
1 INTRODUCTION 

Well-maintained structures are more durable. In-
crease in durability decreases the direct economic 
losses (repair, maintenance, reconstruction) and also 
helps to avoid losses for users that may suffer due to 
a structural malfunction. Furthermore, new materi-
als, new construction technologies and new structur-
al systems are increasingly being used in marine in-
dustry; therefore it is necessary to increase 
knowledge about their on-site structural condition 
and integrity. Structural health monitoring (SHM) 
certainly provides satisfactory answers to these re-
quests. 

Reconstruction of the full-field structural defor-
mations, strains and stresses is a key component of 
SHM by utilizing the strain data obtained from a 
network of on-board strain sensors located at various 
sites of a structure (Tessler & Spangler 2005). A 
regularization term which ensures a certain degree of 
smoothness to solve this inverse problem was intro-
duced by Tikhonov & Arsenin (1977) and most of 
the today’s inverse algorithms uses Tikhonov’s regu-
larization (refer to Liu & Lin 1996, Maniatty & Za-
baras 1994, Maniatty et al. 1989, Schnur & Zabaras 
1990 and references therein). However, most of 
these inverse methods are not generally appropriate 
for use in on-board SHM procedures because many 
of these didn’t take into consideration the complexi-
ty of boundary conditions and structural topology. 
Moreover, they mostly require adequately precise 
loading and/or material information, although it 
shouldn’t be the case for a powerful SHM algorithm. 

A new state-of-the art methodology named as in-
verse Finite Element Method (iFEM), which certain-
ly satisfies the necessities of SHM procedure, was 
developed by Tessler & Spangler (2003, 2005). 
iFEM algorithm reconstructs the structural defor-
mations from experimentally measured strains based 
on the minimization of a weighted-least-square func-
tional. Unlike other inverse methods, iFEM method-
ology possesses a general applicability to complex 
structures subjected to complicated boundary condi-
tions in real-time (Tessler & Spangler 2005). iFEM 
framework is precise, powerful and sufficiently fast 
for real-time applications of any type of static and 
dynamic loadings, as well as a wide range of elastic 
materials since only strain-displacement relationship 
is used in the formulation (Gherlone et al. 2012, 
2014).  

The domain of the structural model can be discre-
tized by using beam, frame, or plate and shell in-
verse finite elements in order to perform SHM based 
on iFEM algorithm. In order to monitor truss, beam, 
and frame structures in real-time, Cerracchio et al. 
(2010) and Gherlone et al. (2011, 2012, 2014) de-
veloped a computationally efficient inverse-frame 
finite element based on kinematic assumptions of 
Timoshenko shear-deformation theory. Their numer-
ical and experimental examination of the inverse-
frame finite element indicated the superiority of 
iFEM approach for shape-sensing of three-
dimensional frame structures that are subjected to 
static or/and damped harmonic excitations. Tessler 
and Spangler (2004) used first-order shear defor-
mation theory to develop a three-node inverse shell 
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element (iMIN3) for analyzing arbitrary plate and 
shell structures. The precision of iMIN3 element was 
demonstrated by using experimentally measured 
strain data by Quach et al. (2005) and Vazquez et al. 
(2005). Moreover, Tessler et al. (2012) recently im-
proved iMIN3 element formulation to reconstruct 
deformed shape of plate and shell structures under-
going large displacements. Regarding the application 
of iFEM analysis on engineering structures, it has 
been limited to the SHM of aerospace vehicles 
(Tessler et al. 2011, Gherlone et al. 2013).  

The main and novel aim of this study is to 
demonstrate the applicability of iFEM to SHM of 
marine structures for the first time in the literature. 
The presented iFEM formulation is based on the 
minimization of a weighted-least-square functional 
that uses Mindlin’s first-order plate theory. The nu-
merical implementation of the iFEM methodology is 
done by developing a four-node inverse shell ele-
ment (iQS4) including hierarchical drilling rotation 
degree of freedoms. Various validation and demon-
stration cases are presented including a quadrilateral 
plate subjected to bending force and the fundamental 
problem of a stiffened plate under bending loading 
which represents the portion of the side of a typical 
longitudinally and transversely framed tanker. Ex-
perimentally measured strains are represented by 
strain results obtained from a high-fidelity solution 
using an in-house finite element code. Several types 
of discretization strategies are examined and com-
parisons of the reconstructed iFEM and direct FEM 
displacement solutions are provided. By exploiting 
the weighting constants in the least-square functional 
of iFEM, it is confirmed that a relatively accurate de-
formed structural shape can be reconstructed in the 
absence of in-situ strain data. Finally, the effect of 
sensor locations, number of sensors and the discreti-
zation of the geometry on solution accuracy is ob-
served. 

2 INVERSE SHELL FINITE ELEMENT 
FORMULATION 

2.1 Inverse Quadrilateral Shell Element 

A four-node inverse quadrilateral shell element, la-
beled as iQS4, having six displacement degrees-of-
freedom per node as shown in Figure 1 is developed 
in order to represent the formulation of inverse finite 
element method. The first step is to define conven-
ient coordinate systems to guarantee the geometric 
uniqueness of the assembled inverse finite element 
structure. A local coordinate system xyz is oriented 
with the reference to the element as shown in Figure 
1 to formulate the element stiffness properties. 
 
 

 
 
Figure 1. (a) Quadrilateral inverse shell element, showing glob-
al and local coordinate systems. (b) Nodal degrees of freedom 
in the local coordinate system xyz. 

 
By using global XYZ coordinates of the element 
nodes, transformation matrix of nodal degrees-of-
freedom of an element from the local to global coor-
dinate system can be established for assembling the 
elements. As we assume a flat surface for the ele-
ment, the transformation procedure is straightfor-
ward and the details of how to generate the trans-
formation matrix can be found in Bathe (2006). 
 
 

 
 
Figure 2. (a) Quadrilateral inverse shell element projected onto 
its local xy base plane. (b) Isoparametric coordinates of parent 
element. 

 
According to the local xy base plane projected view 
of the iQS4 element and in terms of usual isopara-
metric coordinates s and t as shown in Figure 2, the 
mapping function of the element can be expressed as 
following: 
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where Ni are the standard bilinear shape functions 
and xi, yi are corner coordinates.  

The degrees-of-freedoms of x and y translations ui 
and vi together with drilling rotation zi, positive 
counter clockwise, at each corner can be used to ex-
press the resulting membrane displacement field u 
and v given as: 
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where Li and Mi are the shape functions consistent 
with ones proposed by Cook (1994) that defines hi-
erarchical drilling rotation degree of freedom. 

Equation 3a, 3b, and 3c express that the bending 
displacement field of the element w, x, and y are 
defined by the degrees-of-freedoms of z translation 
wi and positive counter clockwise rotations around x 
and y axis, xi and yi. Isoparametric shape functions 
Li and Mi used to formulate drilling rotation can be 
utilized to describe the flexural capability of the 
iQS4 element. Hence, mathematical foundation of 
bending action of iQS4 element becomes identical to 
the MIN4 (Mindlin-type, four-nodes) provided by 
Tessler & Hughes (1983). 

4 4 4

1 1 1

( , ) i i i xi i yi

i i i

w x y w N w L M 
  

       (3a) 

4

1

( , )x x i xi

i

x y N  


   (3b) 

4

1

( , )y y i yi

i

x y N  


   (3c) 

The kinematic relations of the element are pre-
scribed according to the assumptions taken in first 
order, shear-deformation theory. Using the Equation 
1 for membrane action and the Equation 2 for bend-
ing action, the three components of the displacement 
vector of any material point within the element can 
be described as: 

( , , )x x yu x y z u u z    (4a) 

( , , )y y xu x y z u v z    (4b) 

