Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Nucleation and early stages of layer-by-layer growth of metal organic frameworks on surfaces

Summerfield, Alex and Cebula, Izabela and Schröder, Martin and Beton, Peter H. (2015) Nucleation and early stages of layer-by-layer growth of metal organic frameworks on surfaces. Journal of Physical Chemistry C, 119 (41). pp. 23544-23551. ISSN 1932-7447

[img]
Preview
Text (Summerfield-etal-JPCC-2015-Nucleation-and-early-stages-of-layer-by-layer-growth-of-metal)
Summerfield_etal_JPCC_2015_Nucleation_and_early_stages_of_layer_by_layer_growth_of_metal.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB) | Preview

Abstract

High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5-10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface.