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Abstract
Highly anisotropic, beam-like neutron emissionwith peak flux of the order of 109 n/sr was obtained
from light nuclei reactions in a pitcher–catcher scenario, by employingMeV ions driven by a sub-
petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a
CR39 nuclear track detector, shows a FWHMdivergence angle of~ 70 , with a peak flux nearly an
order ofmagnitude higher than the isotropic component elsewhere. The observed beamed flux of
neutrons is highly favourable for awide range of applications, and indeed for further transport and
moderation to thermal energies. A systematic study employing various combinations of pitcher–
catchermaterials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit
insufficient cross-section data are available formodelling, the observed anisotropy in the neutrons’
spatial and spectral profiles ismost likely related to the directionality and high energy of the
projectile ions.

1. Introduction

Neutrons providemany opportunities for the probing ofmaterials inways which charged particles and ionising
radiation cannot. In this context an ultrashort, directional burst of neutronswith high flux in theMeV range
would havewide ranging applications. Exciting opportunities for ultrafast studies lie in the area ofmaterials for
fusion energy research due to the growing interest in understanding neutron-induced damage at the atomic
scale [1]. Furthermore, a compact source of pulsed,MeVneutronswould provide novel capabilities for
interrogation of large cargo containers by fast neutron radiography techniques [2, 3], where the nature and
location of the threat can be identified by simultaneouslymeasuring scattered neutrons and time offlight of the
induced gamma radiation.

Significant attention has been paid recently to laser driven sources capable of producing short neutron
bursts, and having potential advantages in terms of cost reduction and compactness, reduction of radioactive
pollution and ability of radiation confinement by close-coupled experiments. Although a different approach
(high energy deuteron-breakup)has recently been reported [4], themost established route to create a laser based
neutron source is by employing laser accelerated ions in either fusion or spallation reactions. Since spallation of
heavy atoms requires high energy projectile ions, reactions based on low atomicmass nuclei, such as protons,
deuterons, lithium ions, are particularly relevant. The neutron yield fromnuclear reactions scales with the
product of the densities of the interacting species and the cross-sectionσ, which formost common reactions
reaches high values at∼MeV centre-of-mass (c-o-m) energy. Producing high fluxes ofMeV ions using intense
lasers is currently a very active area of research.Where a number of emerging ion accelerationmechanisms, such
as radiation pressure acceleration [5] and breakout afterburner [6], hold the promise for producing higher

OPEN ACCESS

RECEIVED

23 September 2015

REVISED

11December 2015

ACCEPTED FOR PUBLICATION

15 February 2016

PUBLISHED

29April 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/5/053002
mailto:s.kar@qub.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/5/053002&domain=pdf&date_stamp=2016-04-29
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/5/053002&domain=pdf&date_stamp=2016-04-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


energy ionswith higher efficiency, target normal sheath acceleration (TNSA) [7] is a well-established and robust
mechanismwhich producesMeV ionswith high flux andnarrow divergence. Such beams can be readily
deployed in a pitcher–catcher setting for neutron generation via nuclear reactions.

In addition to the benefit of high reaction cross-sections, anisotropy in neutron emission is another facet of
beam-nuclear reactions. Simulations [8] show that using severalMeV ions in the abovementioned reaction
involving lowZmaterials yields a neutron flux strongly peaked along the ion beam forward direction, and that
the anisotropy grows furtherwith increase in ion beam energy. A beamed neutron source is highly favourable
not only for the aforementioned range of applications, but also for its further transport and efficientmoderation
to thermal energies, as required for another range of applications [9], including for instance, BoronNeutron
Capture Therapy [10].Whilst some degree of neutron beam anisotropy has been recently reported at low
neutron fluxes [11, 12], here we show, for the first time, direct imaging of a true beam-like neutron emission
with peak flux of the order of 109 n/sr. In particular, a neutron beamwith a FWHMof  70 10( ) and peak flux
of (5± 2)×108 n/sr was captured in nuclear track detectors kept in the proximity of the source. The neutron
beamwas produced by d(p, n+p)1H and d(d,n)3He reactions driven in a beam-catcher scenario, by employing
protons and deuterons from thin deuterated plastic (CD) foils irradiated by sub-petawatt laser pulses.

2. Experimental setup

The experiment was performed using the petawatt armof theVulcan laser at theCentral Laser Facility of STFC,
UK. The linearly polarised laser pulse of 1053 nmwavelength, delivering∼200 J on target after reflection from a
plasmamirror, was focused down to a focal spot of∼6 μmFWHM, providing peak intensity on the target of
~ ´3 1020 Wcm−2. Various targets were irradiated by the laser in order to generate energetic ions via the TNSA
mechanism, namely gold foils (10 mm thick), 98%deuterated polyethylene C D n2 4( ) (henceforth calledCD) foils
with andwithout fewmicrons thickAl foil at the rear side. The ion beamswere diagnosed in the earlier part of
the experiment using a high resolutionThomson Parabola Spectrometer (TPS) [13]with image plate detectors
along the target normal direction, as shown schematically infigure 1. Since traces for ionswith the same charge
tomass ratio overlap in the TPS, we implemented the differential filtering technique described byAlejo et al [14]
in order to extract the deuteron spectra from the diagnostic.∼2 mm thick solid blocks of CD and graphite were
placed∼3 mmbehind the pitcher target (henceforth called catcher) in order to generate neutrons fromnuclear
reactions. The transverse size of the catcherwas large enough to capture the entire ion beam. A full suite of
neutron diagnostics was deployed in order to diagnose the spatial and spectral profiles of the neutrons generated
in different shots. In order to capture the flux profile of the emitted neutrons over a large solid angle, and due to
its low detection efficiency, of the order of 10−4, the CR39 nuclear track detector was placed in close proximity
(7 mm) to the catcher. TheCR39was shielded by 4.5 mm thick lead in order to stop the high energy protons
(up to 50MeV [15]), produced by the pitcher target, from reaching theCR39. The absolute neutron fluxwas
obtained from theCR39 by using the etchingmethod and calibration given by Frenje et al [16]. Absolutely
calibrated BubbleDetector Spectrometers (BDSs) [17] and nuclear activation diagnostics [18]were used, behind
theCR39 and along the ion beam forward direction, at a distance of 10 cm and 50 cm respectively from the
pitcher target. Since the BDS provides absolute neutron flux in six discrete energy intervals within the energy
range from0.01 to 20MeV, it is possible to ascertain theflux ofMeVneutrons generated in the catcher by
discounting the large signal produced by the lower energy, scattered neutrons bouncingwithin the target area
and hitting the detector several times over a period of time. Using 1 mm thick pure indium foils andmeasuring
the decay of 115 In and 116 In, the neutron fluxwas estimatedwithin two energy intervals, namely 0–3MeV and
0.7–15MeV. Six neutron time-of-flight (nToF) detectors consisting of EJ410 plastic scintillators, optically
coupled toXP3330 photomultiplier tubes, were used to provide spectral information at different emission

Figure 1.The experimental set-up showing the in-chamber diagnostics and arrangements of nToF detectors around the chamber.
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angles by the time-of-flightmethod. The detectors were shielded appropriately (typically by 5–10 cmof lead on
every side and 5 cmof plastic all around except the front of the detector) in order to suppress saturation of signal
fromBremsstrahlung radiation and to reduce the noise in the signal due to scattered low energy neutrons
reaching the detector. The angle of observation and distance of each nToF detector is given infigure 1. The nToF
detectors were cross-calibrated [19] against the spectra obtained from the BDS, whichwere absolutely calibrated
by the company[17].

3. Results

As it can be clearly seen infigure 2(a), the CR39 shows a beamed neutron emission from the catcher along the ion
beam forward direction. The (0,0) coordinate in this image represents the ion beam axis, which is near the
bottom right corner of the CR39. For comparison one can see figure 2(c) showing theCR39 from the reference
shot takenwithout the catcher, while keeping everything else the same. Both shots had identical pitcher targets of
10μmCDandmeasured laser energy towithin 1%of each other. As expected, the number of neutrons
generated in the latter case (due to the interaction of ions, electrons and gamma rays produced from the pitcher
target with the surrounding objects, including the lead shielding of theCR39)was not significant and lower than
the detection threshold of theCR39.Neutrons are diagnosed in theCR39 due to the latent tracks created by the
knock-on protons, which are revealed after etching in an alkaline solution. The etched pits produced in the
CR39 can be seen in the zoomed view of theCR39s, shown adjacent to the respective images. Using the
calibration for detection efficiency of CR39 given by Frenje et al [16], the pit density across theCR39was
converted into neutron flux, as plotted infigure 2(e). The horizontal and vertical lineouts of neutron flux across
theCR39, passing through the coordinate (0,0), show an axisymmetric neutron flux profile with a FWHM
divergence of  70 10( ) . The peak neutron flux along the ion beamaxis was estimated as  ´5 2 108( ) n/sr.

In order to identify the dominant nuclear reactions producing the beamed flux of forwardly directed
neutrons, a systematic studywas carried out by varying different pitcher and catchermaterials. As can be seen in
figure 3, the pitcher-only configuration using 10 μmCD target generates a fairly isotropic neutron emission in
4πwith an average flux~ ´5 107 n/sr. This corresponds to a total neutron yield in excess of 108 neutrons (>106

neutrons/Joule), which is in linewith the trend of neutron yield against the incident laser intensity reported in
literature (see figure 4(a)). In this case the neutrons are generated either by the thermonuclear reactions in the
hot dense plasma produced by the laser interaction, or by fusion reactions in the target bulk driven by the ions
accelerated at the laser front surface through ponderomotive processes [28–31].

The isotropic neutron emission frompitcher-only targets, which is commonly observed in experiments as
shown infigure 4(b), is in stark contrast to the forwardly directed, beamed neutronflux obtained in the pitcher–
catcher configuration as shown infigures 3 and 5(a). As can be seen infigure 4(b), our data represents the highest
degree of beam anisotropy observed experimentally with peak flux of the order of 109 n/sr. The order of
magnitude increase in neutronflux along the ion beamaxis (which is the same as the incident laser axis)
observed in this case originates from several different nuclear reactions inside the catcher. Possible reactions
include the interaction of protons, deuterons and carbon ions, produced from the pitcher target by the TNSA
mechanism,with the carbon and deuterium atoms in the catcher.We note that, in contrast with previous results

Figure 2.The neutron beam can be clearly seen in the lower right of theCR39 slide in (a). A close-up of the pits created on theCR39
can be seen in (b), obtained by using a transmissionmicroscopewith 10x zoom,which can be comparedwith the images in (c) and (d),
taken in a shotwithout a catcher target. The laser axis was 1 cmup from the bottomof theCR39, and 1 cm in from the right hand edge.
(e) shows the horizontal and vertical beamprofiles from the scannedCR39 slide, alongwith the neutronflux (between 2.5–10 MeV)
obtained from the nToF and bubble detector data from the same shot.
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at lower laser intensities [11], we report here a significantly higher flux in the pitcher-target configuration than
for pitcher only targets,mainly due to themuchmore efficient TNSA accelerationwith high energy, PWpulses.

Different pitcher–catcher combinations were used in order to unfold the contributions fromdifferent
potential reactions towards the observed beamed flux of neutrons. Firstly, employing a graphite catcher with a
CDpitcher target (CDC) did not produce (in spite of shot-to-shotfluctuations) a significant increase in the
neutron flux or beamanisotropy compared to a pitcher-only target. This suggests an insignificant contribution
beingmadeby the p+C, d+C andC+Creactions in the context of the observedneutronflux in theCDCD
case. Secondly, in order to discriminate between proton and deuteron induced reactions in theCD targets,
several shots were taken by using a CDcatcher in front of a deuterium free ion source (No _ dCD) by using
either 10 μmgold orCH foils as pitcher targets (Au/CHCD), or 10 μmCD foil backed by fewmicrons thick
aluminium foil as pitcher targets (CD+AlCD). Similar neutronfluxes as in theCDCDcasewere observed
in this case (No _ dCD). Since the deuteron and carbon ion spectra produced from the pitcher targets are
similar in terms of number of particles and beam temperature, as shown infigure 6(a), d+C reactions in the
case ofNo _ dCDcan also be assumed to be insignificant. Therefore, themost promising reaction in this case
would be the protondrivenneutron generation via breakupof deuterons (d(p, n+p)1H) in the catcher. This is
expected due to (1) the large number of high energyprotons (∼20MeV)being produced from the pitcher target by
theTNSAmechanism, as shown infigure 6(a), and (2) thehigh cross-section of the d(p, n+p)1H reaction
(although there is a limited amount of data available [32]) as shown infigure 6(b). Since cleaning techniques for
removal of target contaminants (such as laser ablation, resistive heating etc) couldnot be implemented in the
experiment due to setup constraints, itwas also not possible to study the interaction of a proton-free ionbeamwith
CDcatchers.However, by comparing thedata obtained fromNo _ dCDandCDCDcases infigure 3, one
can reasonably assume similar contributions fromd(d,n)3He andd(p, n+p)1H reactions in theCDCDcase.

Figure 3. (a) and (b) show the neutronflux (from2.5 to 10 MeV) along (a) the laser axis (average of the nToF detectors at 2° and 8°)
and (b) off laser axis (average of the nToF detectors at 77°, 139° and 148°) obtained for different pitcher and catchermaterials and
diagnostics.

Figure 4. (a)Graph showing neutron yields frompitcher-only configuration (red circles) usingCD targets reported in literature
(see [12, 20–23]), as cited beside the data points. The red star represents the average neutron yield from10 μmCD target obtained in
our experiment, as shown infigure 3. (b)Graph showing the ratio between on and off axis neutronfluxes reported in literature (see
[11, 12, 21, 24–27]) , as cited beside the data points, with respect to on axis flux obtained in experiments. The data point obtained from
our experiment is labelled as [i], [ii] and [iii]which corresponds to different pitcher and catcher combinations, such asCDCD,Au/
CHCDandCD+AlCD respectively. TheAu/CHCDcase produced the highest degree of beam anisotropy, which is
expected due to the low level of isotropic neutron flux produced from the non-deuterated pitcher targets, as can be seen fromfigure 3.
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Angularly resolved neutron spectra obtained by the six nToF detectors, as shown infigure 5, show the
difference in neutron generation between the cases.While theCD C case produced low energy neutrons
isotropically, similar to that obtained for a pitcher only target shown infigure 5(a), No _ dCDandCDCD
produced a very significant anisotropy in both neutron flux andmaximumneutron energy, as shown in
figures 5(b) and (c) respectively. Figure 5(c) shows the neutron spectra obtained along different angles for the
case shown infigure 2(a), where the spectrally integrated neutron flux over the neutron energy in the range
2.5–10MeVobtained from the nToF detectors agrees well within the experimental errors with the off axis BDS
andCR39measurements shown infigure 2(e). The highest neutron flux obtained in the experiment was for the
CDCDcase, where, as shown in the figure 5(d), the nToF spectra agrees with that obtained from the BDS and
activation diagnostics. The peak neutron flux along the beam axis, for neutron energy between 2.5–10MeV,was
close to 109 n/sr. Indeed, the neutronflux can be significantly enhanced by optimising the neutron generation
with high yield catcher targets, such as lithiumor beryllium, forwhich the reaction cross-section is an order of
magnitude higher than for d(d,n)3He reaction and stays very high for ionswith tens ofMeV energy.

The anisotropy ratios (whichwe define as the ratio of on-axisflux to off-axis flux) that have been observed in
these experiments can be estimated for a beam-fusion scenario in terms of the projectile energy and the
differential cross-section of the nuclear reaction. For instance, in the case of the d(d,n)3He reaction, using the ion

Figure 5. (a)–(d) show the comparison between angularly resolved neutron spectra obtained by the six scintillator detectors (shown in
figure 1) obtained in different pitcher–catcher combinations as labelled on the top of the graph. The graphs also show the data
obtained fromBDS and activation diagnostics, where available. BDS and activation diagnostics were installed along the beam axis in
case of (d), as shown infigure 1, while the BDS in (c)was installed at 145°from laser axis.

Figure 6. (a)Comparison between on-axis proton (red), deuteron (blue) and carbon (black) ion spectra obtained from10 mm thick
CD target. (b)Comparison between reaction cross-sections for d(p, n+p)1H (red) and d(d,n)3He (black) for different projectile ion
(protons and deuterons, respectively) energies, as obtained fromEXFOR [32].
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velocity in the c-o-m frame, =v E m1 2 2d,cm d p( ) , one can obtain the emitted neutron velocity in the c-o-m

frame from the energy–momentum conservation as = +v E Q m3 4n,cm d p( ) , where Ed is the incident
deuteron energy in the laboratory (lab) frame,mp is the protonmass andQ is theQ-value of the reaction.
Therefore, the neutron energy in the lab frame along a given neutron emission angle (θ, with respect to the
incident ion beamaxis) can bewritten as

q q= + + +E E Q E8 cos 2 6 cos . 1n d
2

d
2[ ] ( )

From this expression one can determine the neutron velocity in the lab frame vn, and thus the neutron emission
angle in the c-o-m frame can bewritten as q q= -v v vcos coscm n d n,cm( ) . The anisotropy is then determined
from the differential cross-section in the lab frame, which is related to that in the c-o-m frame via

s a a q
a q

s
W

=
+ +

+ W

⎡
⎣⎢

⎤
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1 2 cos
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d
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Where, a = v vd,cm n,cm. An anisotropy ratio can thus be obtained at each deuteron energy by taking the ratio of
the differential cross-section values that are calculated in this way at 0°and 90°. This requires one to use the
tabulated data for the differential cross-section in the c-o-m frame available in the experimental nuclear reaction
database (EXFOR) [32].

The results of this calculation are shown infigure 7(a), which indicates that the d(d,n)3He reactions could
easily produce the levels of anistropy shown infigure 4 given that the deuteron energy spectrum shown in
figure 6 extends above 5 MeV. The anisotropy of emission from this calculation assumes that the angular
distribution of the incident ion beam is sufficiently narrower than that of the neutrons.Without the differential
cross-sections for d(p, n+p)1H reactions in the c-o-m frame, it is hard to produce a similar graph for the d(p, n
+p)1H reaction.However, even if one assumes an isotropic emission ofneutrons for the d(p, n+p)1H reaction in
the c-o-m frame, the kinematic effects still lead to an anisotropy ratio of about 10over awide rangeof energies.

In addition to the observed anisotropy in neutron flux, the energy distribution arising from the reactions, as
can be seen from figure 5, is highly anisotropic due to nuclear reaction kinematics. According to equation (1),
one can approximate the energy of emitted neutrons along the beam forward direction (see figure 7(b)) as

q = »E E0n d( ) while >E Qd (3.3 MeV and−2.25 MeV for d(d,n)3He and d(p, n+p)1H reactions
respectively), which is similar to themeasured neutron energy by the nToF detectors as shown infigure 5.

4. Conclusion

In conclusion, we have demonstrated a strongly beamed (~ 70 FWHM), highflux (of the order of 109 n/sr)
source of fast neutrons based on beam-nuclear reactions employing high power laser driven protons and
deuterons. The neutron flux in the beam,whichwas amongst the highest reported in the literature, was an order
ofmagnitude higher than that present outside of it, as characterised spatially and spectrally by a suite of neutron
diagnostics. Such a directed beamof fast neutrons is highly favourable not only for its direct applications, but
also for its transport andmoderation.With the possibility of producing higher energy ion beams and higherflux,
either byTNSA or via emerging ion accelerationmechanisms, and by employing higher yield neutrons
converters (such as 7Li or 9Be), this approach can lead to the development of an appealing neutron source for
both established and innovative applications.

Figure 7. (a)Theoretical anisotropy ratio for d(d,n)3He reactions as a function of the incident deuteron energy using equation (2). (b)
Energy of emitted neutrons in a beam-fusion scenario along 0°and 90°to the incident ion beam axis as a function of the incident
deuteron energy, calculated using equation (1).
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