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We show that the flexoelectric model of chiral and achiral modulated nematics predicts the com-
pression modulus that is by orders of magnitude lower than the measured values. The descrepancy is
much larger in the chiral modulated nematic phase, in which the measured value of the compression
modulus is of the same order of magnitude as in achiral modulated nematics, even though the heli-
conical pitch is by an order of magnitude larger. The relaxation of a one-constant approximation in
the biaxial elastic model used for chiral modulated nematics does not solve the problem. Therefore,
we propose a new structural model of the modulated nematic phase, which is consistent with the
current experimental evidence and can also explain large compression mudulus: the structure con-
sists of short-range smectic clusters with a 4-fold symmetry and periodicity of 2 molecular distances.
In chiral systems, chiral interactions lead to a helicoidal structure of such clusters.

I. INTRODUCTION

The spontaneous chiral symmetry breaking, particu-
larly if it occurs in systems made of non-chiral molecules,
is an intriguing phenomenon. Until recently it was be-
lieved that chiral self-segregation requires a solid state,
because averaging of molecular interactions over all
molecular positions weakens the chiral discrimination in
liquid. Therefore spontaneous symmetry breaking ob-
served in the nematic phase, the phase with orienta-
tional order and no long-range positional order, created
a lot of interest. At the nematic-nematic phase transi-
tion the ordinary nematic phase, which is homogeneous
in space, transforms into a modulated phase. The lower-
temperature nematic phase is usually a twist-bend ne-
matic (NTB) phase, which is characterized by a helicon-
ical structure with the pitch of only few molecular dis-
tances (8-10 nm) [1–7]. So far the NTB phase was ob-
served only for two types of mesogenic molecules: dimers,
in which two mesogenic units are connected by a linking
group with an odd number of carbon atoms, and for rigid
bent-core molecules. Recent studies addressed the influ-
ence of the molecular chirality on the NTB phase. Sur-
prisingly, for chiral bent dimers, the modulation pitch
is of the order of magnitude larger [8, 9]. Despite the
different pitch, the compression modulus of both chiral
and achiral modulated nematics seems to be of the same
order of magnitude [9].

Theoretically two types of the modulated nematic
phase, the twist-bend (TB) and the splay-bend (SB),
were predicted [10, 11]. Because in the bent-core systems
the splay elastic constant is, in general, larger than the
bend [12–19] and twist elastic constant [20, 21], the twist-
bend structure is expected to be more frequent [11, 22].
For chiral dimers, however, multiple modulated struc-
tures were observed [8]. As a possible driving force for
the formation of the modulated structures the flexoelec-
tric effect was proposed [10, 22], which describes the ap-

pearance of a local electric polarization induced by a non-
homogenous deformation of material. It was shown that
the modulated structures are locally biaxial [22] with a
low biaxial order parameter. So, a uniaxial continuum
model including the flexoelectric terms was used to pre-
dict the structures in achiral modulated nematics [22].
The obtained conditions for the stability of the TB and
SB modulated phases agree with the ones derived from
the continuum theoretical model [11], based on the elas-
tic instability of a system formed by bent molecules, and
Monte Carlo simulations [23]. In chiral systems biaxial-
ity cannot be neglected [24]. A biaxial continuum model
can explain destabilization of the chiral nematic phase
with respect to the formation of the modulated nematic
phase and the appearance of multiple nematic phases [8].

In this paper we show that the flexoelectric effect fails
to explain a huge value of the compression modulus B
measured both in chiral and achiral modulated nematics.
As reported in [9], the value of B in the chiral NTB phase
is of the order of 10 MPa and is by an order of magnitude
larger than in achiral NTB phase. However, in the sam-
ples of achiral material, contrary to the chiral material,
the homeotropic alignment was rather poor, therefore the
actual values of B might be of the same order of magni-
tude. To verify the value of B we have recently performed
additional measurements by AFM. Although the data are
not very accurate, the compression modulus, calculated
according to the DMT model [25] is approximately 10-30
MPa for both the chiral NTB phase and for the smec-
tic phase that appears in a one carbon longer homologue
(the phase diagram was reported in [9]). Considering
B ∼ Kq2, where K is an elastic constant, q = 2π/d and
d is the heliconical pitch, the effective elastic constant in
the chiral NTB should be two to three orders of magni-
tude larger than in the achiral NTB, because the pitch of
the heliconical modulation is 10-times larger in the chi-
ral NTB phase. Inclusion of the flexoelectric terms in the
model leads to the renormalization of elastic constants
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in the modulated nematic phases. However, there is no
physical reason why the renormalization should be or-
ders of magnitude larger in the chiral NTB. In ref. [9] we
predicted that although the values of B obtained from
the model are lower than the measured values, the re-
laxation of a one constant approximation may solve the
problem. Here we show that it does not. In the achiral
case the flexoelectric model predicts the reduction of the
effective elastic constant, not an increase. For the chi-
ral NTB phase large enough effective elastic constant can
be obtained only within a very narrow and unphysical
window of chiral parameters. Therefore, it is an essen-
tial issue to give an alternative idea of the structure of
modulated nematics to remove the discrepancy.
The paper is structured as follows. In the next section

we first present calculation of the compression modulus
of the achiral NTB phase (Sect. II.A) using the uniaxial
model and then the calculation of the compression modu-
lus of the chiral NTB phase (Sect. II.B), using the biaxial
model and abandoning the one-constant approximation.
Based on the huge descrepancy between the theoretically
predicted and measured values of B, we propose a new
structural model of the NTB phase (Sect. III). In the
final section (Sect. IV) we draw the conclusions.

II. COMPRESSION MODULUS OF THE NTB

PHASE

A. Achiral case

First we focus on the uniaxial model, which is used
for achiral nematics. The TB nematic structure (Fig. 1)
is characterized by the heliconical angle θ, local magni-
tude of polarization p0 and the wavenumber of the helical
modulation q. The free energy is expressed in terms of
the local direction of the long molecular axes (director
n) and the local direction of polarization (p), which is
perpendicular to n [22]:
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whereKs, Kt andKb are the splay, twist and bend elastic
constants, respectively. λ and µ are parameters related
to the flexoelectric coefficient and dielectric susceptibil-
ity, respectively. The last term in eq.(1) with the pa-
rameter κ is a gradient term in the order parameter p0p,
characteristic for the modulated nematic phase, assum-
ing that p0 is constant. By using an ansatz for the TB
phase:

n = {cos θ, sin θ cos (qx), sin θ sin (qx)} , (2)

p = {0,− sin (qx), cos (qx)} , (3)

and minimizing the free energy
∫

fdV , where V is the
sample volume, one finds that the TB structure is sta-
ble if µ = cλ2/Kb, with the temperature dependent
dimensionless parameter c < 1. For the TB struc-
ture the splay term in the free energy is zero, and in
the case of Kb = Kt = K simple analytical expres-
sions for θ, q and p0 are obtained, so the free energy
is expressed in terms of θ only. The compression en-
ergy is defined as 1
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Taking q = 2π/8nm (the value measured for CB7CB),
K ∼ 1 pN and the heliconical angle deep in the TB
phase θ = 30 deg [26] we find c = 0.33 and B ∼ 105 Pa,
which is by an order of magnitude lower than the mea-
sured value [9]. Larger values of K will give larger values
of B, but to obtain the measured value of B (≈ 5MPa)
K should be by at least an order of magnitude larger.
Relaxing the one constant approximation we do not ob-
tain a qualitatively different result for B. We are not
aware of measurements of the elastic constants in the
NTB phase, but the model itself gives renormalization
of the elastic constants in the NTB phase. In eq. (4)
K

(

c− cos3 2θ
)

(cos 2θ − c) / cos3 2θ can be considered as
an effective elastic constant (Keff ) and at the parame-
ters given above Keff = 0.3K. In addition, we point out
once again, that the compression modulus measurements
were made using a not-perfectly aligned sample, so the
actual value of B is expected to be even larger.
The expression for B for achiral modulated nematic

has already been calculated in the case of small θ, where
B ∼ Ktq

2θ4 was found [27]. At θ = 16 deg, Kt ∼ 1 pN
and q = 2π/(10.5 nm) they find B of the order of kPa,
which is the same result that we find, if we plug this cone
angle and pitch into Eq. (4). While in [27] the authors
find this value in good agreement with the value of B
estimated from the rheological measurements, such a low
value is several orders of magnitude lower than the value
of B reported in [9]. The recent coarse-grained elastic
model [28, 29] also predicts a rather low B.
Therefore, in the achiral system the problem with the

magnitude of B predicted by the flexoelectric model al-
ready pops up. Next, we show that in the chiral system
the problem becomes acute.

B. Chiral case

To describe structures of modulated nematics made of
chiral molecules, biaxiality has to be considered [24]. In
the biaxial model the free energy density is expressed in
terms of three mutually perpendicular unit vectors n, l,
and m, with n pointing along the average local orienta-
tion of the long molecular axes, l along the molecular kink
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(also the local polarization direction [24]) and m = n× l.
We use the expression for the free energy density for

the nematic phase with the orthorhombic symmetry de-
rived in [30]. The energy can be minimized by assuming
the TB helix axis either in the same direction as the helix
axis in the higher-temperature N* phase or in the direc-
tion perpendicular to it. Since the modulated nematic
phase is found to be optically positive uniaxial at any
temperature, while the chiral nematic phase is optically
negative uniaxial, the helix axis in the TB phase has to be
in the direction perpendicular to the helix axis in the N*
phase. This consideration is further supported by two
observations [8]: (1) The helical pitch tends to diverge
when approaching the NTB phase in the N* phase; (2)
the helical axis is normal to cell surfaces as confirmed by
the selective reflection in the N* state, whereas the mod-
ulated structure is formed along cell surfaces as evidenced
by optically modulated structures in the NTB phase.
We use the same ansatz for the TB structure as be-

fore (eqs.(2) and (3)) and in addition p = l. Out of 12
elastic deformations only 5 are different from zero and
the expression for the free energy density derived in [30]
becomes:
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where ki, i = 1, 2, 3 are chiral parameters and Ki,
i = 4, 5, 6, 7, 10, are elastic constants (the same num-
bering is used as in [30]). We further simplify the free
energy density expression by using a two-constant ap-
proximation (we checked a general solution as well, but
the result is qualitatively the same). The elastic con-
stants in front of the gradient terms in l and m scale
with the biaxial order parameter and are expected to be
much lower than the elastic constants in front of the gra-
dient term of the director n. So we set K6 = K10 = K
and K4 = K5 = K7 = βK , where β << 1 and obtain
the following expression for the free energy density:
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Minimization of the free energy gives that the TB phase
is stable if µ is lower that the critical value µ0

µ0 =
k13 + k23

k13(1− β) + k23(1 + 3β)− 4β

λ2

K
, (7)

where k13 = k1/k3 and k23 = k2/k3. Expressing again µ
with the temperature dependent parameter c as µ = cµ0

the equilibrium values of θ, p0, q and B can be expressed

in terms of c, the chiral parameters and elastic constants:

cos(2θ) = C (k13, k23, β, c) , (8)

q =
k3
K

Q (k13, k23, β, c) , (9)

p0 =
λq sin 2θ

2cµ0

, (10)

B = Kq2B (k13, k23, β, c) , (11)

where C, Q, B are analytical, but very complex expres-
sions depending on k13, k23, β and c. Here we give only
graphs of θ, q and Keff = KB as a function of c at a cho-
sen (unphysical) set of parameters k13, k23 and β, which
give the same orders of magnitude of θ, q and B as ex-
perimentally measured (see Fig. 2).
For the uniaxial N* with the helix in the direction per-

pendicular to the long molecular axis it is straightforward
to find: B∗ = Kq∗2 and q∗ = k3/K. We thus see, that
Q presents a factor by which the helical pitch is changed
and B gives renormalization of the elastic constant K.
From Fig. 2 we see, that one can find such values of
k13, k23 and β that the pitch in the NTB phase is ap-
proximately 10-times lower than in the N* phase and the
effective elastic constant in NTB is two orders of magni-
tude larger than in the N* phase. Such values can be
obtained only by a fine tuning of k1 and k2 which should
both be comparable to k3, but, in fact, they both scale
with β. Since the modulated structure is quite univer-
sal, it is highly unlikely that it would be a result of some
very special values of chiral parameters and restricted to
a small region of rather unphysical values.
We thus propose that one should search for a struc-

tural model beyond the heliconical structure described
by the flexoelectric elastic model and in the next sec-
tion we give one possibility which is consistent with the
current experimental evidence.

III. STRUCTURAL MODEL OF THE NTB

PHASE

The flexoelectric model ignores short range positional
order of the nematic phase. The NMR studies [31, 32]
suggested that short range smectic clusters exist in the
NTB phase. It is also known that for many bent-core
materials such smectic fluctuations (cybotactic groups)
persist in the nematic phase through a wide tempera-
ture range, and thus might influence the elastic energy
of the nematic phase profoundly [33]. It should also be
noticed that in the homologue series of dimers molecules
with a longer spacer have strong tendency to form an-
tiphase (modulated smectic) structures [9]. Doping the
NTB phase with chiral compounds seems to have a non-
monotonic influence on the chiral pitch [9].
Taking into account all these facts, we have to search

for a short helical structure that is driven by steric inter-
actions rather than elastic constant anomaly or flexoelec-
tricity. For the modulated nematic structure with high
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B we propose a structure built of smectic layer fragments
with an anticlinic tilt at the layer boundaries along the
layer normal (Fig. 3a). The neighboring layer fragments
are shifted by half molecular length and mutually rotated
by 90 degrees about the layer normal. Such arrangement
minimizes the excluded volume between the neighbor-
ing clusters. The proposed local structure is additionally
stabilized if molecules adopt a conformation in which
two mesogenic units are not co-planar but form bent-
propeller and each unit by itself forms a bent-propeller
(Fig. 3b) [33]. A slight imbalance of chiral conformations
over planar conformations was proven for some dimer
mosogens [34, 35] also forming the NTB phase [36]. Since
it is experimentally observed that the position of the x-
ray signals does not change at the N* - NTB transition,
only the width of the signals slightly narrows, we sug-
gests that the transition occurs by hindering the rota-
tion of molecules in the clusters. Lowering the temper-
ature within the NTB phase lowers the birefringence of
the phase [26], which indicates the increase of the tilt of
molecules with respect to the local layer normal. The ar-
rangement of the intercalated fragments in the NTB phase
produces the C4 symmetry and therefore the helical pitch
with two molecular distances. For a chiral additive or
for a system made of enantiopure dimers the additional
interactions will modify the short range pitch resulting
in two periodicities: the one coming from steric inter-
actions is incommensurate with the one resulting from
chiral interactions thus larger pitches can be obtained in
such systems, similarly as for the SmC phases with a 3
and 4 layer ”basic” crystallographic unit structures and
much longer ’optical’ helix. For such structures a huge
value of B is a manifestation of the internal short helical
structure.

IV. CONCLUSIONS

To conclude, we have shown that the flexoelectric
model cannot describe the large compression mudulus
of achiral and chiral TB nematics, even if biaxial order
parameter is included and a one-constant approximation
is abandoned. In the chiral case the experimentally ob-
served order of magnitude of the compression modulus
is obtained theoretically only at a very specific range of
the biaxial chiral parameters. This result, together with
some further experimental evidence from the NMR and
X-ray studies, lead us to conclude that internal struc-
ture of nematic TB is driven mainly by steric interac-
tions. We suggest that this short-range modulated smec-
tic structure is the driving force for the formation of the
short-pitch helix also in the TB nematic phase. Qualita-
tively such weakly temperature dependent smectic fluc-
tuations may significantly affect the elastic properties.
Flexoelectric interactions seem to be only a consequence
of the local polarization due to the short helical packing
of molecules and drive the reduction of the helical pitch
in the chiral TB nematic phase compared to the chiral

FIG. 1. (Color online) The twist-bend nematic structure is
characterized by the heliconical angle θ and the wavenumber
of the helical modulation q, which is related to the helical
pitch as 2π/q. The local direction of the long molecular axis
is given by the director n (blue arrow) and the local direction
of polarization by the unit vector p (red arrows), which is per-
pendicular to n. The direction of the twist-bend modulation
is along the x-direction.

FIG. 2. The effective elastic constant (Keff ) in the chiral
NTB as a function of the temperature dependent parameter
c. The insets: The ratio between the helix wavevector in the
chiral NTB (q) and N* phase (q∗) and the helix cone angle (θ)
as a function of c. Parameter values: k13 = 0.82, k23 = 0.87
and β = 0.1.

pitch in the higher-temperature N* phase.
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FIG. 3. (Color online) a) A smectic layer fragment (a cybo-
tactic group) as a basic unit of the modulated nematic phase.
b) Excluded volume is additionally reduced if mesogenic units
have a shape of a bent-propeller.
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