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Abstract: Tunable diode laser spectroscopy combined with wavelength modulation
spectroscopy (WMS) is an important technique for noninvasive measurements of gas
parameters such as pressure, concentration, and temperature in high-noise harsh envi-
ronments. A variety of laser types are used for these applications, and the modulation
characteristics can have significant effects on line shape recovery. Here, we identify
important characteristics of distributed feedback (DFB) lasers that need to be taken
into account in the context of WMS and illustrate the effects with a 2-um wavelength
multiquantum-well DFB laser used for CO, detection. The modulation response of the
laser is measured, and we demonstrate how the phasor decomposition method (PDM)
may be used to obtain accurate line shapes from the first harmonic WMS signals by
correcting for phase variation across the laser’s low-frequency current sweep. We also
demonstrate how the PDM approach can be improved by removing the need to preset
the orientation of the lock-in axis to isolate the residual amplitude modulation compo-
nent, making it more suitable for field applications.

Index Terms: Absorption line shape recovery, diode laser spectroscopy, laser modula-
tion, optical gas sensors, wavelength modulation spectroscopy (WMS).

1. Introduction

Tunable diode laser spectroscopy (TDLS) is a powerful tool for the measurement of gas pa-
rameters such as concentration, pressure, and temperature in a wide variety of environments
[11-[8]. In the simplest case of direct TDLS, the laser wavelength is scanned across an absorp-
tion feature, by applying a saw-tooth current ramp to the diode, and the obtained signal is nor-
malized with a no-gas signal or a non-absorbing baseline to provide an absorption line shape.
The gas properties are then calculated using a least square fit of the experimental absorption
line shape to a physical spectroscopic line shape model. It is not possible to obtain all three
unknowns, i.e., concentration, temperature and pressure, from the least-squares fitting algo-
rithm, as there are only two variables, line shape depth, and width. Therefore, either one of the
three gas parameters must be known in advance or another methodology used. For example,
ratio thermometry [1] uses the ratio of the peaks of two absorption lines with different lower
state energies, or the ratio of their integrated areas, to determine temperature.
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Although direct spectroscopy is a simple process, it has limitations in harsh environments,
such as measurements of aero engine exhaust plumes [8], where exiraneous noise often
completely obscures the absorption feature. In this case, phase sensitive detection techniques,
such as wavelength modulation spectroscopy (WMS), are commonly used. In WMS an addi-
tional high frequency sinusoidal current modulation is applied to the laser producing an intensity
modulation (IM) and a time delayed wavelength modulation (WM). The detected signal is fed
into a lock-in-amplifier, which then outputs a selected harmonic signal arising from the interac-
tion of the IM and WM with the gas absorption line shape function.

Extensive theoretical analysis of the harmonic signals generated in WMS has been reported
over many years [2], [9]-[16]. Our own recent work has focused on separating the IM and WM
components at the first harmonic, allowing calibration-free recovery of absolute absorption line
shapes, using a no-gas background or a non-absorbing baseline for normalization that is pro-
portional to the IM output from the laser [3], [4], [17]-[21]. Fluctuations in optical transmission
can make it difficult to normalize the line shape, due to the variation of IM between the gas
and no-gas measurements. Fernholz et al. [9] proposed a digital fast scanning WMS detection
technique by which the fast intensity fluctuations could be cancelled by averaging a high fre-
quency current scan (1 kHz) and a higher frequency modulation of 300 kHz, followed by de-
modulation. The cancellation of the low frequency intensity fluctuations is achieved by dividing
the second harmonic signal with the first harmonic signal. This method was further developed
by Rieker et al. [2].

The harmonic signals discussed above depend critically on the absolute magnitudes of the
intensity and wavelength modulation produced at the DFB laser source and their relative mag-
nitude and phase, often described in the literature as the Chirp-to-Power Ratio (CPR). In turn,
the CPR depends on the electronic, optical, and thermal characteristics of the DFB and is af-
fected by several modulation parameters, including the current modulation amplitude, modula-
tion frequency and the DC bias current. The modulation properties of DFB lasers have been
extensively studied in the literature but usually within the context of understanding or reducing
the CPR for high performance fiber optic communication networks [22], [23]. For WMS applica-
tions, experimental measurement of the magnitude and phase lag of the wavelength modula-
tion as a function of the modulation frequency has been reported for several specific lasers
including a 2 um DFB laser [24], 0.763 — 2.3 um VCSELs [25] and a 3 um interband cascade
laser [26].

