Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Friction, nanowear and corrosion properties of electroplated Nickel surfaces after dual implantation of Cr+ and N2+ ions : Influence of the implantation energy of the N2+ ions

Muñoz-García, C and Conde, A and Garcia, I and Fuentes, G.G. and Almandoz, E. and García, J.A. and Rodríguez, R.J. and Qin, Yi (2012) Friction, nanowear and corrosion properties of electroplated Nickel surfaces after dual implantation of Cr+ and N2+ ions : Influence of the implantation energy of the N2+ ions. Surface and Coatings Technology, 210. pp. 46-53. ISSN 0257-8972

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

In this work, dual implantation of Cr+ and N2+ ions on electroplated Ni substrates have been investigated for N2+ implantation energies of 140 keV, 100 keV and 60 keV. The implanted specimens have been analyzed by glow discharge optical emission spectroscopy, X-ray diffraction, nano-indentation, coefficient of friction, nano-wear and potentiodynamic corrosion curves. The properties of the dual implanted samples have been compared to Cr+ or N2+ implanted specimens. The microstructural and mechanical properties of the Ni plates depend on the penetration ranges of the Cr and N atomic profiles obtained after the implantation process. The increase of hardness reduced the coefficient of friction of the samples and the wear rates. Preferential formation of Cr–N over Ni–N compounds has been observed when the Cr and N atomic profiles coexist within the Ni matrix. The potentiodynamic corrosion curves in acidic solutions revealed that the presence of Me–N species is detrimental for the chemical stability of the plates. Both nano-wear and corrosion properties are optimized when a Ni–N sublayer is formed underneath a top Cr–Ni implanted film. This is achieved by tuning the implantation energies of Cr+ and N2+ ions at 140 keV. This bilayer structure could be a suitable treatment for micro-embossing dies for plastic texturing processes.