
This version is available at https://strathprints.strath.ac.uk/55978/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Introduction

The introduction of three-dimensional shape through an increase in the proportion of sp\(^3\) hybridised centres (Fsp\(^3\)) has been correlated to compound progress in a drug-discovery setting.\(^1\)–\(^5\) The reduction of aromatic ring count has also been shown to have beneficial effects on the development properties of oral drug candidates, including aqueous solubility, lipophilicity, serum albumin binding, CyP450 inhibition and hERG inhibition.\(^6\) Based upon these important factors there has been significant interest in robust synthetic routes to building blocks and fragments which confer both shape and fixed conformation on a molecule through the introduction of saturation.\(^7\)–\(^9\)

Whilst there are advantages to the reduction in the number of aromatic rings within a compound,\(^6\) the conformational constraints of a ring provide clear benefits in a medicinal chemistry setting, where functional groups can be held in positions to maximise ligand–receptor interaction.\(^10\) For this reason the introduction of functional groups on an aromatic scaffold has provided significant benefits within drug-discovery. In addition, there are many simple and effective procedures for the formation of carbon–carbon and carbon–heteroatom bonds on aromatic and heteroaromatic rings allowing for the rapid introduction of diversity and complexity on these frameworks to establish and probe structure activity knowledge.\(^11\)

A common motif found in many drug molecules is the aminophenol functionality. This can easily be introduced through a variety of bond construction procedures and both the amine and hydroxyl groups provide excellent synthetic handles through which to selectively introduce a variety of additional groups. Introduction of this functionality on a rigid aromatic scaffold can provide both hydrogen bond donor and hydrogen bond acceptor properties along with the provision of mildly basic and acidic functional groups. Therefore, this pharmacophore is prevalent in many bioactive molecules. A selection of marketed drugs which contain a 1,4-, 1,3- or 1,2-aminophenol functionality are collected in Fig. 1. Dofetilide 1 is a class III antiarrhythmic used for the maintenance of sinus rhythm.\(^12\) Terconazole 2 is a broad spectrum antifungal agent which ultimately inhibits the ergosterol biosynthesis pathway.\(^13\) Neostigmine 3 is a reversible acetylcholinesterase inhibitor which stimulates both nicotinic and muscarinic receptors.\(^14\) Ivacaftor 4 is effective in the treatment of cystic fibrosis.\(^15\) Suvorexant 5 is a orexin receptor antagonist,\(^16\) approved for the treatment of insomnia and Eltombopag 6, interacts with the thrombopoietin receptor and leads to an increased platelet count in patients.\(^17\) These selected examples show the diversity in protein targets for this class of compound and highlight the importance and prevalence of the aminophenol functionality in compounds with profound biological activities.

From the examples outlined in Fig. 1 there are clear benefits to the use of aromatic rings to fix the aminophenol functionality in space. However, the correlation between
developing an oral drug candidate and the number of aromatic rings in a compound provides a strong impetus to develop saturated analogues of common aromatic motifs found in drug molecules.\(^6\) As part of an ongoing investigation we hypothesised that saturation of the aminophenol framework would provide a particularly useful series of aminocyclohexanol fragments for discovery research. Examination of the patent literature reveals a number of compounds which contain the aminocyclohexanol functionality suggesting that this grouping also has potential in the drug-discovery setting. Recent examples include the benzoxazole\(^7\) which has been shown to be an \(m\)PGES-1 inhibitor and the 2-amidopyridine derivative\(^8\), synthesised as a potential 11\(\beta\)-HSD1 inhibitor (Fig. 2).\(^{18,19}\)

A convenient synthetic precursor to the amino cyclohexanol framework would be a suitably N-protected derivative. A typical example that can readily be unmasked to reveal the desired functionality is dibenzylamino-1-methylcyclohexan-1-ol and dibenzylamino-1-trifluoromethylcyclohexan-1-ol, which each have six structural isomers\(^9–20\) (Fig. 3).

Despite the prevalence of this framework in the patent literature relatively few syntheses of this scaffold have been reported in the primary literature. In an isolated report, Yamamoto described the ytterbium triflate-mediated ring opening of epoxide \(21\) with dibenzylamine to give the amino alcohol \(22\) together with \(23\) as a 9:1 mixture of regioisomers (Scheme 1).\(^{20}\) Although the stereochemistry of this product was not unequivocally assigned it is expected that this would be the \(\text{trans}\)-isomer \(13\). In the trifluoromethyl series (15–20) only the 4-amino-1-trifluoromethylcyclohexanol \(15\) has been reported, as a mixture along with minor isomer \(16\).\(^{19}\) This mixture was prepared through reaction of the dibenzylamino ketone \(24\) with Ruppert’s reagent (\(\text{CF}_3\text{SiMe}_3\)) in the presence of tetra-\(n\)-butylammonium fluoride (TBAF) followed by acidic cleavage of the siloxy intermediate to give the products \(15\) and \(16\) as a
6:1 mixture of diastereoisomers (Scheme 2), the trans-isomer 15 predominating.

Whilst these isolated reports are of use to those wishing to exploit this functionality in their efforts, the synthesis and stereochemical assignment of all twelve isomers of this cyclohexyl motif would be of direct use in adding stereochemical complexity and 3-dimensional shape to discovery projects. Within this paper we describe the synthesis, isolation and purification of all 1-methyl- and 1-trifluoromethyl dibenzylaminocyclohexan-1-ol isomers 9–20 in three steps or fewer from readily available precursors, and unequivocally assign their stereochemistry based upon NMR spectroscopy and X-ray crystallographic experiments.

Results and discussion

Our investigations began with the preparation of the 4-dibenzylamino derivatives 9, 10, 15 and 16 which were accessed from the common intermediate 24. Dibenzylation of 4-aminocyclohexanol hydrochloride 25 followed by Swern oxidation provided the known ketone 24 in 84% yield (Scheme 3).21

Treatment of a THF solution of 24 with methylmagnesium chloride at −78 °C and allowing the reaction mixture to warm slowly to room temperature followed by an acidic workup provided access to the two diastereoisomers 10 and 9 in a 70:30 ratio, which were separated by column chromatography providing the products in 56% (10) and 18% (9) isolated yields (Scheme 4).

The stereochemistry of each isomer was confirmed by X-ray crystallographic analysis (Fig. 4). The cis-isomer 10 showed two crystallographically independent molecules within the unit cell characterised by slightly different conformations of the cyclohexane ring which formed a hydrogen-bonded closed tetramer of molecules.

Introduction of the trifluoromethyl group was achieved under standard conditions using Ruppert’s reagent in the presence of TBAF, delivering the two diastereomeric products 15 and 16 in a 9:1 ratio as determined by 1H NMR and 19F NMR spectroscopy (Scheme 5). Although a small amount of the major diastereomer was purified by column chromatography, efficient separation of 15 and 16 could not be achieved due to their similar affinities to silica, and the mixture of diastereomers was isolated in 81% yield. X-Ray crystallography showed the major diastereoisomer from this transformation to be the trans-isomer 15 where the trifluoromethyl group had been introduced in an axial position.

The complete reversal of cis/trans selectivity when compared to methyl analogues 9 and 10 is likely due to pre-complexation of the approaching nucleophile in the addition of the Grignard reagent, whereas the axial addition of the trifluoromethyl group relieves gauche interactions within the transition state.22–24

Although the cis-diastereoisomer 16 was present within the crude reaction mixture, its isolation proved challenging. We therefore examined alternative synthetic strategies to access this isomer. Initial attempts at using stoichiometric amounts
of the bulky Lewis acid methylaluminium bis(2,6-di-tert-butyl-4-methyl)phenoxide to encourage the equatorial approach of the nucleophile were unsuccessful. In addition, the more sterically demanding trifluoromethylating agent hexafluoroacetone hydrate-1,8-diaza-bicyclo[5.4.0]undec-7-ene salt only returned starting materials. However, 16 was successfully prepared through the sequence outlined in Scheme 6. Trifluoromethylation of the mono-protected cyclohexanedione 26 followed by deprotection and subsequent reductive amination gave the diastereomeric cis- and trans-isomers 16 and 15 in an 80:20 ratio, from which the required cis-isomer 16 could be isolated through purification by column chromatography in a poor but acceptable yield for the three steps (17%). The relative configuration of both the trans- and cis-diastereoisomers 15 and 16 was confirmed through X-ray crystallography (Fig. 5).

Conveniently, the four possible 1,2-isomers 13, 14, 19 and 20 could be prepared and isolated from a common intermediate, greatly simplifying the synthesis of these compounds (Scheme 7). Intermediate 28 was prepared through a two-step literature procedure involving the ring opening of cyclohexene oxide 27 followed by Swern oxidation of the resulting amino-alcohol to give 28 in 39% isolated yield (Scheme 7). Addition of methylmagnesium chloride to 28 at 0 °C gave the cis-amino-alcohol 14 in 89% isolated yield as a single isomer. Single crystal X-ray analysis of the hydrochloride salt of 14 confirmed the relative stereochemistry of this compound (Fig. 6) with the methyl group adopting an equatorial position. Chelation of the Grignard reagent to the carbonyl oxygen and the secondary amine would be expected to deliver the methyl group from an equatorial position, as was observed.

Changing the nucleophile to methyllithium resulted in the formation of both the cis- and trans-products 14 and 13 in a 80:20 ratio (1H NMR analysis of the crude reaction mixture). The isomers were separated by column chromatography, and the 1H NMR spectrum of the minor trans-isomer 13 agreed with the values reported for the product from ring-opening of 1-methylcyclohexene oxide by dibenzylamine. Therefore, the diastereomers 13 and 14 can be accessed as single isomers in good yield via two complimentary routes.

Treatment of 28 with Ruppert’s reagent and TBAF resulted in a 80:20 mixture of the expected products 19 and 20, which were purified by column chromatography and isolated in 58% and 13% yields respectively (Scheme 7). The major diastereomer was shown to be the trans-isomer 19 by single crystal X-ray analysis (Fig. 7), and was supported by the observation of long range splitting of the axial NC-H proton by the trans-CF3 group in the 1H NMR spectrum. This coupling was not observed for the cis-isomer 20.

Having successfully prepared each of the 1,4- and 1,2-isomers our attention moved to the synthesis of the 1,3-substituted amino alcohols 11, 12, 17 and 18. Once again, these could be prepared from a common intermediate (30), which itself was prepared using a bismuth nitrate catalysed conjugate addition of dibenzylamine to cyclohexene 29 (Scheme 8). Isolation of the key intermediate 30 by chromatography proved...
Addition of methylmagnesium chloride to 30 gave a 80:20 diastereomeric mixture of the expected trans-11 and cis-12 products, which were separated by column chromatography and isolated in 80% and 9% yields respectively. The identity of the major trans-isomer 11 was confirmed by single crystal X-ray analysis where the dibenzylamino group adopted an equatorial position (Fig. 8).

Treatment of 30 with Ruppert’s reagent in the presence of TBAF gave a 50:50 mixture of the diastereomeric products 17 and 18, which were separated by column chromatography and isolated in 37% and 41% yields respectively (Scheme 8). The stereochemistry of cis-isomer 18 was deduced by 1H NMR spectroscopy due to its intriguing behaviour in solution. In CDCl$_3$, 18 adopted a conformation (A) where the large dibenzylamino group resided in an axial position due to an intramolecular hydrogen bond, whereas in the H-bonding deuterated solvent CD$_3$OD the amino group adopted the more common equatorial conformation (B) (Fig. 9).

This solvent-dependant conformational change has been observed previously for cis-1,5,5-trimethylcyclohexane-1,3-diol and cis-1,5,5-trimethyl-3-aminocyclohexanol in CDCl$_3$/D$_2$O, but it is impressive that such a bulky dibenzylamino group displays this strong conformational flexionality. The effect can in part be attributed to the size of the trifluoromethyl group, although the fact that the effect is reversed in CD$_3$OD suggests there is a hydrogen-bonding interaction involved (Fig. 9). Interestingly, this is not seen in the methyl analogue 12 which suggests that the trifluoromethyl group plays a pivotal role in the conformation adopted by 18 in solution, presumably by tuning the acidity of the alcohol.30 1H NMR analysis of 18·HCl (in CDCl$_3$) showed the dibenzylamino group in an equatorial position, supporting the proposal that an intramolecular hydrogen bond alters the conformational preference of 18 in non-polar solvents.

This behaviour was further investigated through the preparation of a series of analogues of 18 (Scheme 9). Deprotection of the amine through hydrogenolysis gave the amine 31 (94%) which was acylated under standard conditions to give the amide 32 (69%). Reduction of the amide with borane gave the secondary amine 33 (76%).

The relative stereochemistry of amine 31 was confirmed by single crystal X-ray where the amine substituent adopts an
Axial conformation (Fig. 10). \(^1\)H NMR analysis of 31 showed the NH\(_2\) group adopts an axial conformation in solution in both CDCl\(_3\) and CD\(_3\)OD showing the subtle interplay of sterics and electronics in the benzylated analogue 18. Amide 32 and secondary amine 33 displayed the same conformational behaviour, suggesting that all cis-3-amino-1-trifluoromethylcyclohexanols possessing groups bonded to nitrogen that are less bulky than two benzyl groups are likely to always adopt a conformation with the amino functionality axial. This has interesting implications for adopting these monomers in a drug-discovery setting, where functional group disposition is critical to ligand–receptor interaction. It is entirely feasible that for compounds containing the cis-3-amino-cyclohexan-1-ol motif as exemplified by 12 and 18, axial/equatorial conformation could be controlled through incorporation of either a methyl or a trifluoromethyl group.

Conclusion

The twelve isomers of amino-1-methylcyclohexan-1-ol and amino-1-trifluoromethylcyclohexan-1-ol were successfully prepared in three-steps or fewer from commercially available starting materials. The stereochemistry of each isomer was assigned via a combination of \(^1\)H NMR spectroscopy and single crystal X-ray analysis. An interesting conformational behaviour was observed and investigated for cis-3-amino-1-trifluoromethylcyclohexan-1-ol derivatives, which could have structural implications for molecules containing this motif. This work provides robust routes to the isomers of amino-1-methylcyclohexan-1-ol and amino-1-trifluoromethylcyclohexan-1-ol, which will be of use for introducing 3D shape to drug-like molecules.

Experimental

Materials and methods

All commercial materials were used as received without further purification. THF was dried using a solvent purification system. Flash chromatography was carried out using Merck Kieselgel 60 H silica. Analytical thin layer chromatography was carried out using aluminum-backed plates coated with Merck Kieselgel 60 GF254 that were visualized under UV light (at 254 nm) or stained using KMnO\(_4\). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III or a Bruker Avance spectrometer, operating at 400 MHz (\(^1\)H), 376 MHz (\(^19\)F) and 101 MHz (\(^13\)C). Chemical shifts were reported in parts per million (ppm) in the scale relative to residual solvent signals. Multiplicities are abbreviated as: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; tt, triplet of triplets; pent, pentet; hept, heptet; m, multiplet; br, broad. Coupling constants are measured in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained courtesy of the EPSRC National Mass Spectrometry Facility at Swansea University, U.K.

trans-4-(Dibenzylamino)cyclohexan-1-ol

Cesium carbonate (51.4 g, 158 mmol) was added to a solution of trans-4-aminocyclohexanol (7.9 g, 52.3 mmol) in acetonitrile (150 mL). Benzyl bromide (12.7 mL, 106 mmol) was added and the mixture left to stir at room temperature for 2 days. The crude reaction mixture was filtered, and the solid washed with additional acetonitrile (100 mL). The filtrate was concentrated under reduced pressure, dissolved in dichloromethane (100 mL) and washed with water (3 \(\times\) 50 mL). The organic extract was dried over MgSO\(_4\), filtered and concentrated under reduced pressure to give trans-4-(dibenzylamino)cyclohexan-1-ol as a colourless solid (15.1 g, 98%); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.37 (4H, d, \(J = 7.2\) Hz), 7.29 (4H, ddd, \(J = 7.1, 6.1\) Hz), 7.19–7.24 (2H, m), 3.62 (4H, s), 3.54 (1H, t, \(J = 10.9, 4.3\) Hz), 2.53 (1H, tt, \(J = 11.8, 3.5\) Hz), 1.95–2.04 (2H, m), 1.87–1.94 (2H, m), 1.36–1.61 (1H, br s), 1.36–1.49 (2H, m), 1.12–1.30 (2H, m); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 141.0 (quat C), 128.5 (CH),...
128.3 (CH), 126.8 (CH), 71.0 (CH), 56.9 (CH), 54.1 (CH₂), 35.0 (CH₂), 26.0 (CH₃); HRMS calc. for C₂₀H₂₆O₃N 296.2069 (M⁺ + 1), found 296.2011.

General Procedure 1. Swern oxidation

A solution of DMSO (11.6 mL, 163 mmol) in anhydrous dichloromethane (20 mL) was added drop-wise via a dropping funnel to a cooled solution of oxalyl chloride (6.8 mL, 80.8 mmol) in anhydrous dichloromethane (100 mL) at −78 °C. The reaction mixture was left to stir for an additional 15 minutes following completion of addition, and a solution of trans-4-(dibenzylamino)cyclohexan-1-ol (14.0 g, 47.5 mmol) in anhydrous dichloromethane (50 mL) was added drop-wise via a dropping funnel. Following completion of addition, the reaction mixture was stirred for 30 minutes before triethylamine (46 mL, 328 mmol) in anhydrous dichloromethane (100 mL) was added drop-wise via a dropping funnel. The reaction mixture left to stir overnight at room temperature. The crude reaction mixture was concentrated under reduced pressure, dissolved in petroleum ether : ethyl acetate (3 : 1) to give a colourless solid which was purified by column chromatography on silica (5 : 1 petroleum ether : ethyl acetate) to give 4-oxo-1-(trifluoromethyl)cyclohexan-1-ol (13.9 g, 86%); δ 7.34 (4H, d, J = 7.2 Hz), 7.29–7.36 (8H, m), 7.21–7.26 (2H, m), 2.18–2.33 (2H, m), 1.76–1.89 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 211.1 (quat C), 140.4 (quat C), 128.5 (CH), 128.4 (CH), 127.0 (CH), 126.8 (CH), 126.7 (CH), 69.2 (quat C), 57.2 (CH₂), 38.5 (CH₂), 31.4 (CH₃), 23.5 (CH₃); HRMS calc. for C₂₁H₂₄ONF 310.2165 (M⁺ + 1), found 310.2168. Crystals were grown by slow evaporation of a solution in cyclohexane.

General Procedure 3. Reaction with Ruppert’s reagent

To a solution of 24 (2.0 g, 6.83 mmol) in anhydrous THF (15 mL) cooled to 0 °C, was added trifluoromethyltrimethylsilane (1.2 mL, 8.20 mmol) under a N₂ atmosphere. The mixture was stirred rapidly, and a solution of TBAF (5 mg, cat) in anhydrous THF (1 mL) was added slowly drop-wise. Following completion of addition, the cooling bath was removed and the reaction mixture left to warm to room temperature and stirred until consumption of starting material was apparent by TLC (1.5 h). The reaction mixture was exposed to air, 4 M HCl (aq) solution (10 mL) was added and the reaction mixture left to stir at room temperature until consumption of the siloxy intermediate was apparent by TLC (2 h). The pH was adjusted to 7 by the drop-wise addition of a saturated solution of NaOH, and dichloromethane (30 mL) was added. The mixture was washed with water (3 × 15 mL), dried over MgSO₄, filtered and concentrated under reduced pressure to give the crude product, which was purified by column chromatography on silica (10 : 1 petroleum ether : ethyl acetate) to give a colourless solid as a 9 : 1 trans : cis mixture of diastereomers (2.0 g, 81%). A small amount of pure trans-15 was obtained and used for characterisation purposes; ¹³C NMR (100 MHz, CDCl₃) δ 7.27–7.36 (8H, m), 7.19–7.24 (2H, m), 3.65 (4H, s), 2.73 (1H, pent, J = 6.3 Hz), 2.18 (2H, app dt, J = 10.7, 4.5 Hz), 1.83 (4H, app q, J = 6.7 Hz), 1.52–1.57 (1H, br s), 1.47 (2H, app dt, J = 14.0, 7.0 Hz); ¹⁵N NMR (100 MHz, CDCl₃) δ 140.3 (quat C), 128.6 (CH), 128.3 (CH), 126.9 (CH), 126.8 (quat C, q, J = 283 Hz), 72.4 (quat C, q, J = 30.3 Hz), 55.3 (CH), 53.9 (CH₂), 29.9 (CH₂), 23.5 (CH₃); ¹⁵⁷F{¹H} NMR (376 MHz, CDCl₃) δ −80.1; HRMS calc. for C₂₁H₂₄ONF₃ 364.1883 (M⁺ + 1), found 364.1882; Crystals obtained from cold toluene.

4-Oxo-1-(trifluoromethyl)cyclohexan-1-ol

4-Oxo-1-(trifluoromethyl)cyclohexan-1-ol was prepared using General Procedure 3 (reaction mixture was stirred overnight at rt following addition of 4 M HCl (aq) solution) from 1,4-dioxaspiro[4.5]decan-8-one (2.00 g, 12.8 mmol), trifluoromethyltrimethylsilane (2.08 mL, 14.1 mmol), anhydrous THF (30 mL) and a solution of TBAF (5 mg) in THF (1.0 mL) to give the crude product, which was purified by column chromatography on silica (3 : 1 petroleum ether : ethyl acetate) to give 4-oxo-1-trifluoromethylcyclohexan-1-ol as a colourless solid (1.28 g, 55%); ¹⁹F NMR (400 MHz, d₆-DMSO) δ 3.50 (1H, s), 2.69 (2H, ddd, J = 14.4, 6.4, 6.4 Hz), 2.06–2.27 (6H, m); ¹³C NMR (100 MHz, d₆-DMSO) δ 208.3 (quat C), 127.7 (quat C, q, J = 308 Hz), 71.8 (quat C, q, J = 22 Hz), 35.8 (CH₂), 30.4 (CH₃);
\[^{19}\text{F}[^{1}\text{H}] \] NMR (376 MHz, \(d_2\)-Acetone) \(\delta -93.4\); HRMS calc. for
\(\text{C}_{25}\text{H}_{23}\text{OF}_3\) 310.2165 (M\(^+\), 74\%); \(\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta 7.39\) (4H, d, \(J = 7.2\) Hz), 7.26–7.32 (4H, m), 7.18–7.24 (2H, m), 4.00 (2H, d, \(J = 14.3\) Hz), 3.76 (2H, d, \(J = 14.3\) Hz), 3.31 (1H, dd, \(J = 12.4, 5.7\)), 2.34–2.44 (1H, m), 2.10–2.25 (2H, m), 1.76–2.02 (3H, m), 1.44–1.66 (2H, m); \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta 212.2\) (quat C), 140.8 (quat C), 128.5 (CH), 128.3 (CH), 126.9 (CH), 66.6 (CH), 54.9 (CH\(_2\)), 42.6 (CH\(_3\)), 31.7 (CH\(_3\)), 27.2 (CH\(_3\)), 25.1 (CH\(_3\)); HRMS calc. for \(\text{C}_{29}\text{H}_{24}\text{ON}\) 294.1852 (M\(^+\) + 1), found 294.1852.

cis-2-(Dibenzylamino)-1-methylcyclohexan-1-ol 14

Compound 14 was prepared following General Procedure 2 at a reduced temperature of \(0^\circ\)C, from 28 (0.25 g, 0.85 mmol), anhydrous THF (10 mL) and 3.0 M MeMgCl in THF (0.45 mL, 1.35 mmol), and was isolated as a yellow oil (0.23 g, 89%); \(\text{H}\) NMR (400 MHz, CDCl\(_3\)) 6 7.39 (4H, d, \(J = 7.3\) Hz), 7.30 (4H, \(app\, t, \delta = 7.7\) Hz), 7.22 (2H, \(t, J = 7.3\) Hz), 4.14 (2H, \(d, J = 13.8\) Hz), 3.39 (2H, \(d, J = 13.8\) Hz), 2.29 (1H, dd, \(J = 12.2, 3.4\) Hz), 1.80–1.90 (2H, m), 1.65–1.79 (1H, m), 1.48–1.57 (2H, m), 1.38–1.48 (1H, m), 1.08–1.27 (5H, m); \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta 141.2\) (quat C), 129.0 (CH), 128.2 (CH), 126.7 (CH), 74.3 (quat C), 63.1 (CH), 55.9 (CH\(_2\)), 41.4 (CH\(_3\)), 29.2 (CH\(_3\)), 21.8 (CH\(_3\)), 20.1 (CH\(_3\)); HRMS calc. for \(\text{C}_{29}\text{H}_{28}\text{ON}\) 310.2165 (M\(^+\) + 1), found 310.2166. The HCl salt of 14 was prepared by forming a saturated HCl solution in diethyl ether. Crystals were grown by the slow evaporation of a concentrated solution of the salt 14·HCl in methanol.

trans-2-(Dibenzylamino)-1-methylcyclohexan-1-ol 13 and cis-2-(dibenzylamino)-1-methylcyclohexan-1-ol 14

Compounds 13 and 14 were prepared following General Procedure 2 at a reduced temperature of \(0^\circ\)C, using 28 (0.050 g, 0.17 mmol), dry THF (10 mL) and a 1.6 M solution of MeLi in diethyl ether (0.16 mL, 0.26 mmol) to give the crude products, which were purified by column chromatography on silica (10:1 petroleum ether:ethyl acetate) to give 13 (0.023 g, 44%) which was identical to an authentic sample, followed by 13 as a colourless residue (0.007 g, 13%); \(\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta 7.17–7.46\) (10H, m), 3.85 (2H, d, \(J = 13.7\) Hz), 3.42 (2H, \(d, J = 13.7\) Hz), 2.61 (1H, \(app\, d, J = 10.6\) Hz), 1.84 (2H, \(app\, d, J = 8.8\) Hz), 1.50–1.72 (4H, m), 1.27 (3H, s); HRMS calc. for \(\text{C}_{21}\text{H}_{28}\text{ON}\) 296.2009 (M\(^+\) + 1), found 296.2010.

