
THE ANTITRIANGULAR FACTORISATION OF SADDLE POINT
MATRICES

J. PESTANA AND A. J. WATHEN

Abstract. Mastronardi and Van Dooren [this journal, 34 (2013) pp. 173–196] recently introduced
the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show
the simplification of this factorisation for saddle point matrices and demonstrate how it represents
the common nullspace method. We show that rank-1 updates to the saddle point matrix can be
easily incorporated into the factorisation and give bounds on the eigenvalues of matrices important
in saddle point theory. We show the relation of this factorisation to constraint preconditioning and
how it transforms but preserves the structure of block diagonal and block triangular preconditioners.

1. Introduction. The antitriangular factorisation proposed by Mastronardi and
Van Dooren [17] converts a symmetric indefinite matrix H ∈ Rp×p into a block anti-
triangular matrix M using orthogonal similarity transforms. The factorisation can be
performed in a backward stable manner and linear systems with the block antitrian-
gular matrix may be efficiently solved. Moreover, the orthogonal similarity transforms
preserve eigenvalues and reveal the inertia of H. Thus, from M one can determine
the triple (n−, n0, n+) of H, where n− is the number of negative eigenvalues, n0 is
the number of zero eigenvalues and n+ is the number of positive eigenvalues.

The antitriangular factorisation takes the form

(1.1) H = QMQT , Q−1 = QT , M =


0 0 0 0
0 0 0 Y T

0 0 X ZT

0 Y Z W


}
n0}
n1}
n2}
n1

,

where n1 = min(n−, n+), n2 = max(n−, n+) − n1, Z ∈ Rn1×n2 , W ∈ Rn1×n1 is
symmetric, X = εLLT ∈ Rn2×n2 is symmetric definite whenever n2 > 0 and Y ∈
Rn1×n1 is nonsingular and antitriangular, so that entries above the main antidiagonal
are zero. Additionally,

ε =

{
1 if n+ > n−
−1 if n− > n+.

The matrix M is strictly antitriangular whenever n2 = 0, 1, i.e., whenever the
number of positive and negative eigenvalues differs by at most one. However, the
“bulge” X increases in dimension as H becomes closer to definite. In the extreme
case that H is symmetric positive (or negative) definite n0 = n1 = 0, i.e., X is itself
a p × p matrix. Accordingly, the antitriangular factorisation is perhaps best suited
to matrices that have a significant number of both positive and negative eigenvalues.
We emphasise, however, its generality for real symmetric matrices.

Saddle point matrices are symmetric and indefinite, so that the antitriangular
factorisation can be applied. These matrices arise in numerous applications [2, Section
2] and have the form

(1.2) A =

[
A BT

B 0

] }
n}
m

,

where A ∈ Rn×n is symmetric (but not necessarily positive definite) and B ∈ Rm×n,
m ≤ n. The matrix A is nonsingular with n positive eigenvalues and m negative

1



eigenvalues when A is positive definite on the nullspace of B and rank(B) = m. We
only consider this most common situation here.

The algorithm for computing an antitriangular factorisation proposed by Mas-
tronardi and Van Dooren is designed to be applicable to all symmetric indefinite
matrices. In this note we show that their algorithm simplifies when applied to saddle
point matrices. An alternative based on a QR factorisation of BT , that is like the
approach applied by Mastronardi and Van Dooren to specific saddle point problems
arising in constrained indefinite least squares [16], gives a different but related anti-
triangular form. Both algorithms are shown to be strongly backward stable but the
optimal algorithm in terms of cost depends on the sizes of m and n.

Low-rank updates of A and B in A, such as those used in quasi-Newton meth-
ods [8], interior point methods [1] or the augmented Lagrangian method [2, Section
3.5], can be efficiently incorporated into an antitriangular factorisation ofA. Addition-
ally, bounds on the eigenvalues of A and the (negative) Schur complement BA−1BT

that depend only on the smaller blocks W , X and Y of the antitriangular matrix can
be obtained.

We show that solving a saddle point system in antitriangular form is equivalent
to applying the nullspace method [2, Section 6][21, Section 15.2]. In other words, the
antitriangular factorisation allows the nullspace method to be represented not just
as a procedure but also as a matrix decomposition, similarly to other well known
methods for solving linear systems like Gaussian elimination.

If the matrix A is large, we may solve the saddle point system by an iterative
method rather than a direct method like the antitriangular factorisation. When pre-
conditioning is required block preconditioners, such as block diagonal, block triangular
and constraint preconditioners, are popular choices for saddle point systems. We show
that the same orthogonal transformation matrix that converts A into an antitrian-
gular matrix can be applied to these preconditioners and that relevant structures are
preserved.

The outline of our manuscript is as follows. The two algorithms are given in
Section 2 where their complexities are also compared. Stability, extensions and low-
rank updates are discussed in Section 3 while the connection to the nullspace method
is outlined in Section 4. We state our eigenvalue bounds in Section 5 and discuss
preconditioners in Section 6. Finally, Section 7 contains our conclusions.

Throughout,we use Matlab notation to denote submatrices. Thus K(q : r, s : t)
is the submatrix of K comprising the intersection of rows q to r with columns s to t.
Also, K(r : −1 : q, s : t) (or K(q : r, t : −1 : s)) represents the submatrix K(q : r, s : t)
with its rows (or columns) in reverse order. The nullspace and range of a matrix K
are denoted by null(K) and range(K), respectively.

2. An antitriangular factorisation of saddle point matrices. We are in-
terested in applying orthogonal transformations to the saddle point matrix A in (1.2)
to obtain the antitriangular matrix (1.1). Since A is nonsingular with n positive
eigenvalues and m negative eigenvalues, in this case the antitriangular matrix has the
specific form

M =

 0 0 Y T

0 X ZT

Y Z W

 }
m}
n−m}
m

,

where Y ∈ Rm×m is antitriangular, X ∈ R(n−m)×(n−m) is symmetric positive definite
and W ∈ Rm×m is symmetric. We note that linear systems with M can be solved

2



with the obvious “antitriangular” substitution (finding the last variable from the first
equation, the second-last variable from the second equation and so forth) twice, with a
solve with the positive definite matrix X (using, for example, a Cholesky factorisation)
in between.

2.1. The algorithm of Mastronardi and Van Dooren. Although it is possi-
ble to compute an antitriangular factorisation of (1.2) by the algorithm of Mastronardi
and Van Dooren, the result is somewhat more involved than necessary since the algo-
rithm simplifies if we first first permute A to

(2.1) Ã = QT
1AQ1 =

[
0 B
BT A

] }
m}
n

, Q1 =

[
0 In
Im 0

]
.

Given the permuted matrix (2.1), the algorithm of Mastronardi and Van Dooren

proceeds outwards from the (1,1) entry of Ã, at each stage updating the antitriangular

factorisation of Ã(1 : k, 1 : k) to give a factorisation of Ã(1 : k + 1, 1 : k + 1).

Accordingly, the first m steps leave Ã = QT
1AQ1 unchanged and the inertia of Ã(1 :

m, 1 : m) is (0,m, 0).
The next stage of the algorithm uses Householder matrices to convert B to an

antitrapezoidal matrix

(2.2) HB = V =
[
V (1) V (2)

]
,

whereH ∈ Rm×m is orthogonal, V (1) ∈ Rm×m is antitriangular and V (2) ∈ Rm×(n−m).
Accordingly, after a further m steps, we obtain

QT
2Q

T
1AQ1Q2 =

[
0 V
V T A

]
, Q2 =

[
HT

In

]
,

and the inertia of the submatrix formed from the first 2m rows and columns of
QT

2Q
T
1AQ1Q2 is (m, 0,m).

If n = m we are finished, although this situation is rare in practice. Otherwise,
we must reduce V to antitriangular form by Givens rotations from the right. Thus,

(2.3) V G = V [G(1) G(2)] = [0 Y T ],

where G ∈ Rn×n, G(1) ∈ Rn×(n−m), Y ∈ Rm×m. It follows from (2.2) that

B
[
G(1) G(2)

]
=
[
0 (Y H)T

]
and that G(1) and G(2) are bases for null(B) and range(BT ), respectively. Thus,
applying

Q3 =

[
Im

G

]
gives the antitriangular form

M1 = QT
1AQ1 =

 0 0 Y T
1

0 X1 ZT
1

Y1 Z1 W1

 , Q1 = Q1Q2Q3 =

[
0 G(1) G(2)

HT 0 0

]
,

where Z1 = (G(2))TAG(1) ∈ Rm×(n−m), W1 = (G(2))TAG(2) ∈ Rm×m is symmetric
and X1 = (G(1))TAG(1) ∈ R(n−m)×(n−m) is symmetric positive definite, since A is

3



Algorithm 1: Antitriangular factorisation of a saddle point matrix by the
algorithm of Mastronardi and Van Dooren.

Input: Saddle point matrix A from (1.2)
Output: Antitriangular matrix M1 and orthogonal matrix Q1 such that

A = Q1M1QT
1

Permute the rows and columns of A as in (2.1)
Compute an upper trapezoidal factorisation of B as in (2.2) by Householder
matrices
Compute the Givens rotations that transform V to antitriangular form
V G = [0 Y T

1 ] as in (2.3)

Set G(1) = G(1 : n, 1 : n−m) and G(2) = G(1 : n, n−m+ 1 : n)

Set X1 = (G(1))TAG(1), Z1 = (G(2))TAG(1) and W1 = (G(2))TAG(2)

Set M1 =

 0 0 Y T
1

0 X1 ZT
1

Y1 Z1 W1

 and Q1 =

[
0 G(1) G(2)

HT 0 0

]

positive definite on the nullspace of B. An algorithm for this procedure is given in
Algorithm 1.

Note that in this case we avoid the more complex case c in the Mastronardi and
Van Dooren algorithm since, although A may not be definite, the positive definite
part of A is automatically obtained in the process of antitriangularising B and BT .
In contrast, applying the algorithm to (1.2) would involve this third case.

2.2. An alternative. By reordering the operations, we obtain an alternative to
Algorithm 1 which instead involves only permutations and a QR factorisation of BT ,

(2.4) BT =
[
U (1) U (2)

]︸ ︷︷ ︸
U

[
R
0

]
,

where U ∈ Rn×n and R ∈ Rm×m. Note that now the columns of U (1) ∈ Rn×m form
an orthonormal basis for range(BT ) while the columns of U (2) form an orthonormal
basis for null(B).

As in the previous algorithm we start from (2.1) but now apply

Q4 =

[
Im 0
0 U

]
to obtain

(2.5) QT
4Q

T
1AQ1Q4 =

 0 RT 0

R Â11 Â12

0 ÂT
12 Â22

 }
m}
m}
n−m

,

where Âij = (U (i))TAU (j), i, j = 1, 2. Note that Â22 = (U (2))TAU (2) is positive
definite, analogously to the Mastronardi and Van Dooren algorithm.

Then all that remains is to permute the last n−m rows and columns so that R is
transformed to an antitriangular matrix that sits in the last m rows. This is achieved

4



by applying

(2.6) Q5 =

[
Im 0

0 Ŝ

]
, Ŝ =

[
0 Sm

In−m 0

]
, Sm =

 1

. .
.

1

 .
The matrix Sm is the m×m reverse identity, which satisfies S−1m = ST

m = Sm.
Combining these steps gives

(2.7) M2 = QT
2AQ2 =

 0 0 Y T
2

0 X2 ZT
2

Y2 Z2 W2

 , Q2 = Q1Q4Q5 =

[
0 U (2) U (1)Sm

Im 0 0

]
,

where Y2 = SmR ∈ Rm×m, Z2 = SmÂ12, W2 = SmÂ11Sm is symmetric and X2 =
Â22 ∈ R(n−m)×(n−m) is symmetric positive definite. We summarise this method in
Algorithm 2.

Algorithm 2: Antitriangular factorisation of a saddle point matrix using the
QR factorisation.

Input: Saddle point matrix A from (1.2)
Output: Antitriangular matrix M2 and orthogonal matrix Q2 such that

A = Q2M2Q2

Permute the rows and columns of A as in (2.1)

Compute the QR factorisation BT = UR

Set U (1) = U(1 : n, 1 : m) and U (2) = U(1 : n,m+ 1 : n)

Compute Â11 = (U (1))TAU (1), Â12 = (U (1))TAU (2) and Â22 = (U (2))TAU (2)

Set Y2 = R(m : −1 : 1, 1 : m), X2 = Â22, Z2 = Â12(m : −1 : 1, 1 : n−m) and
W2 = A11(m : −1 : 1,m : −1 : 1)

Set M2 =

 0 0 Y T
2

0 X2 ZT
2

Y2 Z2 W2

 and Q2 =

[
0 U (2) U (1)(1 : n,m : −1 : 1)
Im 0 0

]

2.3. Complexity of the antitriangular algorithms. Both Algorithms 1 and
2 start from the permuted matrix QT

1AQ1 in (2.1) and convert B and BT to anti-
triangular form. Algorithm 1 achieves this by a two-sided orthogonal transformation
HBG = [0 Y T

1 ], where H gives the intermediate antitrapezoidal form (2.2). Al-

gorithm 2 instead uses the one-sided transformation BUŜ = [0 Y T
2 ]. Thus, the

differences between the algorithms are due to the choice of one-sided or two-sided
transformations and the optimal choice in terms of floating point operations depends
on the ratio of n to m as we now show.

The Mastronardi and Van Dooren algorithm first uses Householder transforms to
convert B to Y and this requires 2m2(n − m/3) flops [6, Section 5.2.1]. If n > m
we must apply n − m sequences of m Givens rotations to convert V to the correct
antitriangular form. Each sequence annihilates an antidiagonal of V and alters m
columns of QT

2Q
T
1AQ1Q2. The total number of flops required to apply these Givens

rotations from the right is

6

n−m∑
j=1

m∑
i=1

(n+m− i+ 1) ≈ 6n2m− 3nm2 − 3m3.

5



Algorithm Dimensions Flops

Algorithm 1

n = m 2m2n− 2
3m

3

m < n < 2m 3n3 − 3mn2 + 8m2n− 20
3 m

3

n = 2m 6mn2 + 2m2n− 20
3 m

3

n > 2m 12n2m− 10m2n+ 16
3 m

3

Algorithm 2 n ≥ m 8mn2 − 2m2n− 2
3m

3

Table 2.1
Complexity of Algorithms 1 and 2.