( , , )z zu x y z u w   (4c) 

where ux and uy are the average positive in-plane 
displacements and uz is the displacement across the 
shell thickness. For the sake of implementation pur-
poses, nodal displacement vector of the element can 
be stated in compact form by Equation 5. 
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After taking the relevant derivatives of the three 
components of the displacement vector given in 
Equation 4 and utilizing the nodal displacement vec-
tor of element ue, the strain–displacement relations 
of linear elasticity theory can be written in compact 
vector forms as given in Equation 6. It is important 

to mention that zz has no role in the internal work 
due to the plane stress assumption zz=0. 
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In equation 6, the membrane strains associated 
with the stretching of the middle surface are e(ue), 
therefore Bm matrix stands for the derivatives of the 
shape functions associated with the membrane be-
havior. Accordingly, the bending curvatures are 
k(ue), and the transverse shear strains are g(ue) so 
that Bk and Bs matrices are the corresponding deriva-
tives of shape functions used to define bending be-
havior of the element. 

2.2 The reference plane strains and curvatures 
computed from in-situ strain sensors  

Discrete in-situ strain measures obtained from the 
embedded sensors are crucial according to the iFEM 
formulation. Conventional strain rosettes or embed-
ded optical-fiber networks such as Fibre Bragg Grat-
ing (FBG) sensors are promising technology to col-
lect large amount of on-board strain data. In order to 
compute the reference plane strains and curvatures, 
the necessary orientation of the in-situ strain rosettes 
on iQS4 elements’ surface is illustrated in Figure 3.  
 
 

 
 
Figure 3. Discrete surface strains measured at location xi from 
strain rosettes instrumented on top and bottom of iQS4 ele-
ments. 

 
According to Tessler & Spangler (2005), at n dis-
crete locations (xi = xi, yi, ±t) (i = 1,…, n) where the 
surface strains are measured, the reference plane 
strains ei

, and curvatures ki
 that corresponds to the 

membrane strains e(ue) and bending curvatures k(ue) 
given in Equation 6 can respectively be determined 
from the measured surface strains as follows: 
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where the measured surface strains are denoted as 
(xx

+, yy
+, xy

+)i and (xx
-, yy

-, xy
-)i, superscripts ‘+’ 

and ‘-’ represent the top and bottom surface loca-
tions, and the following notation is used ()i = ()x=xi. 

Although, the experimentally measured surface 
strains can be used to compute in-situ membrane 
strains ei

 and bending curvatures ki
, they cannot be 

directly used to calculate in-situ transverse shear 
strains gi

. A smoothing procedure, developed by 
Tessler et. al (1998, 1999), called the Smoothing El-
ement Analysis, enables the first-order derivatives of 
ki

 to be used in computing the transverse shear 
strains gi

. However, in the deformation of thin 
shells, contributions of gi

 are much smaller com-
pared to the bending curvatures ki

. Since the marine 
structures such as ship and offshore structures can be 
modelled by using thin shells, the gi

 contributions 
can be safely omitted in the following formulations. 

2.3 Weighted least-squares functional 

Accounting for the membrane, bending and trans-
verse shear deformations of the individual element, 
the inverse finite element method reconstructs the 
deformed shape by minimizing an element function-
al, namely a weighted least-squares functional 
e(u

e) given in Equation 8a, with respect to the un-
known displacement degrees-of-freedom (Tessler & 
Spangler 2005). The squared norms expressed in 
Equation 8a can be written in the form of the nor-
malized Euclidean norms as given in Equations from 
8b to 8d where Ae represents the area of the element.  
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The weighting constants we, wk, wg in Equation 8a 
are positive valued and stand for individual section 
strains. They control the complete coherence be-
tween theoretical strain components and their exper-
imentally measured values. The weighting constants 
are we = wk = wg = 1 for the squared norms given in 
Equations from 8b to 8d since in-situ strains ei

, ki
, 

and gi
 are assumed to be determined. On the other 

hand, for any case of missing in-situ strain compo-
nent, the corresponding weighting constants can be 
selected as a small positive constant  = 10-4. Equa-
tion 9a restates the squared norm presented in Equa-
tion 8b for an element that has undetermined in-situ 
strain component of ei

. Accordingly, Equation 8c 
can be rewritten as Equation 9b for an element that 
has missing the in-situ strain component of bending 
curvatures ki

. In addition, Equation 8d can be up-
dated by Equation 9c for the lack of the transverse 
shear strains gi

. 
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By virtue of these assumptions, all strain compat-
ibility relations are explicitly satisfied so that Equa-
tion 8a can be minimized with respect to nodal dis-
placement vector as shown in Equation 10. After the 
minimization, the resultant equation is the element 
matrix equation keue = fe where ke is element stiff-
ness matrix, fe is element right-hand-side vector that 
is a function of the measured strain values, and ue is 
the nodal displacement vector of element. 
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Once the element (local) matrix equations are es-
tablished, the element contributions to the global lin-
ear equation system of the discretized structure can 
be performed as follows: 
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where Te is the transformation matrix of nodal de-
grees-of-freedom of an element from the local to 
global coordinate system, K is global stiffness ma-
trix (symmetric and positive definite matrix), U is 
global nodal displacement vector, F is the global 
right-hand-side vector (function of the measured 
strain values), and the script nel stands for total 
number of inverse elements. 

The global stiffness matrix K includes the rigid 
body motion mode of the discretized structure; there-
fore it is a singular matrix. By prescribing problem-
specific displacement boundary conditions, the re-
sulting system of equations can be reduced from 
Equation 11d to the Equation 12a where KR is a pos-
itive definite matrix (always non-singular), and thus 
it is invertible. Solving the Equation 12a in order to 
obtain the global displacement degrees-of-freedoms 
of all nodes UR, is very fast as represented in Equa-
tion 12b because the matrix KR needs to be reversed 
only once because it remains unchanged for a given 
distribution of strain sensors and is independent of 
the measured strain values. 
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However, the right-hand-side vector FR is dependent 
on the discrete surface strain data obtained from in-
situ strain sensors, and hence it needs to be updated 
during any deformation cycle. Finally, the matrix–
vector multiplication KR

-1FR gives rise to the un-
known degrees-of-freedoms vector UR, which pro-
vides the deformed structural shape at any real-time. 

3 NUMERICAL RESULTS 

3.1 Quadrilateral plate 

A quadrilateral plate, whose corner coordinates (in 
meters) are shown in the Figure 4, is considered to 
be analyzed. The plate has a uniform thickness of 15 
mm and it is made of steel having the elastic modu-
lus of 210 GPa and Poissons ratio of 0.3. Left edge 
of the plate is clamped and the upper right corner is 
subjected to a static transverse concentrated loading 
in negative z direction as depicted in Figure 4. 

In the beginning, a linear static direct finite ele-
ment analysis of the plate is performed based on a 
high-fidelity mesh consisting of 625 quadrilateral 
shell elements and possessing 10206 degrees-of-
freedoms by using an in-house finite element code. 
The resulting direct FEM deflection and rotation are 
used as a source for the simulated sensor-strain. In 
other words, the ‘experimental’ strain measurements 
used in the following iFEM case analysis are ob-
tained by means of the direct FEM solution. 
 
 

 
 
Figure 4. Quadrilateral plate and its boundary condition. 

 
Two SHM case studies of the plate are performed 

based on iFEM methodology by using different 
number of strain rosettes and their altered orienta-
tion. The strain rosettes can only be placed on one of 
the bounding surfaces (top or bottom surface) be-
cause the material properties of the plate are sym-
metric with respect to the mid-plane and the result-
ing deformations are due to bending only so that the 
strain distribution should be anti-symmetric with re-
spect to the mid-plane. 
 
 

 
 
Figure 5. Approximate locations of 18 strain rosettes on quadri-
lateral plate discretized by 18 iQS4 elements. 

 

 
 
Figure 6. (a) iFEM total displacement distribution of quadrilat-
eral plate (18 iQS4 elements – 18 strain rosettes). (b) Direct 
FEM total displacement distribution of quadrilateral plate. 

 

 
 
Figure 7. (a) iFEM total rotation distribution of quadrilateral 
plate (18 iQS4 elements – 18 strain rosettes). (b) Direct FEM 
total rotation distribution of quadrilateral plate. 

 



 
In the first example, the quadrilateral plate is uni-

formly discretized by 18 iQS4 elements possessing 
168 degrees-of-freedoms (Figure 5). 18 strain ro-
settes are placed on each element’s top surface at 
centroids as shown in Figure 5. The total displace-
ment and rotation results obtained from iFEM analy-
sis are respectively shown together with the direct 
FEM results in Figure 6-7. According to the distribu-
tions, the error of the maximum displacement and 
rotation obtained from iFEM solution is less than 
0.2% with respect to the direct FEM results.  
 
 

 
 
Figure 8. Approximate locations of 6 strain rosettes on quadri-
lateral plate discretized by 18 iQS4 elements. 

 

 
 
Figure 9. (a) iFEM total displacement distribution of quadrilat-
eral plate (18 iQS4 elements – 6 strain rosettes). (b) Direct 
FEM total displacement distribution of quadrilateral plate. 

 

 
 
Figure 10. (a) iFEM total rotation distribution of quadrilateral 
plate (18 iQS4 elements – 6 strain rosettes). (b) Direct FEM to-
tal rotation distribution of quadrilateral plate. 

 
 
Moreover, the real-time monitoring of the plate is 

performed based on the same mesh, but twelve strain 
rosettes used in the first case study are removed as 
shown in Figure 8 in order to assess the precision of 
iFEM formulation when there are missing in-situ 
strain measurements. After removal of the strain ro-
settes, SHM of the quadrilateral plate is conducted 
by using the strain data obtained from 6 strain ro-
settes only. For an element that does not have any 
sensor strains, its weighting coefficients are set to 
10-4. The total displacement and rotation results ob-

tained from iFEM analysis are respectively com-
pared with direct FEM results as depicted in Figure 
9-10. The iFEM-reconstructed displacement and ro-
tation fields almost identically match the reference 
displacement and rotation fields so that this accuracy 
confirms the robustness of iFEM framework even if 
there are missing in-situ strain measurements. 

3.2 Longitudinally and transversely stiffened plate 

Performing SHM of a longitudinally and transverse-
ly stiffened plate is crucial since ship structures are 
generally consisted of various stiffened plates. In-
verse quadrilateral shell elements are clearly appro-
priate to model these types of structures in order to 
conduct a precise real-time monitoring.  

A stiffened square plate that represents the por-
tion of the side of a typical longitudinally and trans-
versely framed tanker is considered to be solved. 
The plate’s edge length and uniform thickness are 3 
m and 15 mm respectively. Each stiffener has a 
height of 150 mm and uniform thickness of 15 mm. 
The selected material’s elastic modulus is 210 GPa 
with the Poisson’s ratio of 0.3. Right, left, upper, and 
bottom edges of the plate including each stiffener’s 
end edges are clamped. A static uniform transverse 
pressure of 40 kPa is subjected to the bottom surface 
of the plate. Applied boundary conditions and iso-
metric view of the stiffened plate are illustrated in 
Figure 11.  
 
 

 
 
Figure 11. Longitudinally and transversely stiffened plate and 
its applied boundary conditions. 

 
Initially, a direct FEM convergence study of the 

stiffened plate using meshes of quadrilateral shell el-
ements is carried out in order to establish an accurate 
numerical solution. The most refined mesh consisted 
of 5400 square and uniformly distributed elements, 
possessing 36966 degrees-of-freedoms. The results 
of displacement and rotation fields obtained from 
this convergence study are considered as a reference 
source to generate the ‘experimental’ strain meas-
urements (in-situ strain data) used in iFEM analyses. 

Two real-time monitoring scenarios of the stiff-
ened plate are respectively executed by using two 



different iFEM meshes. Although the material prop-
erties of the plate and stiffeners are symmetric with 
respect to the mid-plane, the resulting deformations 
exhibits both stretching and bending actions due to 
the complexity of the structure. Hence, the strain ro-
settes have to be placed on both the top and bottom 
surfaces of structure for this problem. 
 
 

 
 
Figure 12. Approximate locations of 96x2 strain rosettes on 
stiffened plate discretized by 96 iQS4 elements. 

 

 
 
Figure 13. iFEM total displacement distribution of stiffened 
plate (96 iQS4 elements – 96x2 strain rosettes). (b) Direct FEM 
total displacement distribution of stiffened plate. 

 

 
 
Figure 14. iFEM total rotation distribution of stiffened plate (96 
iQS4 elements – 96x2 strain rosettes). (b) Direct FEM total ro-
tation distribution of stiffened plate. 

 
 
Firstly, 96 iQS4 elements (36 of them on the 

plate, 60 of them on the stiffeners) having 1062 de-
grees-of-freedoms are used to generate the iFEM 
mesh of the stiffened plate as shown in Figure 12. 
Strain rosettes are positioned at center of each iQS4 
element attached to the plate while each iQS4 ele-

ment on each stiffener has strain rosettes placed near 
to reverse side of the plate as shown in Figure 12. 
The distribution of reconstructed total displacement 
and rotation are respectively compared with those 
obtained from direct FEM analysis as depicted in 
Figure 13-14. According to the comparisons, the er-
ror of the maximum displacement produced by the 
iFEM solution is approximately 6 % with respect 
FEM maximum displacement and the results are 
graphically agreed quite well. Even though the varia-
tion of rotation results seems slightly dissimilar for 
several locations, the maximum rotation found by 
iFEM analysis is less than 2 % in error compared to 
the FEM maximum rotation. Moreover, the locations 
of maximum and minimum rotations on plate found 
in iFEM and FEM analyses are in good agreement. 
 
 

 
 
Figure 15. Approximate locations of 504x2 strain rosettes on 
stiffened plate discretized by 504 iQS4 elements. 

 

 
 
Figure 16. iFEM total displacement distribution of stiffened 
plate (504 iQS4 elements – 504x2 strain rosettes). (b) Direct 
FEM total displacement distribution of stiffened plate. 

 

 
 
Figure 17. iFEM total rotation distribution of stiffened plate 
(504 iQS4 elements – 504x2 strain rosettes). (b) Direct FEM 
total rotation distribution of stiffened plate. 

 
 



In the second iFEM analysis, the plate is uniform-
ly discretized by using 504 iQS4 elements as illus-
trated in Figure 15 where the approximate locations 
of the in-situ strain rosettes are included in detail as 
well. The total number of strain rosettes count as 
504x2, since each iQS4 element is instrumented 
with a strain rosette on the top and bottom surfaces. 
The distribution of reconstructed total displacement 
and rotation presented in Figure 16-17 confirms the 
high precision of iFEM framework when a finer 
iFEM mesh including more strain rosettes is used.  

4 CONCLUSIONS 

A revised formulation of the inverse Finite Element 
Method (iFEM) is presented. The presented iFEM 
methodology is applicable to perform shape-sensing 
analyses of plate and shell structures by using the 
strain data obtained from randomly distributed sen-
sors on the structure. A four-node inverse shell ele-
ment (iQS4) including hierarchical drilling rotation 
degree of freedoms is formulated to perform numeri-
cal simulations. Application of iFEM to SHM of ma-
rine structures is established by using various types 
of low- and high-fidelity discretization strategies of 
presented problems. The effect of sensor locations, 
number of sensors and the discretization of the ge-
ometry on solution accuracy are pondered. The nu-
merical results have confirmed that it is still possible 
to reconstruct sufficiently accurate deformed struc-
tural shapes, even if a large amount of strain-sensor 
data is not available. According to results, it has 
been agreed that iFEM methodology is promising 
technology for performing an accurate real-time 
monitoring of marine structures. 
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