trans-2-(Dibenzylamino)-1-(trifluoromethyl)cyclohexan-1-ol 19

Compounds 19 and 20 were prepared using General Procedure 2 in which 4 M HCl was added after 3 h, using 28 (0.234 g, 0.80 mmol), trifluoromethyltrimethylsilane (0.14 mL, 0.95 mmol), anhydrous THF (10 mL) and a solution of TBAF (5 mg) in THF (1.0 mL) to give the crude products, which were purified by column chromatography on silica (5:1, followed by 5:2 petroleum ether:ethyl acetate) to give 19 as a colourless solid (0.167 g, 58%); \(\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta 7.26–7.44\) (14.1 mmol), triethylamine (3.92 mL, 28.1 mmol) and anhydrous dichloromethane (30 mL in total) to give the crude product, which was purified by column chromatography on silica (8:1 petroleum ether:ethyl acetate) to give 28 as a light yellow solid (0.93 g, 78%); \(\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta 7.39\) (4H, d, \(J = 7.2\) Hz), 7.26–7.32 (4H, m), 7.18–7.24 (2H, m), 4.00 (2H, d, \(J = 14.3\) Hz), 3.76 (2H, d, \(J = 14.3\) Hz), 3.31 (1H, dd, \(J = 12.4, 5.7\)), 2.34–2.44 (1H, m), 2.10–2.25 (2H, m), 1.76–2.02 (3H, m), 1.44–1.66 (2H, m); \(^{13}\text{C}\) NMR (100 MHz, CDCl\(_3\)) \(\delta 128.5\) (quat C), 129.0 (CH), 128.2 (CH), 126.7 (CH), 74.3 (quat C), 63.1 (CH), 55.9 (CH\(_2\)), 41.4 (CH\(_3\)), 29.2 (CH\(_3\)), 21.8 (CH\(_3\)), 20.1 (CH\(_3\)); HRMS calc. for \(\text{C}_{28}\text{H}_{28}\text{ON}\) 310.2165 (M\(^+\) + 1), found 310.2166.
The filtrate was washed with saturated NaHCO₃ solution (10 mL) and then heated to a solution of cyclohexen-1-one (10 mL, 103 mmol) and triethylamine (10 mL) in THF (20 mL) to give the crude product. Purification was achieved by twice recrystallising from warm petroleum ether to give 30 as colourless crystals (9.7 g, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (4H, d, J = 7.0 Hz), 7.27–7.33 (4H, m), 7.20–7.25 (2H, m), 3.72 (2H, d, J = 14.0 Hz), 3.62 (2H, d, J = 14.0 Hz), 2.95 (1H, app tt, J = 12.2, 3.7 Hz), 2.61–2.69 (1H, m), 2.39–2.49 (1H, m), 2.27–2.36 (1H, m), 2.15–2.27 (1H, m), 1.95–2.13 (2H, m), 1.65–1.78 (1H, m), 1.61–1.69 (1H, br s), 1.33–1.48 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 210.8 (quat C), 140.0 (quat C), 128.5 (CH), 128.4 (CH), 127.1 (CH), 58.2 (CH), 53.8 (CH), 44.3 (CH₃), 41.3 (CH₂), 27.9 (CH₃), 22.6 (CH₃); HRMS calc. for C₂₀H₂₅ONF 364.1883 (M⁺ + 1), found 364.1883.

trans-3-(Dibenzylamino)-1-(trifluoromethyl)cyclohexan-1-ol 17 and cis-3-(dibenzylamino)-1-(trifluoromethyl)cyclohexan-1-ol 18 Compounds 17 and 18 were prepared following General Procedure 3 quenching with 4 M HCl after 2.5 h, from 30 (1.40 g, 4.75 mmol), trifluoromethyltrimethylsilane (0.77 mL, 5.21 mmol), anhydrous THF (20 mL) and a solution of 20 (5 mg) in THF (1.0 mL) to give the crude products, which were purified by column chromatography on silica (3:1 petroleum ether:ethyl acetate) to give 17 as a colourless solid (0.64 g, 37%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (4H, d, J = 7.0 Hz), 7.30 (4H, app tt, J = 7.4 Hz), 7.22 (2H, t, J = 7.4 Hz), 3.62 (2H, br s), 1.89–2.03 (1H, m), 1.89–2.02 (2H, m), 1.42–1.79 (6H, m), 1.27–1.41 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 140.5 (quat C), 128.6 (CH), 128.4 (CH), 126.9 (CH), 126.1 (quat C, q, J = 283 Hz), 74.5 (quat C, q, J = 30.3 Hz), 53.9 (CH₃), 52.3 (CH), 32.1 (CH₂), 29.7 (CH₃), 27.4 (CH₃), 19.7 (CH₃); ¹⁹F¹H NMR (376 MHz, CDCl₃) δ −84.8; HRMS calc. for C₂₁H₂₃ONF 364.1883 (M⁺ + 1), found 364.1885. Followed by 18 as a colourless solid (0.70 g, 41%); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.48 (4H, br s), 7.29–7.36 (4H, m), 7.22–7.29 (6H, m), 3.81 (2H, d, J = 14.3 Hz), 3.76 (2H, d, J = 14.3 Hz), 3.19 (1H, app pent, J = 3.2 Hz), 2.48 (1H, app tt, J = 14.1 Hz), 2.03–2.17 (1H, app d, J = 14.3 Hz), 1.83–1.95 (1H, app d, J = 11.6 Hz), 1.44–1.82 (5H, m); ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.34 (8H, m), 7.17–7.23 (2H, m), 3.68 (2H, d, J = 13.8 Hz), 3.61 (2H, d, J = 13.8 Hz), 2.91 (1H, app tt, J = 10.8, 3.6 Hz), 2.18–2.28 (1H, m), 1.95–2.05 (1H, m), 1.75–1.84 (1H, m), 1.62–1.74 (2H, m), 1.26–1.60 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ 137.3 (quat C), 129.5 (CH), 128.7 (CH), 127.6 (CH), 126.0 (quat C, q, J = 284 Hz), 73.8 (quat C, q, J = 28.7 Hz), 54.9 (CH), 53.2 (CH₂), 51.2 (CH₂), 30.2 (CH₂), 28.3 (CH₂), 16.4 (CH₃); ¹⁹F¹H NMR (376 MHz, CDCl₃) δ −84.4; HRMS calc. for C₂₁H₂₃ONF 364.1883 (M⁺ + 1), found 364.1885.