Although, by exploiting symmetry, we can update V T and A(m + 1 : n, 1 : m)
without additional computations, we must still apply Givens rotations to the rows
of A(m + 1 : n,m + 1;n). The number of operations depends on the size of n −m
compared with the size of m. As the first antidiagonal of V is annihilated, we apply
3(n−m) operations to the rows of A(m+ 1 : n,m+ 1;n), at the second 6(n−m), at
the third 12(n−m) and so on until either we reach the last row of the matrix or we
have applied m sequences of Givens rotations. This requires

3(n−m) + 6(n−m)

r−1∑
j=1

i, r = min{n−m,m}

flops or, to leading order, 3(n − m)3 when n < 2m and 3(n − m)m2 otherwise. If
n > 2m we must apply additional Givens rotations to make V and V T antitriangular
at a cost of 6m(n−m)(n− 2m) flops. The total flop counts for these different cases
are given in Table 2.1.

The cost of Algorithm 2, which involves only the QR factorisation of BT and the
formation of UTAU can also be determined. The QR decomposition of BT requires
2m2(n−m/3) flops if Householder transformations are used. Then UTA can be com-
puted in approximately 2mn(2n−m) flops [6, Section 5.1.6] and similarly for (UTA)U .
Thus, the total cost of computing the antitriangular factorisation by Algorithm 2 is
approximately 8mn2 − 2m2(n+m/3) flops.

From this comparison it is clear that the optimal algorithm depends on the size
of m, the number of constraints, relative to the number of primal variables n. If m is
almost as large as n Algorithm 2 is favourable while Algorithm 1 is better when m is
small relative to n.

Unless otherwise stated, we concentrate on the QR-variant (Algorithm 2) in the
remainder of this manuscript for ease of exposition, but the same analysis could
easily be applied to the antitriangular matrix from Algorithm 1. We additionally
drop subscripts on the matrices M Q, W , X, Y and Z.

3. Properties of the antitriangular decomposition. In this section we dis-
cuss properties of the antitriangular decomposition of saddle point matrices, including
stability, extensions and low-rank modifications.

3.1. Stability. Algorithms 1 and 2 are not only backward stable (provided the
QR decomposition in Algorithm 2 is computed in a backward stable manner) but are
strongly stable, in the sense of Sun [25], i.e., the computed matrices Q andM satisfy[

A+ ∆A BT + ∆BT

B + ∆B 0

]
= QMQT ,

6



where ‖∆A‖2/‖A‖2 = O(εm), ‖∆B‖2/‖B‖2 = O(εm), ‖∆BT ‖2/‖BT ‖2 = O(εm)
and εm is machine precision. To prove this we first note that the antitriangular
decomposition comprises two parts: the antitriangular factorisation of B and BT , and
the multiplication of A by orthogonal matrices. The factorisation of B and BT by
either Algorithm 1 or 2 is backward stable and the computed matrices Ḡ and Ū satisfy
‖Ḡ−G‖2 = O(εm) and ‖Ū−U‖2 = O(εm), for some orthogonal G and U ; this is proved
in a similar way to the QR factorisation results in the book by Higham [9, Chapter 19].
Additionally, multiplication by an orthogonal matrix is backward stable [9, Section
3.5]. Consequently, neither algorithm should have problems with breakdown but if B
is numerically rank deficient then Y will be as well, as expected.

3.2. Extensions. Although we consider only real matrices, since this is the most
prevalent case in practice, the extension of Algorithms 1 and 2 to complex Hermitian
matrices is trivial if we apply unitary matrices instead of orthogonal ones.

We can also find a factorisation of non-Hermitian matrices, such as block complex
symmetric matrices, i.e., matrices of the form (1.2) but with A ∈ Cn×n, A = AT

and B ∈ Cm×n. Such matrices arise in, for example, electrical networks [2, page
5][11][15]. In this setting Q is complex, but the complex symmetry is preserved,
i.e., the resulting antitriangular matrix is complex symmetric. It no longer makes
sense to discuss inertia, since the eigenvalues of A may be complex. Moreover, these
eigenvalues are not preserved byM, since QT 6= Q−1. However, solving systems with
this matrix are straightforward and the process is equivalent to a nullspace method,
such as that employed by Mahawar and Sarin [15].

3.3. Updating the antitriangular factorisation. Mastronardi and Van Dooren
showed that the antitriangular factorisation can be efficiently updated when a rank-1
modification is applied. These updates can be somewhat involved when applied to a
general symmetric matrix but the procedure simplifies for saddle point matrices. We
discuss some relevant modifications here.

If A is ill-conditioned or singular it may be desirable to apply the augmented
Lagrangian approach in which we replace (4.1) by [2, Section 3.5]

(3.1) AALx =

[
A+BTEB BT

B 0

] [
u
p

]
=

[
f +BTEg

g

]
,

where E ∈ Rm×m is symmetric positive definite. Updating the antitriangular factori-
sation in this case is straightforward, since BTEB is orthogonal to null(B). Thus,
given the antitriangular factorisation (2.7) of A = QMQT , the antitriangular factori-
sation of AAL is AAL = QMALQT , where

MAL =

 0 0 Y T

0 X ZT

Y Z W + Y EY T

 .
The idea can be extended to more general symmetric positive semidefinite updates
F ∈ Rn×n to A. If

AF =

[
A+ F BT

B 0

]
then the antitriangular factorisation of AF is AF = QMFQT , where

MF =

 0 0 Y T

0 XF ZT
F

Y ZF WF

 ,
7



withXF = X+(U (2))TFU (2), ZF = Z+Sm(U (1))TFU (2) andWF = W+Sm(U (1))TFU (1)Sm.
If F is low-rank then the updates to W , X and Z can be cheaply computed.

When a sequence of saddle point matrices are solved, as in the quasi-Newton
method, or in interior point methods, it may be necessary to update B and BT as
well as A. If the updates have special structure the antitriangular factorisation can
be updated by low-rank approximations as in Griewank, Walther and Korzec [8]. In
the generic case, however, we require a low-rank update of the antitriangular fac-
torisations of B and BT , which can be obtained by extending the rank-one update
procedure described in Mastronardi and Van Dooren [17] or by using an updated
QR-factorisation. Since both approaches are similar, we describe the QR approach
here.

We consider the updated matrix

AUP = A+ uvT + vuT =

[
A (B + u1v

T
1 )T

(B + u1v
T
1 ) 0

]
,

where u = [0 u1]T , v = [v1 0]T , u1 ∈ Rm×1 and v1 ∈ Rn×1. If BT = UR̂,

R̂ = [RT 0]T , is the QR decomposition of BT then a QR decomposition of BT +v1u
T
1

is [6, Section 12.5.1]

BT + v1u
T
1 = UUP R̂UP =

[
U

(1)
UP U

(2)
UP

] [
RUP

0

]
,

where UUP = UJ ∈ Rn×n, U
(1)
UP ∈ Rn×m and J is orthogonal. Since

Q5QT (A+ uvT + vuT )QQT
5 =

[
0 (R̂+ UT v1u

T
1 )T

R̂+ UT v1u
T
1 UTAU

]

then with

Q6 =

[
Im 0
0 J

]
we have that

QT
6Q5QT (A+ uvT + vuT )QQT

5Q6 =

 0 RT
UP 0

RUP (ÂUP )11 (ÂUP )12
0 (ÂUP )21 (ÂUP )22

 ,
where (ÂUP )ij = (U

(i)
UP )TA(U

(j)
UP ), j = 1, 2.

Finally, applying Q5 as in Algorithm 2 gives the antitriangular form:

QT
UPQT (A+ uvT + vuT )QQUP =

 0 0 Y T
UP

0 XUP ZT
UP

YUP ZUP WUP

 ,
where QUP = QT

5Q6Q5, WUP = Sm(ÂUP )11Sm, XUP = (ÂUP )22 and ZUP =

Sm(ÂUP )12.
The computational cost associated with the update arises from the application of

J , a composition of Givens rotations, to M and u1v
T
1 .

8



4. Comparison with the nullspace method. The range space method for
solving

(4.1) Ax =

[
A BT

B 0

] [
u
p

]
=

[
f
g

]
is applicable when A is invertible and is related to a block LDLT decomposition [2,
Section 5] since

A =

[
In 0

BA−1 Im

] [
A 0
0 −BA−1BT

] [
In A−1BT

0 Im

]
.

The matrix factorisation representation of the nullspace method is the antitriangular
factorisation, as we now show.

Given a basis for the nullspace1 of B, such as U (2), and a particular solution û of
Bu = g the nullspace method proceeds as follows [2, Section 6][21, Section 15.2]:

1. Solve (U (2))TAU (2)v = (U (2))T (f −Aû);
2. Set u∗ = U (2)v + û;
3. Solve BBT p∗ = B(f −Au∗),

then (u∗, p∗) solves (4.1).
On the other hand, applying the antitriangularisation (2.7) to (4.1) gives

(QTAQ)y =My = (QT b), y = QTx

or  0 0 Y T

0 X ZT

Y Z W

y1y2
y3

 =

 g
(U (2))T f
S(U (1))T f

 .
To recover u and p we must solve

Y T y3 = g(4.2a)

Xy2 + ZT y3 = (U (2))T f(4.2b)

Y y1 + Zy2 +Wy3 = S(U (1))T f,(4.2c)

using the antitriangular substitution described in Section 2. This is equivalent to
applying the inverse of M, which has upper block antitriangular structure, that is,

(4.3) M−1 =

 Y −1(ZX−1ZT −W )Y −T −Y −1ZX−1 Y −1

−X−1ZTY −T X−1 0
Y −T 0 0

 }
m}
n−m}
m

.

Having obtained y, we recover u and p from

(4.4)

[
u
p

]
= Qy =

[
U (2)y2 + U (1)Smy3

y1

]
.

We now show that solving (4.2a)–(4.2c) is equivalent to applying the nullspace
method. From (4.2a), since Y = SmR and BT = U (1)R,

RT (U (1))TU (1)Smy3 = B(U (1)Smy3) = g,

1Note that any basis of the nullspace of B in general would be sufficient but we use U(2) here as
this common choice corresponds to the antitriangular factorisation.

9



so that û = U (1)Smy3 is a particular solution of Bu = g.
Since X = Â22 and Z = SÂ12, where Âij = (U (i))TAU (j), i, j = 1, 2 as before,

we have from (4.2b) that

(U (2))TAU (2)y2 = (U (2))T (f −Aû).

Substituting for û and W = SÂ11S in (4.2c) then gives that

Rp = (U (1))T [f −A(U (2)y2 + û)]

RTRp = (U (1)R)T [f −A(U (2)y2 + û)]

BBT p = B(f −Au∗),

where u∗ = U (2)y2 + û.
Thus, solving a system with the antitriangular factorisation is equivalent to ap-

plying the nullspace method with the QR nullspace basis and with û = U (1)Smy3.
From (4.4) we then have that u = u∗ = U (2)y2 + û and p = y1.

Note that no antitriangular solves are required in the nullspace method, even
though we are solving a linear system with a block antitriangular matrix. This is
because the permutation matrix Sm that transforms the upper triangular matrix R
to antitriangular form occurs as S2

m = I in (4.2a) and can be eliminated from (4.2c).
We have seen that the antitriangular factorisation allows us to view the nullspace

method as a factorisation rather than as a procedure, similarly to other direct solvers
such as Gaussian elimination, which can be written as the product of structured
matrices. This idea could of course be generalised to other factorisations with different
representations of the nullspace.

5. Eigenvalue bounds. Of interest when solving saddle point systems are the
eigenvalues of A and the (negative) Schur complement BA−1BT when it exists, i.e.,
when A is invertible. Since the Schur complement involves the inverse of the n × n
matrix A, its eigenvalues can be particularly difficult to approximate. Here we give
bounds for the eigenvalues of both matrices that depend only on the eigenvalues of
X and W and the singular values of Y .

Since

M̂ =

[
X ZT

Z W

]
=

[
(U (2))T

Sm(U (1))T

]
A
[
U (2)U (1)Sm

]
for Algorithm 22 the eigenvalues of A are identical to those of M̂ . This means that
Cauchy’s interlacing theorem can be used to bound the eigenvalues of A.

Lemma 1. Let λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) be the eigenvalues of A, 0 <
λ1(X) ≤ λ2(X) ≤ · · · ≤ λn−m(X) be the eigenvalues of X and λ1(W ) ≤ λ2(W ) ≤
· · · ≤ λm(W ) be the eigenvalues of W . Then,

λk(A) ≤ λk(X) ≤ λk+m(A), k = 1, . . . , n−m,
λk(A) ≤ λk(W ) ≤ λk+n−m(A), k = 1, . . . ,m.

Proof. The results follow from the similarity of M̂ and A and by applying the
interlacing theorem [10, Theorem 4.3.15] to M̂ using X or W .

2An analogous transform holds for Algorithm 1.

10



Also of interest when A is positive definite are the eigenvalues of BA−1BT . To
bound these we first prove the following lemma.

Lemma 2. Assume that A is positive definite. Let 0 < λ1(W̃ ) ≤ λ2(W̃ ) ≤
· · · ≤ λm(W̃ ) be the eigenvalues of W̃ = Sm(U (1))TA−1U (1)Sm and 0 < λ1(W−1) ≤
λ2(W−1) ≤ · · · ≤ λm(W−1) be the eigenvalues of W−1. Then,

λk(W−1) ≤ λk(W̃ ), k = 1, . . . ,m.

Proof. First note that, for any x 6= 0, the Cauchy-Schwarz inequality gives that
(xTx)2 = (xTA

1
2A−

1
2x)2 ≤ (xTAx)(xTA−1x) or

xTx

xTAx
≤ xTA−1x

xTx
.

Using this and the orthogonality of Sm and U (1), the Courant-Fischer theorem [10,
page 180] gives

λk(W−1) = min
dim(S)=k

max
x∈S
x 6=0

xTSm((U (1))TAU (1))−1Smx

xTST
mSmx

= min
dim(S)=k

max
y∈S
y 6=0

yT (U (1))TU (1)y

yT (U (1))TAU (1)y

≤ min
dim(S)=k

max
y∈S
y 6=0

yT (U (1))TA−1U (1)y

yT (U (1))TU (1)y

= min
dim(S)=k

max
z∈S
z 6=0

zTSm(U (1))TA−1U (1)Smz

zT z
= λk(W̃ ).

Lemma (2) can be used to bound the eigenvalues of BA−1BT as follows.

Corollary 3. Let 0 < λ1(W−1) ≤ λ2(W−1) ≤ · · · ≤ λm(W−1) be the eigen-
values of W−1 and 0 < λ1(BA−1BT ) ≤ λ2(BA−1BT ) ≤ · · · ≤ λm(BA−1BT ) be the
eigenvalues of BA−1BT . Then,

θkλk(W−1) ≤ λk(BA−1BT ), k = 1, . . . ,m,

where σm(Y )2 ≤ θk ≤ σ1(Y )2.

Proof. From the QR decomposition (2.4) of BT we have that BA−1BT = Y T W̃Y

and so λk(BA−1BT ) = λk(Y T W̃Y ). By Ostrowski’s theorem [10, Theorem 4.5.9], it

follows that λk(Y T W̃Y ) = θkλk(W̃ ). Combining this with the inequality in Lemma 2
gives the result.

Thus, the antitriangular factorisation gives lower bounds on all the eigenvalues
of the Schur complement BA−1BT . In particular, it bounds from below the smallest
eigenvalue, which can be useful when bounding the eigenvalues of A or when approx-
imating inf-sup constants [23]. Note that since Y is antitriangular its singular values
are relatively easy to compute.

11



6. The antitriangular factorisation and preconditioning. When the sad-
dle point system (4.1) is too large to be solved by a direct method an iterative method
such as a Krylov subspace method is usually applied. Unfortunately, however, these
iterative methods typically converge slowly when applied to saddle point problems
unless preconditioners are used. Many preconditioners for saddle point matrices have
been proposed [2, Section 10][3], but we focus here on block preconditioners and show
how they can be factored by the antitriangular factorisation in Section 2. We first dis-
cuss block diagonal and block triangular preconditioners and then describe constraint
preconditioners, showing that in this latter case the same orthogonal transformation
converts A and P to antitriangular form. We assume throughout that A in (4.1) is
factorised in antitriangular form (2.7), i.e., that A = QMQT .

We briefly mention the block diagonal matrix

PD =

[
T 0
0 V

]
,

where T ∈ Rn×n and V ∈ Rm×m are symmetric. Often T is chosen to approximate
A and V to approximate the Schur complement BA−1BT . Indeed, if T = A and
V = BA−1BT then P−1D A has three eigenvalues, 1 and (1±

√
5)/2 [13, 18].

Applying Q in a similarity transform gives

QTPDQ =

V 0 0

0 T̂22 T̂T
12S

0 ST̂12 ST̂11S

 ,
where T̂ij = (U (i))TTU (j), i, j = 1, 2. Thus, the transformed preconditioner is also
block diagonal, with an m×m block followed by an n× n block. Note that since PD

is positive definite, QTPDQ can not have significant block antidiagonal structure.
Similarly, the block lower triangular preconditioner

PT =

[
T 0
B V

]
gives

QTPTQ =

V 0 Y T

0 T̂22 T̂T
12S

0 ST̂12 ST̂11S

 .
The corresponding upper triangular preconditioner has an analogous form.

Constraint preconditioners [12, 14, 19, 20]

(6.1) PC =

[
T BT

B 0

]
,

on the other hand, preserve the constraints of A exactly but replace A by a symmetric
approximation T . Precisely because the constraints are preserved,

(6.2) MC = QTPCQ =

 0 0 Y T

0 T̂22 T̂12S

Y ST̂12 ST̂11S

 ,
12



where T̂ij = UT
i TUj , i, j = 1, 2, is an antitriangular matrix when T̂22 is positive

definite.
It is known that P−1C A has at least 2m unit eigenvalues, with the remainder

being the eigenvalues λ of (U (2))TAU (2)v = λ(U (2))TTU (2)v [12, 14]. (Note that
we could use any basis for the nullspace of B in place of U (2).) Since A is positive
definite on the nullspace of B, any non-unit eigenvalues are real, although negative
eigenvalues will occur when (U (2))TTU (2) is not positive definite. These facts are also
easily discerned from the antitriangular forms. Since P−1C A = QM−1C MQT , which is
similar to M−1C M, explicitly obtaining M−1C as in (4.3) and multiplying by M gives
a block upper triangular matrix from which the eigenvalues are immediately obvious.
Indeed, Keller et al. [12] use a flipped version of (6.2) to investigate the eigenvalues
of P−1C A.

The matrixQTPCQmay be applied using the procedure outlined in Section 4, and
it makes clear the equivalence between constraint preconditioners and the nullspace
method that has previously been observed [7, 14, 22]. Conversely, any matrix N in
antitriangular form with Y = SR defines a constraint preconditioner

PC = QNQT =

[
T B
B 0

]
for A, with

T = U (2)X(U (2))T + U (1)SZ(U (2))T + U (2)ZTS(U (1))T + U (1)SWS(U (1))T .

We note that alternative factorisations of constraint preconditioners, some of
which rely on a basis for the nullspace of B, have also been proposed. In particular,
the Schilders’ factorisation [4, 5, 24] re-orders the variables so that B = [B1 B2], with
B1 ∈ Rm×m nonsingular. In this case

N =

[
−B−11 B2

I

]
is a basis for the nullspace, and is important to the factorisation.

For a true, inertia-revealing antitriangular factorisation T must be positive defi-
nite on the nullspace of B, so that T̂22 is symmetric positive definite. If we are only
interested in preconditioning (and not in the inertia of PC) we only require that T̂22
is invertible.

