a button. The

checker tool can assign scores for the things a student has

got correct and can offer retries with adjusted scores. The

tool also has a hint facility (that can be switched on or off by

the instructor when they create the lesson) that provides tips

for students about things they might have got wrong.

The control system tester allows an instructor to setup a

predefined sequence of changes in a simulation’s

disturbance variable. This sequence can be run by the

student by pressing a button and the tool records the ISE (or

IAE, or ITAE) of instructor selected control variables over

the period of the test. This information is then presented to

the student. This allows exercises to be created where the

student has to develop a control system that meets an

assortment of performance goals.

Another point that came up during testing, particularly

with industrial users, was the range of PISim components

available. The component list in PISim is currently very

limited with only discrete panel mounted devices being

represented. We plan to add computational elements (e.g.

max, min, sum, mul, etc.) this summer, and still (despite the

lack of enthusiasm from our industrial testers!) plan to add

SCADA interface simulators to allow our control displays to

look a bit more ‘modern’.

 An area for future development is to expand the range of
simulations available. Currently PISim has three functioning
simulations: a two tank, non-interacting level system; a steam
jacketed stirred tank heater; and an exothermic continuous
stirred tank reactor. All of the simulations can be adjusted by
modifying parameters, providing a large range of basic process
models. These basic processes are very useful in supporting
introductory control classes but are of limited use for more
advanced work. In the immediate future we plan to add a
binary distillation column but later will be adding more
complex processes such as the Williams-Otto plant [7].
Eventually we hope to work with end-users to produce models
suitable for particular industry groups.

REFERENCES

[1] P.E. Sawyer, P.L.Yue, S.Bolton, R.G.Hill and R.M.Kerr, “The role of
IBM’s Advanced Control System in enhancing undergraduate

education in Chemical Engineering”, Proc. World Congress III of
Chemical Engineering, Tokyo, 1986.

[2] R.Sreenivasan, W.S.Levine and G.W. Rubloff, “Some experiments in

dynamic-simulator-based control education’, Proc. American Control
Conference, San Diego, 1999.

[3] G.Vinagre, D. Valerio, P. Beiro, J. Sa da Costa, “Laboratory software
for the three-tank benchmark system: from PID to multi-agent fault-

tolerant fraction control”, Procedia – Social and Behavioral Sciences,

vol. 46, 2012, pp 1919-1923

[4] A.S. Foss, “UCONLINE Berkeley’s multiloop computer control

program”, Chemical Engineering Education, Summer 1987, pp 122-
156.

[5] A.S. Foss and P.J. Goodeve, “Inventing multiloop control systems in a

jiffy with interactive graphics”, Chemical Engineering Education,
Summer 1991, pp 126-131.

[6] T.F. Edgar, B.A. Ogunnaike, J.J. Downs, K.R.Muske and B.W.
Bequette, “Renovating the undergraduate process control course”,

Computers and Chemical Engineering, vol. 30, 2006, pp 1749-1762

[7] T.J. Williams and R.E. Otto, “A generalized chemical processing
model for the investigation of computer control”, Trans. IEE, vol. 79,

1960, p. 458