cis-3-Amino-1-(trifluoromethyl)cyclohexan-1-ol 31 Pearlman’s catalyst (10% palladium hydroxide on carbon, 0.49 g, 5.38 mmol) and 18 (1.96 g, 0.538 mmol) were added to a Schlenk flask which was evacuated and back-filled with N₂. Ethanol (20 mL) was added and the flask evacuated using a diaphragm pump and back-filled with H₂ from a balloon three times. The reaction mixture was left to stir vigorously until
consumption of starting material was apparent by TLC analysis (2 days at room temperature). Ethyl acetate (20 mL) was added, and the mixture passed through a short Celite plug using additional ethyl acetate. The filtrate was concentrated under reduced pressure to give 31 as a light yellow oil, which crystallised upon standing (0.93 g, 93%); 1H NMR (400 MHz, CDCl$_3$) δ 3.35–3.30 (1H, m), 1.86–1.96 (2H, m), 1.79–1.82 (2H, m), 1.74–1.78 (1H, m), 1.64–1.74 (2H, m), 1.53–1.63 (1H, m); 13C NMR (100 MHz, CDCl$_3$) δ 127.5 (quat C, q, J = 283.0 Hz), 74.0 (quat C, q, J = 30.3 Hz), 46.8 (CH), 35.3 (CH$_2$), 32.9 (CH$_2$), 31.2 (CH$_2$), 16.5 (CH$_3$); 19F1H NMR (376 MHz, CDCl$_3$) δ = –85.2; HRMS calc. for C$_{15}$H$_{27}$ONF$_3$ 318.0944 (M$^+$ + 1), found 318.0941.

N-cis-3-Hydroxy-3-(trifluoromethyl)cyclohexyl)-3-(4-methoxyphenyl)propanamide 32

3-(4-Methoxyphenyl)propionic acid (0.79 g, 4.38 mmol) was refluxed in thionyl chloride (0.58 mL, 8.0 mmol) under an atmosphere of N$_2$ for 2 h. Excess thionyl chloride was removed under reduced pressure to give the crude acid chloride, which was used without further purification. In a separate flask, a solution of 31 (0.73 g, 3.99 mmol) and triethylamine (0.61 mL, 4.38 mmol) in anhydrous diethyl ether (20 mL) under a N$_2$ atmosphere was cooled to 0 °C. A solution of the freshly prepared acid chloride in anhydrous ether (2 mL) was added carefully drop-wise and the mixture stirred at room temperature. After completion of addition, the cooling bath was removed and the mixture was heated at reflux overnight. The reaction mixture was cooled to 0 °C and methanol (5 mL) was added slowly, and the mixture was stirred for an additional 30 minutes at room temperature, after which the volatiles were removed under reduced pressure to give the aqueous residue. The aqueous residue was adjusted to pH 10 using 2 M NaOH (aq), and extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO$_4$, filtered and concentrated under reduced pressure to give the crude product, which was purified by column chromatography on silica (3 : 1 dichloromethane : methanol) to give 32 as a light yellow oil (0.68 g, 76%); 1H NMR (400 MHz, CDCl$_3$) δ 7.10 (2H, d, J = 8.8 Hz), 6.83 (2H, d, J = 8.8 Hz), 3.78 (3H, s), 3.65 (1H, app t, J = 6.4 Hz), 3.14 (1H, app pent, J = 3.0 Hz), 2.46–2.77 (4H, m), 1.67–2.03 (7H, m), 1.43–1.65 (4H, m); 13C NMR (100 MHz, CDCl$_3$) δ 158.0 (quat C), 133.7 (quat C), 129.4 (CH), 125.8 (quat C, q, J = 281 Hz), 114.0 (CH), 73.4 (quat C, q, J = 30 Hz), 55.4 (CH$_3$), 53.0 (CH), 47.0 (CH$_2$), 34.5 (CH$_2$), 32.6 (CH$_3$), 31.8 (CH$_3$), 31.3 (CH$_2$), 30.6 (CH$_2$), 15.3 (CH$_3$); 19F1H NMR (376 MHz, CDCl$_3$) δ = –85.2; HRMS calc. for C$_{19}$H$_{25}$ONF$_3$ 332.1832 (M$^+$ + 1), found 332.1836.

Notes and references

