
Proceedings of SEEP2015, 11-14 August 2015, Paisley

EMULATION OF EXPENSIVE SIMULATION MODEL FOR OPERATION AND
MAINTENANCE OF OFFSHORE WIND FARMS

Jayanta Majumder, Iraklis Lazakis, Yalcin Dalgic, Iain Dinwoodie,
Matthew Revie, David McMillan

University of Strathclyde, Glasgow, United Kingdom, (author email : jaymaj21@gmail.com)

Abstract

As wind farms move deeper offshore to tap into stronger and relentless winds, intense wind and wave

conditions pose a great challenge in terms of their operation and maintenance (O&M). There are several

factors that determine the profitability of offshore wind farms, and the most critical factors among them are

the parameters on allocation of maintenance resources. These parameters interact with environmental factors

and make it impossible to estimate profitability using simple formulas. On the other hand, existing

simulation models, which describe the behaviour of wind farms by using mathematical models of wind,

wave, and their effects on O&M, can be extremely detailed resulting in simulations being computationally

very expensive. Depending on the number of scenarios to evaluate, it can take up-to several days to complete

the computation. In order to address this difficulty, a statistical model fitting approach has been adopted to

emulate the behaviour of the computationally expensive simulator. Neural networks, splines, and decision

trees are combined to capture numerical and discrete variables and their influence on availability and

profitability. This approach is useful because it affords quick exploration of the space of operating choices,

which would be difficult to achieve by repeated simulations due to their computational expense. The

performance results show that the statistical model can evaluate hundreds of scenarios per second, and the

approximation error is low.

Keywords: Statistical Models, Neural Networks, Decision Trees, Splines, Offshore Wind Farms, Operation

and Maintenance

1 INTRODUCTION

In offshore wind power production, moving

deeper offshore, which offers both stronger

winds and larger windfarms, entails better power

yield. However, this comes with the additional

challenges arising from the operation and

maintenance aspects. Being further away from

shore means that a substantial amount of time

and logistics is spent in only transporting

technicians and equipment to farms. While

turbulent wind conditions cause turbines to fail

more often, harsher wave conditions make

turbines harder to reach and access for repairs.

Maintainers need to keep repairing them

regularly in order to avoid catastrophic failures

and to keep the yield high.

The main parameters of the maintenance activity

pertain to allocation and scheduling of resources.

These allocation parameters interact with

environmental factors and make it impossible to

estimate the consequent profitability by a simple

calculation. A detailed simulation model has

been developed (described in [1] and [2]) that

models the behaviour of wind farms hour-by-

hour according to discrete and numerical

parameters describing the process. Examples of

such allocation parameters are (a) number of

maintenance vessels (b) helicopter charter hours

(c) jack-up vessel charter period (d) number of

crew (e) shift start time (f) failure process

parameters, etc. Based on these parameters and

an environmental yield model, the simulator

estimates several outputs that determine

production and profitability of the simulated

wind farm. The level of detail makes the

simulation computationally very expensive,

especially because the statistical estimation

method (known as Monte Carlo simulation)

requires several runs on each scenario. It takes

several hours to simulate a single scenario and

estimate the expected figures. If maintainers

need to make quick decisions on the operating

parameters, the running time can become a

serious bottleneck. In order to address this

problem, an approximation tool has been

developed based on pre-computed runs of the

simulator. We call this tool the emulator. The

emulator allows quick evaluation of scenarios,

Proceedings of SEEP2015, 11-14 August 2015, Paisley

typically within a few milliseconds on a

consumer grade computer.

The following sections describe in detail the

methodology used in the emulator and the

results obtained thereby.

2 SURVEY OF APPROXIMATION AND
INTERPOLATION METHODS

Interpolation is the art of filling gaps between

given data points using a reasonable continuous

representation. The history of interpolation dates

back to Issac Newton. His method is based on

finite-differences and is equivalent to the

Lagrangian interpolation. The degree of the

polynomial involved in such interpolation goes

up equally rapidly with the number of points.

However, at high degrees polynomials have the

undesirable property of making big swings

between and beyond the data points. It is

possible to get around that problem using

multiple low-degree polynomial segments to

interpolate/approximate different portions of

datasets. Hermite and B-Spline interpolation

methods [3] belong to this category. When

dealing with multiple inputs (i.e. where the

interpolated function is that of several variables),

there is an additional challenge arising from the

lack of structure in (i.e. scatter nature of) the

given data points. It is only if the data points are

organised in a structured n-dimensional lattice,

that tensor product techniques like B-Spline and

Hermite interpolation are applicable [3]. The

problem with lattice structure in higher

dimensions is that the local boundary conditions

increase exponentially with the number of input

variables, whereas the number of coefficients of

a multi-variate polynomial of a given degree

grow at a polynomial rate.

The methods mentioned so far were

interpolation oriented, in that the continuous

representation can be made to pass exactly

through the data points. If this restriction is

relaxed and the continuous form is allowed to

approximate the data points, that opens up a new

class of methods. In strict interpolation each data

point gives rise to an equation in its own right

and each such equation is solved for. Whereas in

approximation, the data points collectively join

hands to form an approximation error function

which is then minimised in order to find a good

approximation. In approximation the candidate

continuous representation has a number of free

variables. The idea is to have a function in two

sets of variables - one set of variables are the

inputs to the model, and another set of

parameters to allow sufficient alteration of the

function to make it take the shape dictated by the

data. The process of fitting the approximation is

that of tuning the second set of parameters so

that the input-output relationship of the final

function is as close as possible to a reasonable

continuous representation passing through the

data points. This can be formalised in the

following mathematical statements. If (,)F a x is

an approximation architecture with shaping

parameters a and input variables x , in order to

approximate a dataset:

1 1 2 2 3 3{(,),(,), (,), , (,)}n ny y y yx x x x ,

our objective would be to tune a such that F

predicts the y values as closely as possible. This

objective can be achieved by minimising the

following error function by varying a

 
2

=1

() = (,)
n

i i

i

E F ya a x

Here the function (,)F a x is called the

architecture of the approximation model. Once

the parameters a gets tuned according to the

dataset, the approximation function is said to be

fitted and, with a being frozen F becomes a

function of x that approximates the relationship

between x and y .

It can be a substantially creative process to

hypothesise the architecture that best

approximates a given relationship. The terms in

the approximation architecture can come from

insights into the phenomenon, or it can come

from studying shapes in the slices of the dataset.

Fortunately, there are some universal

approximation architectures that help with

relieving the creative and investigative work.

Two universal approximation architectures are

sum of radial basis functions (RBF) [4] and

neural networks [5]. The neural network

architecture is a non-linear function that arose

from the study of brain neurons, but can be

understood entirely as a mathematical tool. The

approximation function of a neural network has

the following form:

=1 =1

=
m n

output output input input

output k ik input i ij j

i j

y W W x   
  

    
  

 

Here , , ,output output input input

ik i ijW W  are free shaping

parameters that are tuned in the fitting process,

Proceedings of SEEP2015, 11-14 August 2015, Paisley

and ,output input  are sigmoid shaped functions

that bring non-linear shape into the architecture.

There are mathematical theorems, which prove

that the neural network architecture has

universal approximating power, i.e. it can take

pretty much any shape given sufficiently large

size of the inputW and outputW matrices and

correspondingly the  vectors.

A fitted neural network serves as a hyper-surface

that approximately interpolates through the

dataset. For higher dimensions, we can not

visualise such hyper-surfaces entirely, but as a

special case, when there are two input variables,

the surface may be visualised as a 3d plot as in

figure 1. The two input variables in this plot are

failure rate and number of repair vessels and the

output is the natural logarithm of total revenue.

Figure 1. Neural network surface

3 COMBINING NUMERICAL AND
DISCRETE INPUT VARIABLES

Many input variables of the O&M simulation are

numerical, and so continuous function models

can be used for them, but there are certain

variables that are categorical (also called

ordinal) representing a finite number of discrete

possibilities on which no meaningful arithmetic

can be performed. For such variables, we need to

create a discrete lookup structure. A decision

tree is commonly used for this purpose. Let us

consider a concrete example. Table 1 shows four

ordinal variables (given in the header row) and

the values that they can take. The number of

values that each variable can take are 3,2,2, and

4 , and as such the total number of combinations

we can get from them is 3 2 2 4 = 48   . A

decision tree for this would be a tree-like

structure that bifurcates at 4 stages - one stage

for each ordinal variable, and the number of

bifurcations at each branching point is the

number of values that the variable of that stage

can take. The leaf-branches (i.e. the final

branches) are the places, where we could place

the output we want to look up for the

combination of ordinal values that leads from

the root of the tree to that leaf. Figure 2 shows a

part of such a decision tree.

Figure 2. Decision tree (partial)

Table 1. Example of Categorical Variables

Ordinal

Variable

Name 

CTV Tech.

Maintenance

Schedule

Heli-

copter

Usage

Jack-up

Charter

Strategy

Start

Month

Allowed

Values



Either

corrective

maintenance or

scheduled

maintenance

Yes Fix on Fail

Fixed Charter

Jan

Scheduled

maintenance

after corrective

maintenance

No Purchase/Life

time Charter

Apr

Scheduled

maintenance

ONLY after

corrective

maintenance

Jul

Oct

Proceedings of SEEP2015, 11-14 August 2015, Paisley

When a query is posed with a given combination

of ordinal variables, one of the possible paths is

activated (an example of such a path is shown in

red in figure 2) and the output sitting at the leaf

point on the path would be pulled out. Such

outputs could be numbers if ordinal variables

were all we had. Instead, in our application we

have a mix of ordinal and numerical variables.

So, at the leaf end of each branch we keep a

neural network trained with the corresponding

numeric combinations. As a special case, when

there is exactly one numeric input in the model,

we use a spline curve instead of neural networks.

Thus, the statistical model takes the form of a

combination of decision trees, spline curves, and

neural networks. This model is created and

stored in a data file, which is loaded and

processed when answering interpolation queries.

Consequently there are two tools in the emulator

- one for creating the model data files, and the

other for querying the model.

4 CASE STUDY

In an initial case study, there were 8 input

variables and several dozens of output quantities

in the dataset in question. Under this condition,

evaluation of a single point query costs 3

milliseconds on a Pentium TM 2.4 GHz CPU.

This is a satisfactory performance figure as it

allows exploration of about 300 query points per

second, which would have taken days to explore

using the simulator. More important is the

question of accuracy, since it is pointless to

produce wrong results, no matter how fast. We

demonstrate the accuracy of the trained neural

networks using output comparison plots as in

figures 3 and 4. In these plots, a perfect fit would

lie on the =y x line as shown in red. The scatter

around the =y x line represents the fit error. We

also present the accuracy using Bland-Altman

style plots in which the relative fit error is

plotted against the corresponding values, as in

figure 5. This dataset has about 4k points, so

these plots might look too crowded to

understand the distribution of errors. An error

histogram (as in figure 6) can give better insight

into the distribution of error.

Due to the high dimensionality of the input, it is

impossible to visualise the complete fitted

hyper-surfaces. However, in order to examine

artefacts of fitting, we can look at one or two

dimensional slices of the hyper-surface. Figure 7

shows one such plot, in which a single input

variable is varied keeping the others constant.

The red circles in this figure represent data

points intercepted by that slice.

It was found that the single-numeric-variable

case is very special because of a common

workflow, in which the simulation runs are

progressively refined in favour of the region of

interest. In this workflow, an initial coarse set of

simulation runs are used to span a broad range of

the numeric variable. The emulator is then used

to produce a continuous curve through the

coarse point-set, which then is used for

identifying regions of interest (e.g. turning

points, steep rises and falls etc.) and additional

simulations are scheduled to refine such regions.

It was also found to be of interest to plot

standard-deviations as bounds around mean-

values using the single-numeric-variable

interpolation feature. Figure 8 shows such a plot.

Figure 3. Emulated vs Simulated Availability

Figure 4. Emulated vs Simulated Total O&M
Cost

Proceedings of SEEP2015, 11-14 August 2015, Paisley

Figure 5. Total O&M Cost vs Neural
Network Approximation Error

Figure 6. Histogram of Neural Network
Approximation Error

Figure 7. A Slice of the Neural Network
Approximated Hypersurface

5 SOFTWARE DESCRIPTION

The core functionality of the emulator is written

using R [6], a statistical computing language and

environment. The user interface is written using

a scripting language called Tcl/Tk [7]. As

indicated earlier, following are the two functions

of the emulator:

(a) Creation of a model from a given dataset.

(b) