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Abstract 

As wind farms move deeper offshore to tap into stronger and relentless winds, intense wind and wave 

conditions pose a great challenge in terms of their operation and maintenance (O&M). There are several 

factors that determine the profitability of offshore wind farms, and the most critical factors among them are 

the parameters on allocation of maintenance resources. These parameters interact with environmental factors 

and make it impossible to estimate profitability using simple formulas. On the other hand, existing 

simulation models, which describe the behaviour of wind farms by using mathematical models of wind, 

wave, and their effects on O&M, can be extremely detailed resulting in simulations being computationally 

very expensive. Depending on the number of scenarios to evaluate, it can take up-to several days to complete 

the computation. In order to address this difficulty, a statistical model fitting approach has been adopted to 

emulate the behaviour of the computationally expensive simulator. Neural networks, splines, and decision 

trees are combined to capture numerical and discrete variables and their influence on availability and 

profitability. This approach is useful because it affords quick exploration of the space of operating choices, 

which would be difficult to achieve by repeated simulations due to their computational expense. The 

performance results show that the statistical model can evaluate hundreds of scenarios per second, and the 

approximation error is low. 
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1 INTRODUCTION 
 

In offshore wind power production, moving 

deeper offshore, which offers both stronger 

winds and larger windfarms, entails better power 

yield. However, this comes with the additional 

challenges arising from the operation and 

maintenance aspects. Being further away from 

shore means that a substantial amount of time 

and logistics is spent in only transporting 

technicians and equipment to farms. While 

turbulent wind conditions cause turbines to fail 

more often, harsher wave conditions make 

turbines harder to reach and access for repairs. 

Maintainers need to keep repairing them 

regularly in order to avoid catastrophic failures 

and to keep the yield high.  

The main parameters of the maintenance activity 

pertain to allocation and scheduling of resources. 

These allocation parameters interact with 

environmental factors and make it impossible to 

estimate the consequent profitability by a simple 

calculation. A detailed simulation model has 

been developed (described in [1] and [2]) that 

models the behaviour of wind farms hour-by-

hour according to discrete and numerical 

parameters describing the process. Examples of 

such allocation parameters are (a) number of 

maintenance vessels (b) helicopter charter hours 

(c) jack-up vessel charter period (d) number of 

crew (e) shift start time (f) failure process 

parameters, etc. Based on these parameters and 

an environmental yield model, the simulator 

estimates several outputs that determine 

production and profitability of the simulated 

wind farm. The level of detail makes the 

simulation computationally very expensive, 

especially because the statistical estimation 

method (known as Monte Carlo simulation) 

requires several runs  on each scenario. It takes 

several hours to simulate a single scenario and 

estimate the expected figures. If maintainers 

need to make quick decisions on the operating 

parameters, the running time can become a 

serious bottleneck. In order to address this 

problem, an approximation tool has been 

developed based on pre-computed runs of the 

simulator. We call this tool the emulator. The 

emulator allows quick evaluation of scenarios, 
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typically within a few milliseconds on a 

consumer grade computer. 

The following sections describe in detail the 

methodology used in the emulator and the 

results obtained thereby. 

 

2 SURVEY OF APPROXIMATION AND 
INTERPOLATION METHODS  

 

Interpolation is the art of filling gaps between 

given data points using a reasonable continuous 

representation. The history of interpolation dates 

back to Issac Newton. His method is based on 

finite-differences and is equivalent to the 

Lagrangian interpolation. The degree of the 

polynomial involved in such interpolation goes 

up equally rapidly with the number of points. 

However, at high degrees polynomials have the 

undesirable property of making big swings 

between and beyond the data points. It is 

possible to get around that problem using 

multiple low-degree polynomial segments to 

interpolate/approximate different portions of 

datasets. Hermite and B-Spline interpolation 

methods [3] belong to this category. When 

dealing with multiple inputs (i.e. where the 

interpolated function is that of several variables), 

there is an additional challenge arising from the 

lack of structure in (i.e. scatter nature of) the 

given data points. It is only if the data points are 

organised in a structured n-dimensional lattice, 

that tensor product techniques like B-Spline and 

Hermite interpolation are applicable [3]. The 

problem with lattice structure in higher 

dimensions is that the local boundary conditions 

increase exponentially with the number of input 

variables, whereas the number of coefficients of 

a multi-variate polynomial of a given degree 

grow at a polynomial rate.  