In summary, we see that applying the same orthogonal similarity transform that
makes A antitriangular to PD, PT and PC results in preconditioners with specific
structures. The antitriangular form of PC makes the equivalence between constraint
preconditioners and the nullspace method clear, reveals the eigenvalues of P−1C A and
may provide other insights into the properties of constraint preconditioners.

7. Conclusions. We have considerably simplified the antitriangular factorisa-
tion for symmetric indefinite matrices of Mastronardi and Van Dooren in the specific
and common case of saddle point matrices. This leads to the observation that this fac-
torisation is equivalent to the well known nullspace method. We have shown that the
factorisation is strongly stable and that low-rank updates to A and B can be efficiently
incorporated into an existing antitriangular factorisation. The blocks X, Z and Y
can be used to obtain bounds on the eigenvalues of A and the Schur complement.
Additionally, we have considered the form of this antitriangular factorisation for pop-
ular constraint preconditioning, block diagonal and block triangular preconditioning,
showing how specific structures are preserved.

13



Acknowledgements The authors would like to thank Gil Strang for inspiring this
work and for valuable suggestions. We are also grateful to David Titley-Peloquin and
the editor and referees for their helpful comments and advice that greatly improved
the manuscript. This publication was based on work supported in part by Award
No KUK-C1-013-04, made by King Abdullah University of Science and Technology
(KAUST).

REFERENCES

[1] S. Bellavia, V. De Simone, D. di Serafino, and B. Morini, Updating constraint precon-
ditioners for KKT systems in quadratic programming via low-rank corrections, ArXiv
e-prints, (2013).

[2] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[3] Michele Benzi and Andrew J. Wathen, Some preconditioning techniques for saddle point
problems, in Model Order Reduction: Theory, Research Aspects and Applications, W. H. A.
Schilders, H. A. van der Vorst, and J. Rommes, eds., vol. 13 of Mathematics in Industry,
Springer-Verlag Berlin Heidelberg, 2008, pp. 195–211.

[4] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wathen, Implicit-factorization
preconditioning and iterative solvers for regularized saddle-point systems, SIAM J. Matrix
Anal. Appl., 28 (2006), pp. 170–189.

[5] H. S. Dollar and A. J. Wathen, Approximate factorization constraint preconditioners for
saddle-point problems, SIAM J. Sci. Comput., 27 (2006), pp. 1555–1572.

[6] G. H. Golub and C. F. van Loan, Matrix Computations, The John Hopkins University Press,
Maryland, USA, third ed., 1996.

[7] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution of equality constrained
quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001),
pp. 1376–1395.

[8] A. Griewank, A. Walther, and M. Korzec, Maintaining factorized KKT systems subject
to rank-one updates of Hessians and Jacobians, Optimization Methods and Software, 22
(2007), pp. 279–295.

[9] N. J. Higham, Accuracy and Sttability of Numerical Agorithms, SIAM, Philadelphia, PA,
second ed., 2002.

[10] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
1990.

[11] V. E. Howle and S. A. Vavasis, An iterative method for solving complex-symmetric systems
arising in electrical power modeling, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1150–
1178.

[12] C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint preconditioning for indefinite
linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.

[13] YU. A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on non-
matching grids, Russ. J. Numer. Anal. Math. Modelling, 10 (1995), pp. 187–211.

[14] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact Newton method for large sparse
equality constrained non-linear programming problems, Numer. Linear Algebr. Appl., 5
(1998), pp. 219–247.

[15] H. Mahawar and V. Sarin, Parallel iterative methods for dense lienar systems in inductance
extraction, Parallel Computing, 29 (2003), pp. 1219–1235.

[16] N. Mastronardi and P. Van Dooren, An algorithm for solving the indefinite least squares
problem with equality constraints, BIT, To appear (2013).

[17] , The antitriangular factorization of symmetric matrices, SIAM J. Matrix Anal. Appl.,
34 (2013), pp. 173–196.

[18] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite
linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.

[19] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization,
Math. Program., 14 (1978), pp. 41–72.

[20] , A projected Lagrangian algorithm and its implementation for sparse nonlinear con-
straints, Math. Program. Stud., 16 (1982), pp. 84–117.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NY, 1999.
[22] I Perugia, V Simoncini, and M Arioli, Linear algebra methods in a mixed approximation of

magnetostatic problems, SIAM J. Sci. Comput., 21 (1999), pp. 1085–1101.

14



[23] J. Pestana and A. J. Wathen, Natural preconditioners for saddle point problems, Tech.
Report 1754, Mathematical Institute, University of Oxford, 2013.

[24] W. H. A. Schilders, A preconditioning technique for indefinite systems arising in electronic
circuit simulation. Talk at the one-day meeting on preconditioning methods for indefinite
linear systems, December 9, 2002.

[25] J.-G. Sun, Structured backward errors for KKT systems, Linear Algebra Appl., 288 (1999),
pp. 75–88.

15