In practice, a wide variety of lasers sources are used for WMS with differing characteristics
and it is important not only to choose suitable modulation parameters specific to the source
but also to correct the harmonic signals where necessary for variation of these parameters. It
is the purpose of this paper to identify the important modulation issues specifically for WMS
applications and the effect of the modulation parameters on the implementation of WMS
spectroscopy, so as to allow accurate recovery of line shapes and gas parameters from the
harmonic signals. Rather than detailed numerical analysis of the modulation characteristics of
individual lasers, we use simple analytical models where possible in order to identify the key
issues.

We experimentally illustrate the effect of variation in the laser modulation parameters, in par-
ticular the walk-off of the WM-IM phase separation across the current scan, for the case of CO,
detection with a 2 um quantum well DFB laser. The importance of this phase walk-off correction
is highlighted in measurements of two nearby absorption spectral features of CO, that can be
used for ratio thermometry measurements. The use of a single source for ratio thermometry is
advantageous due to the reduction in drive and collection electronics, and the use of two nearby
transitions is preferred in ratio-thermometry due to the similar dependence of their spectral pa-
rameters on pressure and concentration [1], [2], 5]. However, using a single laser requires a
much larger current scan, thus increasing the overall phase walk-off, leading to significant mea-
surement error. It will be shown that the phasor decomposition method (PDM) [18] can be used
to recover the two nearby absorption features only if the phase walk-off is accounted for in the
line shape recovery signal processing.
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We also improve on the PDM technique to render the measurement process independent of
the orientation of the lock-in axes. This is of great benefit when WMS detection is combined
with optical tomography [8], where multiple measurement paths are used and the alignment of
the LIA phase for each path would be overly time-consuming.

2. Modulation Properties of DFB Lasers

Current modulation of DFB lasers gives rise to wavelength modulation as a result of the combi-
nation of carrier density modulation and thermal modulation. In this section the contributory car-
rier density and thermal effects to this wavelength modulation are discussed. Typically, the
modulation amplitudes are quoted in the frequency domain and this nomenclature has been
adopted in this paper. However, to avoid confusion between WMS and frequency modulation
spectroscopy (FMS) the discussion will be in terms of the wavelength modulation (WM) rather
than the frequency modulation (FM), where these two effects differ in phase by 180°.

2.1. Carrier Density Modulation

Carrier density modulation results in modulation of the refractive index and hence the output
laser wavelength. Several factors are responsible for the carrier density modulation including re-
laxation oscillation, spectral and spatial hole-burning and the coupling of spontaneous emission
to the lasing mode [22], [27]-[34]. Relaxation oscillation effects only become significant near the
relaxation oscillation frequency which is normally much higher than the typical frequencies used
in WMS. Similarly, the contribution from spontaneous emission is only significant near threshold
and can usually be neglected for WMS applications. The spectral hole burning contribution is
typically independent of modulation frequency, FM magnitude of ~60 MHz/mA, with the wave-
length modulation 180° out of phase with the current modulation. Spatial hole burning effects are
more complex and may in some cases be dependent on the bias current. Typical hole-burning
effects produce a FM magnitude of ~20-40 MHz/mA.

2.2. Thermal Modulation

Because of the relatively low frequencies employed, thermal modulation plays a very impor-
tant role in most WMS systems. The temperature modulation within a laser diode can be numer-
ically computed from the heat conduction equation and detailed studies have been performed
by a number of authors [35]-[43]. However, to elucidate important features for WMS, we outline
the commonly used analytical RC thermal model in the Appendix, and from this, we can make
the following important observations for WMS.

1) As a consequence of joule heating in the chip, we note from equations (A.5) and (A.8) that
the magnitude of the thermal contribution to the wavelength modulation increases with
bias current and, hence, will increase across a sawtooth current ramp scanning the wave-
length through the absorption line. In essence, the same magnitude of modulation current
produces a greater heat power variation at higher bias current. The significance of this ef-
fect depends critically on the magnitude of the laser's ohmic resistance (which can be
measured from the VI characteristics) and may vary for different lasers. Furthermore, since
the thermal contribution is vectorially added to the carrier density contribution, there will be
a small change in the resultant phase of the wavelength modulation during a wavelength
scan by a sawtooth current ramp.

2) As shown by (A.4) and (A.8) in the Appendix, the wavelength scan from a sawtooth ramp
has a nonlinear dependence on applied current (and a small offset determined by the am-
plitude of the modulation current) as a result of the ohmic resistance.

3) As indicated by (A.6) in the Appendix, there is a small wavelength modulation at the second
harmonic of the modulation frequency.
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On the basis of the RC model, the magnitude of the thermal response diminishes with in-

creasing frequency, according to a first-order filter response of the form, (1 +jfm/fc)’1, where fy,
is the modulation frequency and f, is a thermal cut-off frequency and hence the thermal phase
lag of the WM with respect to the IM increases from 0° to a maximum of 90°. However, though
widely used [28]-[30], a number of authors have noted that this simple model, based on a linear
temperature distribution from the active layer to the heat sink, fails to explain certain features ob-
served in the WM response of laser diodes. An inverse square root dependence on modulation
frequency and departure from a first order type phase response has been noted for a number of
lasers [25], [38], [39], [43]. Also, in order to explain experimentally-observed dips in the WM re-
sponse, an analytical solution was derived from the heat conduction equation by Dilwali [40] for
heat generation in the active layer positioned centrally in a three-layer, 1-D model of a laser
chip. However, an average temperature over the whole laser chip is used (rather than an aver-
age over the optical mode profile) and the constants have to be arbitrarily adjusted to match the
DC response. Hangauer [25] has also derived a semi-analytical thermal model specifically for
VCSELs in the form of a Fourier transform equation for numerical integration. In this paper (see
Appendix) we derive a 1-D analytical solution of the heat conduction equation based on the as-
sumption of uniform temperature in a thin active layer, which reduces to the RC model at low
frequencies but gives a better description of the thermal properties than the RC model. We note
the following important differences—see (A.23) in the Appendix. There are two cut-off frequen-
cies associated with the substrate and superstrate layers. At high frequencies, the response

has inverse square root behavior of the form: 1/(j fm/fcs)”Z. As a consequence, the WM ther-
mal phase lag approaches 45° rather than 90° and the high frequency roll-off is slower, which
concurs with general experimental observations as noted.

2.3. Combined Carrier and Thermal Effects

The total modulation response of DFB lasers results from the phasor combination of the car-
rier and thermal effects. From the RC model, (A.5) and (A.8) in the Appendix, the magnitude of
the optical frequency tuning coefficient (typically in GHz/mA) is

2 2
HS — 2p¢H,

=02 4 (1)
14 ()

The phase of the frequency modulation relative to the current modulation is ¢ = (¢, + «), where
(z2)to
- 2
Ho —pf{1 + (;—’C") }
and v, is the phase of the WM relative to the current modulation. Here, py is the contribution from
the carrier density modulation, and is assumed to be constant, independent of the modulation

frequency, with its WM in anti-phase with the modulation current.
Ho is the magnitude of the thermal tuning as wy, — 0

= () (ﬁ;) Rr{(V; — 1) + 2rshias ) @®

The various parameters in equation (3) may be determined from measurement of the DC electri-
cal characteristics and from the DC wavelength tuning curve given by
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Note from equation (1) that when Hy > 2pf the magnitude of the tuning coefficient decreases
with modulation frequency, whereas when Hy < 2p; the tuning coefficient actually increases with
frequency. For Hy = 2pf the magnitude of the tuning coefficient is independent of frequency.

For the more advanced thermal model given by (A.23) in the Appendix, the total tuning coeffi-
cient (thermal plus carrier) is

af = pf— o
Al ({%";); [coth ({f—c’;’)atanh (’:J—:) ;]

where wes = /02 and wep = m/dg are the cut-off frequencies associated with the substrate and
top layers, respectively, and x is the thermal diffusivity.

Similarly to the RC model above, the magnitude of the tuning coefficient from equation (5)
may either decrease or increase with modulation frequency, depending on the relative magni-
tudes of the thermal and carrier effects. Furthermore, equation (5) also predicts the presence of
a dip in the magnitude response for certain laser parameters.

(6)

3. Line Shape Recovery With WMS

3.1. Harmonic Signals from WMS

As discussed in Sections 1 and 2, the higher frequency sinusoidal laser drive current modula-
tion in WMS produces an intensity and wavelength modulation at the laser output. The interac-
tion of the IM and WM with an absorption line results in signals at the harmonics of the
modulation frequency, whose amplitude and phase depend on the laser modulation characteris-
tics and the absorption line parameters. In general, for lock-in detection of a harmonic at nf,
there are three contributions to the signal with magnitude and phase relative to the intensity
modulation as follows [20]:

1) a “derivative” component, —Aa,/(v), at phase of —ny
2) a component, -0.5 Aa,_1Al(v), at phase of —(n— 1)y
3) a component, -0.5 Aa,1Al(v), at phase of —(n+ 1)y

where a, are the Fourier coefficients, dependent on the line shape function and the modula-
tion index, m=év/v, v and ~ are the frequency modulation amplitude and absorption half-
linewidth, ¢ is the phase shift between the FM and the IM, A is the gas absorbance at line
centre, and /(v) and Al(v) are the DC laser intensity and intensity modulation amplitude,
respectively.

In this work we are primarily concerned with line shape recovery from the first harmonic signal
and the three components in this case are

1) —Aayl(v), at phase of —
2) —AapAl(v), at reference phase of zero
3) —0.5 AaxAl(v), at phase of —2¢

plus the background RAM, A/(v), at reference phase zero. See (7) and (8) for the first harmonic
lock-in signal with these components.

As explained in our earlier work [17]-[21], calibration-free line shape recovery is based on
subtracting the derivative component 1) above and using the background RAM to normalize
component 2) to yield Aag. For small modulation indices, the a, component 3) may be ne-
glected, and the line shape is given directly by ap, but for larger indices, a correction factor is
necessary [20]. In this paper, we explain how we can deal with phase changes arising from the

Vol. 8, No. 3, June 2016 1501717



IEEE Photonics Journal Recovery of Absorption Line Shapes

modulation characteristics of the laser source and introduce an additional feature to render the
measurement process with the PDM to be independent of the lock-in phase.

3.2. Phasor Decomposition Method

In the PDM, the x-axis of the LIA is aligned in-phase with the background RAM and measure-
ments are taken from both the x- and y-axis. If these two measurements are combined at every
point in the scan [20] then the derivative component is eliminated since

Ylock—in

tan(y,)

which leaves the desired signal after normalization by Al(v), or alternatively RAM nulling tech-
niques [44], [45] may be used. Previous application of the PDM assumed v, to be constant and
that it could be calculated from the obtained first harmonic signals. However, as explained in
Section 2, this will not be the case if the ohmic resistance of the laser is significant or a large
current scan is necessary. In such cases it is necessary to measure v, either in-situ or prior to
carrying out WMS, and apply the varying phase to equation (6).

Unlike other WMS methods, such as nf/1f techniques, which are phase-independent [5], the
PDM as described above requires the lock-in phase to be aligned with the RAM component.
This can be inconvenient in practical applications, for example when the PDM is used in con-
junction with optical tomography where in excess of 126 optical paths are used [8], that all re-
quire their lock-in phases to be aligned. However, we can also render the PDM independent of
the lock-in phase as follows. For an arbitrary orientation, 6,, of the lock-in x-axis with respect to
the RAM, the signals measured on the x- and y-axis are

Xlock—in +

= Al(v){1 — A(ao — 0.5a)} (6)

Xiock—in = AI(V)(1 - AaO)COS(eL)

+ Aayl(v)cos(0L + 1))

—0.5AaAl(v)cos(6; + 21)y) (7)
Ylock—in = AI(V)“ - AaO)Sin(eL)

— Aayl(v)sin(6. + 1)

+ 0.5AaAl(v)sin(0L + 2¢,). (8)

The processing software then computes the combination

Ylock—in
tan(6 + ) .

where ¢ is iterated from 0 to 180° in intervals of 0.2°. The a; component will only be completely
removed from equation (9) when 6 = 4, and this is recognized in the software processing by the
least difference between the non-absorbing baseline and the maximum absorption point. At
other values of 6, the addition of contributions from the ap; and a; components in equation (9)
results in an increased peak height of the measured signal—see [3].

The software iteration time is ~0.4 seconds using a MATLAB code that calculated the PDM
outputs for all values of 8 in parallel. This process can be optimized for real time applications
through improvements to the software coding and the use of a dedicated PC with a high speed
processor.

