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Abstract 

The opportunistic pathogen Pseudomonas aeruginosa causes chronic lung infection 

in cystic fibrosis patients. The Liverpool Epidemic Strain LESB58 is highly resistant to 

antibiotics, transmissible and associated with increased morbidity and mortality. Its genome 

contains 6 prophages and 5 genomic islands. We constructed a PCR-based signature-tagged 

mutagenesis library of 9,216 LESB58 mutants and screened in a rat model of chronic lung 

infection. A total of 162 mutants were identified as defective for in vivo maintenance, with 

11 STM mutants having insertions in prophage and genomic island genes. Many of these 

mutants showed both diminished virulence and reduced phage production. Transcription 

profiling by qPCR and RNA-Seq suggests that disruption of these prophages has a 

widespread trans-acting effect on the transcriptome. This study demonstrates that temperate 

phages play a pivotal role in the establishment of infection through modulation of bacterial 

host gene expression. 
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Introduction  

Pseudomonas aeruginosa is an opportunistic pathogen responsible for lung disease 

in immunocompromised and cystic fibrosis (CF) patients [1]. The widespread assumption 

that CF patients acquire only unique strains of P. aeruginosa from the environment was 

challenged when molecular typing was used to demonstrate the spread of a beta-lactam-

resistant isolate, now known as the Liverpool Epidemic Strain (LES). The LES was first 

identified in a United Kingdom children's CF unit in 1996 [2] but has since been identified 

in North America [3-5]. Some LES isolates, including fully sequenced isolate LESB58 [6], 

exhibit an unusual phenotype characterized by early overexpression of the cell-density 

dependent quorum sensing (QS) regulon, including virulence-related secreted factors such 

as LasA, elastase and pyocyanin [7-9]. The LES is associated with greater patient morbidity 

and mortality compared to other P. aeruginosa strains [10] and was reported in unexpected 

cases of transmission from CF children to their parents [11, 12]. 

Whole genome sequencing of LESB58 revealed 90% of highly conserved core 

genome material and a unique accessory genome of 455 genes located within prophages 

(PPs) and genomic islands (GIs). Four of the six PPs are absent from the genome of strain 

PAO1 and only two of the five GIs identified in the LES showed similarity to any 

previously identified P. aeruginosa GI [6]. A previous study on LESB58 phage production 

indicated that five of the six PPs are able to produce active phage progeny [6]. These 

phages can be produced spontaneously or following a stress response such as induction 

with antibiotics [13]. The role of PPs in virulence as well as for in vivo initiation and 

maintenance of infection remains poorly understood [6]. 

In this report we build upon these studies to investigate the importance of specific 

genes implicated in in vivo maintenance, especially those found in the accessory genome of 
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LESB58. We performed PCR-based signature-tagged mutagenesis (STM), a negative 

selection technique that allows the identification of genes assumed to be essential in vivo. 

Preliminary results for LESB58 STM and identification of 48 mutants have been published 

previously [6]. Here, we focus on the functional impact of these accessory genome 

mutations with the goal of achieving a better understanding of the role played by mobile 

genetic elements in the maintenance of chronic lung infection among CF patients. Wild 

type strain LESB58 was compared with mutant strains for phenotypic characteristics, phage 

production and transcriptome profiling, demonstrating a clear role for temperate phages in 

the infection process and modulation of bacterial host gene expression. 

 

Results and Discussion 

Identification of LESB58 mutants defective for in vivo maintenance 

A library of 9,216 LESB58 Tn5 insertion mutants was constructed and screened in a 

rat model of chronic lung infection [14, 15] and 162 mutants (affecting 135 genes) were 

identified as defective for in vivo maintenance. Sequencing of flanking genomic DNA was 

used to confirm the insertion site and orientation of the transposon insertion [16]. The 162 

mutants along with their annotation are listed in Supplementary Table 1. The 135 genes 

affected by these mutations were classified into PseudoCAP functional categories 

(pseudomonas.com) [17].  

Among LESB58 STM mutants defective for in vivo maintenance, 12 were found to 

have an insertion in a total of 11 GI or PP gene. Table 1 presents these genes, their 

predicted function and their respective accessory genome element, representing a total of 5 

PPs and 2 GIs. It is well known that GIs and PPs can encode accessory genetic material in 

various human pathogens [6, 18, 19]. This additional genomic DNA may have a major role 
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in spreading genes within and/or among bacterial populations. In the CF lung, P. 

aeruginosa is exposed to an adverse, heterogeneous environment as well as various 

therapeutic regimes and polymicrobial communities [20].  

The biofilm life cycle and virulence of P. aeruginosa strain PAO1 has been shown 

to depend upon filamentous phage Pf4 [21]. LES PPs 2 and 3 (LESφ2, LESφ3) have been 

shown to produce active phage particles in CF sputum [13, 22]. LES phages confer a 

competitive advantage in a rat model of chronic lung infection and may, therefore underpin 

LES prevalence and success [6]. 

 

 

In vivo competitive index analysis of genomic island and prophage mutants  

 To assess the degree of virulence attenuation for 11 GI and PP STM mutants, we 

performed an in vivo competitive index (CI) analysis in the rat model of chronic lung 

infection. After 7 days post infection, lungs were recovered and bacterial enumerations 

performed to determine the proportion of mutant to wild type bacterial cell colony forming 

units (CFUs). The CI for each mutant was calculated and results are represented in Figure 

1. CI values of these STM mutants varied from 0.33 to 0.014, indicating an attenuation of 

virulence of 3- to 71-fold compared to the wild type. In vitro growth curves of each mutant 

were determined and showed no significant difference compared to wild type LESB58 

(data not shown).  

Population fitness studies have shown that temperate phages can regulate host genes 

and increase fitness [23]. The presence of a prophage, can provide additional fitness 

determinants such as protection against invasion by other bacteriophages, increased serum 

resistance, toxins and adhesion factors as well as traits that allow the lysogen to 
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successfully colonize a host [23]. Polylysogeny is frequently considered to be the result of 

an adaptive evolutionary process in which prophages confer fitness and/or virulence 

factors, thus making them important for evolution of both bacterial populations and 

infectious diseases.  

Phage production and characterization of P. aeruginosa strains STM/PALES_08021 

and STM/PALES_13521  

We measured both spontaneous and induced phage production from PP and GI 

STM mutants (Figure 2). As shown in Figure 2A, insertions into 3 genes (PALES_08021, 

PALES_13451 and PALES_13521) resulted in significantly reduced production of 

spontaneous phage particles for LESφ2 and LESφ3 in comparison to wild type LESB58. 

Phage induction using Norfloxacin gave similar results (Figure 2B). 

Representative mutants for each of these two prophages, P. aeruginosa 

STM/PALES_08021 and STM/PALES_13521, were therefore selected for further 

characterization. These mutants had low to intermediate CI values, representing a 3.7 and 

14-fold reduction in in vivo virulence compared to the wild type strain (Figure 1), and 

severely impaired free phage production (Figure 2). In PP2, PALES_08021 encodes a 

protein homologous to DnaC with a predicted function in DNA replication (Table 1) and is 

located in the middle of an operon (Figure 3). The STM/PALES_13521 mutated gene 

encodes a putative phage portal protein (Table 1, Figure 3). STM/PALES_08021 and 

STM/PALES_13521 were characterized further for well-known P. aeruginosa LESB58 

virulence factors including biofilm formation [24], motility [25], heat shock, hydrogen 

peroxydase, haemolysin [26], protease production [27], pyocyanin [28] and pyoverdine 

[29]; no differences were observed between mutants and wild type strains. As no variation 

was observed for typical virulence factors, we performed gene expression profiling for both 
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mutants in comparison with the wild type strain in order to explain their strong defect for in 

vivo maintenance and free phage prodution. 

Transcriptome profiling of the free phage defective mutant P. aeruginosa 

STM/PALES_08021  

As insertion of a transposon may result in polar effects on flanking genes, we 

designed qPCR assays for each gene of the mutated operons encoding PALES_08021 and 

PALES_13521 (Supplementary Table 2). As shown in Figure 4, no polar effect was 

observed on upstream or downstream genes, and there was no significant deviation from 

wild type gene expression levels overall. This suggests that these mutations, through 

alteration of the protein sequence, have trans-acting effects on the transcriptome. Hence, we 

selected the most defective mutant for in vivo maintenance and free phage production, 

STM/PALES_08021, for transcriptome analysis [6, 13]. Sequencing of the PALES_08021 

gene in STM/PALES_08021 was performed and showed that the transposon was 

effectively inserted toward the end of the gene, at nucleotide position 571 (of 788 

nucleotides); the 3.37 kb Tn5tet-gfp transposon insertion does not encode a termination 

codon. While qPCR demonstrated that this mutation does not affect transcription, it is 

likely to have an impact on translation and/or protein function.  

RNA-Seq data analysis led to the identification of 135 genes with significant 

differential expression between the mutant strain and wild type LESB58 (Supplementary 

Table 3), most of which (134) were up-regulated in the mutant. In line with qPCR results, 

none of the genes encoded in the operon of PALES_08021 showed differential expression 

according to RNA-Seq, which validates the transcriptome analysis. Among differentially 

expressed genes, the most significantly enriched functions compared to LESB58 genome 

composition were translation, post-translational modification & degradation; transcription, 
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RNA processing & degradation; and chaperones & heat shock proteins (Figure 5, 

Supplementary Table 3). There were also more differentially expressed genes than expected 

with functions related to cell division, energy metabolism, secreted factors (e.g. toxins, 

enzymes, alginate), chaperones and ATPases. These results suggest a trans-acting effect of 

the mutation in PALES_08021 on the transcriptome and show that a single mutation in PP2 

has the potential to alter central cell functions such as transcription, translation and 

degradation. Among genes up-regulated in STM/PALES_08021, we also identified key 

functions relevant to CF chronic infections, namely antimicrobial susceptibility, quorum 

sensing, and mucoidy (Supplementary Table 3), which will require further investigation.  

Conclusion 

Through screening a library of P. aeruginosa LESB58 STM mutants, we have 

accumulated convincing evidence that PPs and GIs (particularly PP2 and PP3) are 

important for virulence and essential for maintenance in a chronic infection model. In 

particular, insertional mutations into genes of PP2 and PP3 have shown a major impact on 

the production of free phage particles and in vivo maintenance. These findings indicate that 

phages play a role in modulating key bacterial processes. Results presented here may reflect 

a diminished burden on bacterial transcription and translation mechanisms when phage 

production is switched off, which would echo the effect of other viruses on their host cell 

machinery [18].  

This study clearly shows that prophages are not merely sitting in the genome. We 

observed a striking change in the expression of genes implicated in central processes such 

as transcription, translation and degradation due to a single mutation in PP2. Mutant strain 

STM/PLES_08021 also exerts increased expression of previously reported virulence-

related genes [30]. In the wider context of chronic lung infections, this supports the notion 
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that reduced expression of classical virulence factors may be advantageous for persistence, 

and is consistent with the widespread observation that many isolates from CF infections 

carry mutations in reported virulence genes [31]. It is possible that reduced expression in 

prophage-carrying isolates is advantageous through both a diminished burden on 

transcription and translation mechanisms and reduced recognition by the host immune 

system.  

This work provides novel insights into the effect of prophage genes and phage 

particle production on the regulation of global gene expression in P. aeruginosa. Since free 

phages are detectable in CF patient sputum [6] and can be induced using clinically relevant 

antibiotics [13] an understanding of their role in persistent infections is vital and may 

influence future therapeutic interventions. 

 

   Materials and methods 

Ethics statement 

The use of animals for this study was reviewed by the University Laval Committee 

for Animal Care (ULCAC; protocol number is 2011194).  

Bacterial strains, plasmids, media and culture conditions 

P. aeruginosa LESB58 [6] and Escherichia coli were grown in TSB (Tryptic Soy 

Broth, Difco) unless otherwise indicated. When needed, these media were supplemented 

with 1.5% Bacto-agar (Difco), ampicillin (Amp; 100 µg/ml for E. coli DH10B), 

Tetracycline (Tc;10 µg/ml for E. Coli DH10B or 45 µg/ml for P. aeruginosa LESB58 STM 

mutants; Sigma-Aldrich). Cloning of chromosomal DNA was performed using the pTZ18R 

vector (GE Healthcare). Restriction enzymes, T4 DNA ligase and T4 DNA polymerase 

were purchased from New England Biolabs.  
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PCR-based signature-tagged mutagenesis of LESB58 

PCR-based signature-tagged mutagenesis (PCR-STM) is a well-defined method that 

has been used with P. aeruginosa PAO1 and adapted to strain LESB58 [32]. The rat model 

of chronic lung infection was used to screen 9216 mutants in vivo [33]. Disrupted genes 

were identified by Sanger sequencing as previously described [33] and confirmed by 

similarity searches with the P. aeruginosa LESB58 genome database at 

www.pseudomonas.com. 

In vitro and in vivo competitive index 

Agar beads were prepared according to a modified version of a previously described 

method [8]. From overnight cultures of each LESB58 STM mutant and the wild-type strain, 

a fresh culture was grown until an OD600 = 1 was reached. Subsequent steps were as 

described previously [8]. An input ratio of 1(LESB58):1(STM mutant) was used. Six 

animals were originally used for each strain. Due to unsuccessful infection or mortality, the 

experiment was performed a second time for some of the strains. In vitro and in vivo CIs 

were performed according to modified versions of previously described methods [8]. Each 

in vivo and in vitro competition was tested for statistical significance using the Mann-

Whitney test from the GraphPrism Pro 5.0 software. 

Phenotypic analysis of mutant strains 

P. aeruginosa STM/PALES_08021 and STM/PALES_13521 strains were tested for 

biofilm formation, swimming, swarming and twitching motility, heat shock, hydrogen 

peroxydase, haemolysin, pyocyanin, pyoverdine and protease assays as described 

previously [4, 6, 29], and using the LESB58 strain as a control. 
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Spontaneous and induced phage production 

For spontaneous phage production, cultures were grown to an OD of 0.5 (A600nm). 

Phage levels were determined by incubation of cultures for 1 h (no antibiotic) followed by 

1 h recovery in fresh medium. Induced active phage particles were enumerated using 

plaque assays, in which 100 μl of culture supernatant was added to 100 μl of 0.5 (A600nm) P. 

aeruginosa PAO1 (the indicator strain) in 5 ml molten 0.4 % (w/v) Luria agar and poured 

onto L-agar, in triplicate. It was previously demonstrated that plaques visible in this assay 

are produced by prophages 2 and 3 [13]. Phage induction using Norfloxacin was performed 

by adding the antibiotic at the MIC (Norfloxacin, 50μg/ml). 

RNA extraction, cDNA synthesis and qPCR   

Total RNA was extracted from bacterial cultures at mid-log phase having an optical 

density of 0.6-0.8 at 650 nm using the RNeasy Midi Kit (Invitrogen) according to the 

instructions of the supplier. cDNA was synthesized using 1 µg of total RNA as the template 

(Quantitect Reverse Transcription Kit, QIAGEN and random primers, Invitrogen) 

according to the manufacturer’s protocol. Quantitative PCR was performed on the Roche 

Light Cycler 480. Primers used are shown in Supplementary Table 2. Differential gene 

expression between the wild-type and STM mutants was assessed using the Mann-Whitney 

test on GraphPad Prism 5.0.  

Transcriptome profiling 

Total RNA was depleted of rRNA and tRNA using the RiboMinus Kit (Invitrogen). 

Total RNA and mRNA quality were assessed using the Agilent RNA 6000 Pico Kit and the 

BioAnalyzer 2010 (Agilent Technologies). cDNA synthesis was performed using the 

cDNA synthesis system from Roche according to the instructions of the supplier. cDNA 

samples were sent to the genomic platform at the Institut de biologie integrative et des 
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systems (IBIS, Université Laval, Québec, Canada) for transcriptome sequencing using the 

Roche 454 pyrosequencing method on the Genome Sequencer FLX system with Titanium 

chemistry. Data obtained from whole transcriptome sequencing was assembled and 

analysed with Newbler (Roche). Reads were mapped on the P. aeruginosa LESB58 

reference genome available on the Pseudomonas genome database 

(www.pseudomonas.com). Differential gene expression was assessed using the R 

BioConductor package EdgeR [34]. Statistical analysis was based on the negative binomial 

distribution that takes into account the presence of over-dispersion across the samples. 

Three wild type RNA-seq libraries were compared to one mutant library. Raw counts were 

directly used in the R package and normalization of the number of reads between samples 

was done with the quantile-adjusted method. Separate dispersions were estimated for 

individual tags (tagwise dispersion approach). Adjusted p-values according to the method 

of Benjamini and Hochberg [35] were used to select differentially expressed genes 

(adjusted p < 0.01). 
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Figure Legends 

Figure 1. In vivo competitive index of mutant P. aeruginosa LESB58 strains with an 

insertion in a prophage or genomic island.  Mutants were grown in the rat lung in 

competition with wild-type (WT) strain LESB58 for 7 days. Each circle represents the 

survival ratio, or competitive index (CI), of the mutant/WT for a single animal. The 

geometric mean of the CI replicates for a mutant is shown as a solid line and corresponds to 

the CI value indicated on the x axis. All CIs were significantly smaller than 1 (Mann-

Whitney test, p-value < 0.05). 

 

Figure 2. Phage production of strain P. aeruginosa LESB58 and mutant strains. 

Spontaneous (A) and norfloxacin induced (B) phage production was measured to compare 

wild type strain LESB58 and 12 mutants defective for in vivo maintenance with insertions 

in 5 prophages and 2 genomic islands. Phage production in this assay corresponds to 

LESφ2 and LESφ3. Error bars represent standard deviation for 9 replicates. Dotted frames 

indicate the two mutants characterized in this study. A Kruskal-Wallis ANOVA was 

performed by comparing phage production for each mutant to LESB58 (* p < 0.05; ** p < 

0.001)). 

 

Figure 3. Signature-tagged mutagenesis insertions in LESB58 prophages 2 and 3. A. 

STM/PALES_08021, LES prophage 2. B. STM/PALES_13521, LES prophage 3. Grey 

arrows were annotated coding sequences (pseudomonas.com), black arrows represent genes 

of the mutated operon and dotted arrows indicate the location of the mutational insertion.  

 



Ac
ce

pte
d M

an
us

cri
pt

20 

Figure 4. qPCR of selected genes in mutant strains P. aeruginosa STM/PALES-08021 

and STM/PALES_13521. qPCR of the gene harbouring the mutational insertion and 

flanking genes was performed for both mutants compared to wild type strain P. aeruginosa 

LESB58. Housekeeping gene rspL was used as a reference gene. A. Expression levels for 

genes in operon PALES_08011. B. Expression levels for genes in the operon 

PALES_13511. No measurement in mutant strains was significantly different from the wild 

type. 

 

Figure 5. PseudoCAP annotation of differentially expressed genes between mutant 

STM/PALES_08021 and wild type strain P. aeruginosa LESB58. Transcriptome 

sequencing (RNA-Seq) was performed for the PALES_08021 mutant and wild-type 

LESB58. Significant differential gene expression (adjusted p < 0.01) was assessed with 

EdgeR. Fisher’s exact test was used to compare the functional distribution of differentially 

expressed genes with that of the whole genome. Qvalue was used for multiple testing 

correction (* q < 0.05, ** q < 0.01). 
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Tables 

Table1. Annotation of mutant genes located within a prophage or genomic island  

Mutant genea 

Strain 

PAO1 

ortholog 

Mutated gene function 

Accessory 

genome elementb 

PseudoCAP classc 

PALES_06181 PA0622 

Probable bacteriophage 

protein  

LES prophage 1 

Related to phage, transposon, or 

plasmid 

PALES_08021 na 

DNA replication protein 

DnaC 

LES prophage 2 

Hypothetical, unclassified, 

unknown 

PALES_13261 na Hypothetical protein  LES prophage 3 

Hypothetical, unclassified, 

unknown 

PALES_13451 na 

Putative uncharacterized 

protein PflO1_0304 

LES prophage 3 

Hypothetical, unclassified, 

unknown 

PALES_13521 na 

Putative portal protein, 

phage portal 2  

LES prophage 3 

Related to phage, transposon, or 

plasmid  
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PALES_13541 na 

Putative RecA/RadA 

recombinase 

LES prophage 3 

Hypothetical, unclassified, 

unknown 

PALES_25621 na Putative lytic enzyme  LES prophage 5 Membrane  

PALES_30891 na Hypothetical protein  LES GI-4 

Hypothetical, unclassified, 

unknown 

PALES_31041 na 

Propionate catabolism 

operon regulator prpR 

LES GI-4 Putative enzymes 

PALES_41191 PA0727 

Hypothetical protein from 

bacteriophage Pf1  

LES prophage 6 

Related to phage, transposon, or 

plasmid 

PALES_45041 na Hypothetical protein  LES GI-5 

Hypothetical, unclassified, 

unknown 

 

a Identified among 162 signature-tagged mutant strains defective for in vivo maintenance in the rat model of chronic infection 

compared to wild-type strain P. aeruginosa LESB58 

bGI: genomic island 

cPseudomonas aeruginosa Community Annotation Project functional classes
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