The methods mentioned so far were 

interpolation oriented, in that the continuous 

representation can be made to pass exactly 

through the data points. If this restriction is 

relaxed and the continuous form is allowed to 

approximate the data points, that opens up a new 

class of methods. In strict interpolation each data 

point gives rise to an equation in its own right 

and each such equation is solved for. Whereas in 

approximation, the data points collectively join 

hands to form an approximation error function 

which is then minimised in order to find a good 

approximation. In approximation the candidate 

continuous representation has a number of free 

variables. The idea is to have a function in two 

sets of variables - one set of variables are the 

inputs to the model, and another set of 

parameters to allow sufficient alteration of the 

function to make it take the shape dictated by the 

data. The process of fitting the approximation is 

that of tuning the second set of parameters so 

that the input-output relationship of the final 

function is as close as possible to a reasonable 

continuous representation passing through the 

data points. This can be formalised in the 

following mathematical statements. If ( , )F a x  is 

an approximation architecture with shaping 

parameters a and input variables x , in order to 

approximate a dataset: 

1 1 2 2 3 3{( , ),( , ), ( , ), , ( , )}n ny y y yx x x x , 

our objective would be to tune a  such that F  

predicts the y  values as closely as possible. This 

objective can be achieved by minimising the 

following error function by varying a   
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Here the function ( , )F a x  is called the 

architecture of the approximation model. Once 

the parameters a  gets tuned according to the 

dataset, the approximation function is said to be 

fitted and, with a  being frozen F  becomes a 

function of x  that approximates the relationship 

between x  and y .  

It can be a substantially creative process to 

hypothesise the architecture that best 

approximates a given relationship. The terms in 

the approximation architecture can come from 

insights into the phenomenon, or it can come 

from studying shapes in the slices of the dataset. 

Fortunately, there are some universal 

approximation architectures that help with 

relieving the creative and investigative work. 

Two universal approximation architectures are 

sum of radial basis functions (RBF) [4] and 

neural networks [5]. The neural network 

architecture is a non-linear function that arose 

from the study of brain neurons, but can be 

understood entirely as a mathematical tool. The 

approximation function of a neural network has 

the following form:  
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Here , , ,output output input input

ik i ijW W   are free shaping 

parameters that are tuned in the fitting process, 
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and ,output input   are sigmoid shaped functions 

that bring non-linear shape into the architecture. 

There are mathematical theorems, which prove 

that the neural network architecture has 

universal approximating power, i.e. it can take 

pretty much any shape given sufficiently large 

size of the inputW  and outputW  matrices and 

correspondingly the   vectors.  

A fitted neural network serves as a hyper-surface 

that approximately interpolates through the 

dataset. For higher dimensions, we can not 

visualise such hyper-surfaces entirely, but as a 

special case, when there are two input variables, 

the surface may be visualised as a 3d plot as in 

figure 1. The two input variables in this plot are 

failure rate and number of repair vessels and the 

output is the natural logarithm of total revenue. 

 

Figure 1. Neural network surface 

 

3 COMBINING NUMERICAL AND 
DISCRETE INPUT VARIABLES  

 

Many input variables of the O&M simulation are 

numerical, and so continuous function models 

can be used for them, but there are certain 

variables that are categorical (also called 

ordinal) representing a finite number of discrete 

possibilities on which no meaningful arithmetic 

can be performed. For such variables, we need to 

create a discrete lookup structure. A decision 

tree is commonly used for this purpose. Let us 

consider a concrete example. Table 1 shows four 

ordinal variables (given in the header row) and 

the values that they can take. The number of 

values that each variable can take are 3,2,2,  and 

4 , and as such the total number of combinations 

we can get from them is 3 2 2 4 = 48   . A 

decision tree for this would be a tree-like 

structure that bifurcates at 4 stages - one stage 

for each ordinal variable, and the number of 

bifurcations at each branching point is the 

number of values that the variable of that stage 

can take. The leaf-branches (i.e. the final 

branches) are the places, where we could place 

the output we want to look up for the 

combination of ordinal values that leads from 

the root of the tree to that leaf. Figure 2 shows a 

part of such a decision tree.  

 

Figure 2. Decision tree (partial) 

Table 1. Example of Categorical Variables 

Ordinal 

Variable 

Name  

CTV Tech. 

Maintenance 

Schedule  

Heli-

copter 

Usage  

Jack-up 

Charter 

Strategy 

Start 

Month 

Allowed 

Values 

 

Either 

corrective 

maintenance or 

scheduled 

maintenance  

Yes  Fix on Fail 

Fixed Charter  

 

Jan  

Scheduled  

maintenance  

after corrective  

maintenance   

No  Purchase/Life

time Charter  

 

Apr  

Scheduled 

maintenance 

ONLY after 

corrective 

maintenance  

     

Jul  

       

Oct  
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When a query is posed with a given combination 

of ordinal variables, one of the possible paths is 

activated (an example of such a path is shown in 

red in figure 2) and the output sitting at the leaf 

point on the path would be pulled out. Such 

outputs could be numbers if ordinal variables 

were all we had. Instead, in our application we 

have a mix of ordinal and numerical variables. 

So, at the leaf end of each branch we keep a 

neural network trained with the corresponding 

numeric combinations. As a special case, when 

there is exactly one numeric input in the model, 

we use a spline curve instead of neural networks. 

Thus, the statistical model takes the form of a 

combination of decision trees, spline curves, and 

neural networks. This model is created and 

stored in a data file, which is loaded and 

processed when answering interpolation queries. 

Consequently there are two tools in the emulator 

- one for creating the model data files, and the 

other for querying the model.  

 

4 CASE STUDY  
 

In an initial case study, there were 8 input 

variables and several dozens of output quantities 

in the dataset in question. Under this condition, 

evaluation of a single point query costs 3 

milliseconds on a Pentium TM  2.4 GHz CPU. 

This is a satisfactory performance figure as it 

allows exploration of about 300 query points per 

second, which would have taken days to explore 

using the simulator. More important is the 

question of accuracy, since it is pointless to 

produce wrong results, no matter how fast. We 

demonstrate the accuracy of the trained neural 

networks using output comparison plots as in 

figures 3 and 4. In these plots, a perfect fit would 

lie on the =y x  line as shown in red. The scatter 

around the =y x  line represents the fit error. We 

also present the accuracy using Bland-Altman 

style plots in which the relative fit error is 

plotted against the corresponding values, as in 

figure 5. This dataset has about 4k points, so 

these plots might look too crowded to 

understand the distribution of errors. An error 

histogram (as in figure 6) can give better insight 

into the distribution of error.  

Due to the high dimensionality of the input, it is 

impossible to visualise the complete fitted 

hyper-surfaces. However, in order to examine 

artefacts of fitting, we can look at one or two 

dimensional slices of the hyper-surface. Figure 7 

shows one such plot, in which a single input 

variable is varied keeping the others constant. 

The red circles in this figure represent data 

points intercepted by that slice.  

It was found that the single-numeric-variable 

case is very special because of a common 

workflow, in which the simulation runs are 

progressively refined in favour of the region of 

interest. In this workflow, an initial coarse set of 

simulation runs are used to span a broad range of 

the numeric variable. The emulator is then used 

to produce a continuous curve through the 

coarse point-set, which then is used for 

identifying regions of interest (e.g. turning 

points, steep rises and falls etc.) and additional 

simulations are scheduled to refine such regions. 

It was also found to be of interest to plot 

standard-deviations as bounds around mean-

values using the single-numeric-variable 

interpolation feature. Figure 8 shows such a plot. 

 

 

Figure 3. Emulated vs Simulated Availability 

 

Figure 4. Emulated vs Simulated Total O&M 
Cost 
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Figure 5. Total O&M Cost vs Neural 
Network Approximation Error  

 

 

Figure 6. Histogram of Neural Network 
Approximation Error 

 

 

 

Figure 7. A Slice of the Neural Network 
Approximated Hypersurface 

 

5 SOFTWARE DESCRIPTION  
 

The core functionality of the emulator is written 

using R [6], a statistical computing language and 

environment. The user interface is written using 

a scripting language called Tcl/Tk [7]. As 

indicated earlier, following are the two functions 

of the emulator: 

(a) Creation of a model from a given dataset. 

(b) Querying the model. 

This choice is provided by two buttons displayed 

when the tool is launched. Figure 9 shows a 

screenshot of these two buttons. A model can be 

created by choosing the Create Model button. 

Once that button is pressed, the tool lets the user 

choose the input data. The input data file is a 

specifically formatted excel spreadsheet, whose 

format is described in the user manual for the 

emulator. The tool then generates the model data 

in a folder as stated in the input file. 

 

 

Figure 8. Plot of Wind Speed against 
bounds of Power Produced  

 

Figure 9. The Initial Screen of Emulator.  

On choosing the Query Model button, the query 

screen is displayed. A screenshot of this screen 

is shown in figure 10. On entering the dataset 

name, username, and password, the user has to 

press the Open Model button to load the model. 

This will load the output variable names in the 

Output Variable list. The query points are 

entered in the Query Points box in a tab 

separated format. This is the format of data we 

get on clipboard when the data is copied from 

Microsoft Excel. On entering the query points 

and choosing an output variable, the user can 

press the Submit Query button to get the query 

evaluated. The evaluation results are copied into 

the clipboard in tab-separated format, which can 

then be pasted onto Excel for plotting or further 

analysis.  
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Figure 10. The emulator query screen 

 

 

6 CONCLUSION AND SCOPE FOR 
FUTURE WORK 

 

There are infinitely many ways of connecting a 

finite number of dots using continuous 

functions. Figure 11 illustrates this with a plot of 

several continuous curves going through 6 data 

points, each made with a different type of spline 

method. This tells us that we should treat the 

results from the emulator with caution and not 

take it as absolute truth. This is why one must 

use a separate dataset to validate a model after 

the model has been fitted using the training data-

set.  

Statistical models have been in use for a long 

time, and currently model-creation is usually 

carried out by specialists using versatile tools 

like SPSS, SAS, and R. The emulator is an 

attempt at packaging the functionality of model 

generation in such a way that the model is 

automatically generated from a simple input-

output specification given by a spreadsheet. 

While this makes the model creation more user-

friendly, it has its drawback that advanced 

validation tools and data pre-processing tools are 

not available on it. Future work may be done in 

that direction. It might also be worthwhile to 

revisit the wind farm simulation methodology 

with the aim of reducing computational cost (for 

example, by de-coupling and caching the 

weather/yield part, while simulating only the 

failure/repair events for O&M studies).  

Further work might be directed towards 

modularising the emulator in a way that allows 

the model architectures and fitting algorithms to 

be specified by the user.  

 

 
Figure 11. Multiple smooth functions 

interpolating 6 data points 
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