Xlock—in +

4. DFB Laser Characterization

The optical source used in this work is a DFB laser from Eblana photonics with a multiple
quantum well (MQW) gain region and its structure is detailed in reference [46]. It consists
of three 8 nm thick quantum wells and four 15 nm thick barriers sandwiched between two
250 nm thick confinement layers, with a top layer of 2 um thickness and an InP substrate
thickness of 120 um. A 3 pum width ridge of cavity length 600 um forms the waveguiding
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Fig. 1. Experimental measurement system for laser characterization and gas detection.

region. Using these dimensions, the theoretical thermal resistance, calculated from equation
(A.9), is Ry =~ 40 °C/W and the theoretical thermal cut-off frequencies of the substrate and top
layer in the planar model of (5) are 0.5 kHz and 1.8 MHz, respectively. From the measured VI
characteristic, the ohmic resistance is rs ~ 5 €2 and the junction voltage is V; ~ 0.82 V and from
the LI curve the slope efficiency, n ~ 0.046 W/A. Experimental measurement of the DC tuning
characteristics suggested an experimental value of Ry ~ 50 °C/W with AA/AT = 0.11 nm/°C.

4.1. Measurement of the Tuning Coefficient and WM-IM Phase (i),)

The experimental arrangement for measuring the laser WM-IM phase and tuning coefficient
is shown in Fig. 1. The temperature of the laser is controlled by a Thorlabs TED 200 PID tem-
perature controller, and the current is supplied using a Thorlabs LDC 210 and a signal genera-
tor via a bias T, used to sum the DC ramp and the high frequency modulation. The output light
from the laser passes through a 60:40 fiber coupler, with one output designated as the “mea-
surement arm” and the second output designated as the “wavelength referencing” arm. The
measurement arm contains a fiber-coupled collimator with a 2 um central wavelength, used to
direct light through a 5.5 cm long optical gas cell and onto an extended InGaAs photodetector
(Thorlabs-PDA 10D-EC). The wavelength referencing arm comprises of a fiber ring resonator,
with an FSR of 0.124 GHz, connected to another extended InGaAs detector.

A typical fiber ring resonator trace, and corresponding IM signal from the measurement arm,
is shown in Fig. 2 for a modulation frequency of 200 kHz and current modulation amplitude of
10 mA, where the gas cell in the measurement path is filled with nitrogen. The oscilloscope
sampling rate is 100 MS/s, providing 500 sampling points per sinusoid and ~20 sampling points
between two successive maxima of the interference signal for this current amplitude, which is
well above the Nyquist limit.

The amplitude of the frequency modulation, Av, and its phase, ¢gy is obtained by fitting the
peaks in the resonator trace, translated to a frequency scale through the FSR, to an equation of
the form

y = C+ Avcos(wt + ¢dgm) (10)

where C is a DC offset defined by the allocation of the first resonator peak at a frequency value
of zero.
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Fig. 2. Fiber resonator response with laser current modulation.

The output of the measurement arm provides the intensity output of the laser, which can be fit
to an equation of the form

y =1+ Al cos(wt + ¢m) + Abcos(2wt + Pom) (11)

where [ is the DC intensity of the laser, Al and Ak are the linear and non-linear IM amplitudes,
and ¢y and ¢ are their phases with respect to the current modulation.
The WM phase lag with respect to the current modulation is then given as

Yy =M — Prm + T (12)

and the tuning coefficient is calculated as Av/Ai (GHz/mA), where Aj is the applied current
modulation amplitude (mA). Allowance is made for the phase delay of 0.09° caused by the dif-
ference in path-length between the wavelength referencing arm and the measurement arm.

4.2. Experimental Frequency Response

The measured magnitude of the tuning coefficient of the DFB-MQW laser as a function of modu-
lation frequency is shown in Fig. 3. For measurements below 100 kHz the bias-T (see Fig. 1) is re-
moved and a summing amplifier is used prior to the current controller, which has a low-pass cut-off
frequency of 250 kHz.

Compared with DFB lasers used in the optical communications band, the tuning coefficient
presents some unusual features. Intuitively, we might expect the tuning coefficient to monoton-
ically decrease with modulation frequency as the thermal contribution reduces. However, we
note from the high frequency region of the tuning characteristic in Fig. 3, where the thermal
contribution becomes small, that the carrier contribution has a relatively large magnitude of
~0.27 GHz/mA. Hence, the condition that 2ps > Hp, as discussed in relation to the simple RC
model of equation (1), is satisfied which predicts an increasing tuning coefficient with modula-
tion frequency. There is also an initial dip in the response which cannot be explained on the
basis of the simple RC thermal model. This type of behavior is predicted by the more ad-
vanced thermal model of equation (5) where the thermal WM lag increases more slowly with
frequency rather than approaching 90°. However it should be noted that the thermal model
outlined in the Appendix is based on a simplified planar model and predicts the general trends
rather than giving an exact match to the experimental results.

The measured WM-IM phase lag is shown in Fig. 4 for different bias currents. It can be
observed from Fig. 4 that the phase shift approaches 180° as the thermal effect diminishes at
high frequencies. The phase shift is also bias current dependent. As discussed in Section 2,
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Fig. 4. Variation in WM-IM phase lag as a function of modulation frequency for varying dc bias
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this may be explained as a result of the increased thermal effect at higher bias currents from
ohmic heating, reducing the overall phase shift when combined with the carrier effect.

The effect of bias current on the phase shift at a modulation frequency of 100 kHz is shown in
Fig. 5 for various TEC temperatures. This phase shift as a function of bias current has a signifi-
cant effect on the recovered signals in the PDM. For a given bias current, the phase shift in-
creases with temperature, suggesting a reduced thermal modulation effect at higher TEC
temperatures. This may result from increased heat loss by radiation from the laser diode or from
a reduced thermal resistance at higher temperatures.

5. Correction for Modulation Effects

In this section, we illustrate the use of the PDM for line shape recovery, for the case of CO,
detection with the DFB- MQW laser described in Section 4. The measurement arrangement is
the same as shown in Fig. 1, with a calibrated mixture of CO, and nitrogen used instead of
pure nitrogen. A 5 Hz saw-tooth current ramp and a sinusoidal modulation were applied to the
laser using the bias-T configuration. The detected gas absorption signal is demodulated using an
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Fig. 6. Effect of phase walk-off for a single CO, absorption line. C = 100%, T =22°C, P = 1.013 bar,
and m = 0.08.

SR-830 digital lock in amplifier, whose X and Y output channels were displayed on a Tektronix
oscilloscope (TDS 3014 B) and recorded via a GPIB interface.

The variations in the WM-IM phase, shown Fig. 5, need to be considered to ensure accurate
recovery of line shapes using the PDM. In this section we show the effect of using a single
value of the WM-IM phase using the PDM and how we can use phase walk-off correction to
obtain accurate line shapes from the PDM with measurements independent of the lock-in
phase.

The effect of phase walk-off on the recovered line shape of a single CO, absorption line at
1997.22 nm with PDM is shown in Fig. 6, for a path length of 6 cm, a temperature of 21 °C
and a concentration of 100%. Here, the direct line shape profile is compared with the case
where ¢, has a fixed value, calculated at line center, and where v, is adjusted with current
according to Fig. 5. The modulation frequency is 200 kHz and modulation index is 0.084.
The variation in the magnitude of m across the scan was measured as ~5% but has a negli-
gible effect on the line shape recovery. As shown, taking into account the phase walk-off pro-
vides more accurate recovery of the absorption profile, particularly the width of the line
shape. A least-square fitting algorithm was used to obtain concentration and temperature
values by comparing the corrected and uncorrected PDM signals to a theoretical model.

Vol. 8, No. 3, June 2016 1501717



IEEE Photonics Journal Recovery of Absorption Line Shapes

- -'- Corrected
Uncorrected
- = = Direct

VR

10969  1997.0 19971 19972  1997.3
Wavelength (nm)

Transmission

Residuals
Soo
Lo
oo o,

i

1096.9  1997.0 19971 19972  1997.3
Wavelength (nm)

Fig. 7. Effect of phase walk-off on line shape recovery for a scan across two CO, lines. The incom-
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Concentration and temperature measurements of C=102% and T =21.35°C for the cor-
rected signal and C =67.8% and T =67.4°C for the uncorrected signal were calculated,
highlighting the importance of taking into account the modulation phase characteristics of any
optical source used in TDLS-WMS applications.

The effect is even more dramatic in Fig. 7 which shows the experimentally recovered line
shape of two CO, features, as would be necessary for ratio thermometry using a single laser
source. The PDM with and without phase correction is used at a modulation frequency of 50 kHz
and the modulation index of m ~ 0.2. The direct signal, obtained under the same conditions is
also shown as a comparison. Where correction is applied the phase shift across the scan is
determined from the phase response as in Fig. 5 and the correct phase value is applied to
each \-point in the PDM computation, as described in equation (6). Again, for low m-values,
changes in the magnitude of m across the scan have a negligible effect on the measured sig-
nals. The results in Fig. 7 clearly indicate the need for phase correction and demonstrate that
accurate line shape recovery can be achieved through the PDM technique. As ratio thermome-
try uses the ratio of the peak absorbance of the two features, it is clear that the phase correc-
tion is essential if accurate temperature data is to be acquired using the PDM.

For the PDM data shown in Fig. 7, the orientation of the lock-in amplifier x-axis was aligned
with the RAM component. This is achieved by ensuring the y-axis output is on a zero back-
ground. In the case of significant phase walk-off the RAM component is never fully isolated on
the x-axis, and a projection of the RAM will be present on the y-axis output over the majority of
the current scan, thus making alignment impossible.

Use of the analytical procedure described in Section 3.2, where the orientation of the lock-in
axes does not require pre-alignment, therefore simplifies the measurement procedure. Fig. 8
shows the results obtained for two different orientations of the axes with phase correction ap-
plied, further verifying the advantage of this technique.

6. Conclusion

A wide variety of laser types are used for WMS and in this work we have reviewed the basic
modulation properties of DFB lasers to identify some of the key issues that affect the design and
operation of WMS systems. Important features highlighted include the phase walk-off from joule
heating and the effect of the carrier contribution on whether the magnitude of the frequency re-
sponse decreases or increases with modulation frequency. These are important considerations
in the choice of modulation frequency. For example, a higher modulation frequency reduces the
phase walk-off and may in some cases give a larger wavelength modulation. The physical di-
mensions of the laser chip are also important in determining the thermal resistance and hence
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Fig. 8. Axes invariant results corrected for phase-walk.

the magnitude of the thermal contribution. The PDM approach has been improved by removing
the need to pre-set the orientation of the lock-in axes and we have demonstrated how this ap-
proach may be used to correct signals for phase walk-off for the particular case of CO, detection
with a quantum well laser. Other lasers will exhibit similar features to a greater or lesser extent,
depending on the laser type and the magnitude of the current scan, and knowledge of the basic
laser parameters along with the simple models outlined in the paper can assist in optimizing the
operation of WMS systems.

Appendix

Thermal Wavelength Modulation

We first consider a simple 1-D analytical model [29], [30] based on the laser chip having a
thermal capacity Cr and a thermal resistance Ry to the heat sink which conducts all the heat
energy away from the chip. This leads to the simple thermal equation for the laser diode tem-
perature T as

= Py (A-1)

where Py is the electrical power dissipated in the chip, and Ty is the heat sink temperature.

For WMS applications, the forward injection current, i, supplied to the DFB laser takes the
form: ir = lias + inCOS(wmt) where kjas is the DC bias current, ip, is the modulation current ampli-
tude, and wp, is the modulation frequency. The forward diode voltage is approximated by vy =
V; + isrs s0 the electrical power dissipated in the chip is

Pei = Vris — Popt = [Viis — Popt] + if 1 (A2)

where rs the series resistance of the laser chip (obtained from the slope of the VI characteristic),
V; is the junction voltage, and P,y is the output optical power given by Popt =1 (bias — lin)
where Iy, is the threshold current and 7 is the slope efficiency (slope of the optical power versus
current characteristic). We assume the laser is above threshold and the spontaneous emission
power is neglected.

The DC and AC heat generated follows from (A.2)

Pe) = Ppc + Aq COS(wmt) + A2COS(2wmt) (A3)
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where Pp¢, Ay, and A, are given by

rsi2
Poc = [Vikias — 1 - (bias — In)] + {rslgias + 52’”} (A.4)
At =(V; =) - im + 2rshiasim (A.5)
rsi?
A, =-2m (A.6)

2

Substitution of the electrical power from (A.3) into (A.1) and neglecting A, gives the temperature
change

Aicos(wmt — 1)
W1+ W?nTch

where 7y, is the thermal time constant given by 7, = RrCr and the thermal phase lag
1 = tan~" (wmT).

The change in the laser’s output wavelength is related to the change in temperature by the
temperature tuning coefficient AA/AT so that the thermal DC tuning and wavelength modula-
tion are given by

T =To+ Rr{ Poc + (A.7)

AN
AT

Aicos(wmt — ¢1)
A1+ w2 s

where AXN/AT = (a;+ ap)A, and «; and a, are thermal linear expansion and refractive index
coefficients, respectively. Typically, AX/AT ~ 0.11 nm/°C. The thermal resistance, Rr, for one-
dimensional heat flow from the active layer to the heat sink is given by, Rt = ds/kA, where ds is
the thickness of the substrate (distance of the active layer from the heat sink), A is the area of
the active layer and k is the thermal conductivity (~ 0.68 W/cm °K for InP at 300 °K). More real-
istically, the quasi two-dimensional heat flow from an active layer of width w and length / to a
heat sink at a distance ds gives a thermal resistance of [29]

In(*%)
Ar ==

A=X+ < )RT Ppoc + (A8)

(A.9)

with typical values of Rt =~ 30 — 50 °C/W.

To improve on the RC model, we derive below a simple 1-D analytical solution (which re-
duces to (A.8) at low frequencies) from the heat conduction equation for the temperature of the
active layer. We consider the 1-D planar structure shown in Fig. A1 where we assume uniform
heat generation from electrical power dissipation Pg(f) in the thin active layer of thickness d,
positioned at a distance ds; from the heat sink, with a top buffer or confinement layer of thick-
ness dp.

The heat generated in the active layer from equation (A.3) is written in exponential notation as

Pa(t) ~ Ppc + A e/t (A.10)

We assume that the temperature throughout the thin active layer (and over the optical profile) is
approximately uniform if d; < ds and is given by Tss + T4(t), where

Ta(t) = Toe/ent ) (A.11)

Tss = RrPoc + To (A.12)
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Fig. A1. Heat flow in simplified planar laser structure.

Tss is the steady-state temperature of the active region, Ty is the heat sink temperature, and Rr
is the thermal resistance to the heat sink.

For boundary conditions, we assume a fixed temperature of Ty at x =0 (heat sink), and
we further assume that there is no heat loss from the upper surface so that 9T /0x =0 at
x =d. The heat flow out of the active layer, with thermal capacity C,, is represented by
Hs(t) and Hp(t).

For the upper and lower regions where we assume that no heat generation occurs, the heat
conduction equation has the form

ar a?T
which has the following time-varying solutions:
e — e
ed(x—d) | g=q(x-d)
T(x,t)= Ta(t){ 0% | o 9% ], (ds+dy) <x<d (A.15)

where g = +/jwm/k, k = K/(pCp) is the thermal diffusivity, p is the density, and C, is the spe-
cific heat capacity (typically, p ~ 4.81 g/cm®, Cp ~0.31 J/g °k, and x ~ 0.46 cm?/s for InP at
300 °k).

Since heat flow is given by: H = —kA(9T /0x), it follows from (A.14) and (A.15) that the heat
flow out of the active layer is given by

Hs(t) = kAQTx(t)coth(qds) (A.16)
Hp(t) = KAqT,(t)tanh(qadp). (A17)

Note that when qgds < 1 (A.14) reduces to a linear temperature distribution and (A.16) be-
comes: Hg(t) = Ta(t)(1 + (1/2)jwnRrCs)/Rr. Similarly, for gqgd, <1, (A.17) becomes:
Hp(t) = jumCpT4(t), consistent with the simple RC thermal model. C, and Cs are the thermal
capacitances of the top and substrate layers, respectively, given by C = pC,V and the ther-
mal resistance, Rr = ds/KA.

Energy balance in the active layer requires that

dT,(t)

Ca at

+ Hs(t) + Hp(t) = Pe(t) (A.18)

where C; is the thermal capacity of the active layer.
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Combining equations (A.10), (A.11), (A.16), (A.17) with (A.18), we obtain

A1 e”“’mt
Ta(t) = . A.19
a(t) JjwmCa + kAg[coth(qds) + tanh(qdy,) | ( )
From (A.11), (A.12), and (A.19), the active layer temperature is
A1 e/‘“m’

T =Ty +Rr Poc+ . A.20
° T{ °e /meTca+qu[coth(qu)+tanh(qdb>]} (A.20)

Note that, for qds and gadp, < 1, (A.20) reduces to the simple RC thermal model

A1 eiwmt }

T=Ty+Rr{P —_— A.21
o+ T{ bc + 3 jomRrCr (A.21)

with Cr = C;+ Cp + (1/2)Cs.
If we define cut-off frequencies associated with the substrate, top and active layers by
wes = K/ 02, wep = k/AZ and wea = (ds/da)wes, then (A.20) becomes

A1 e/"“’"'t
T=To+ Rr{ Poc + N N — 7 (A.22)
jiom/wea + () [coth (L2)"+tanh (=) 2}
The thermal DC tuning and wavelength modulation is then
AN Aqglemt
A= o+ (AT) Rr{ Poc + ! (A.23)

1 ) 1 ] 7
jwm/wca + (j:}—c:)z |:COth (j:)—c’:) 2+tanh (!:’_cz) 2:|

Typically, ds is around three orders of magnitude greater than d; so that w¢s > wes and the first
term in the denominator may be neglected for sub-megahertz modulation frequencies.
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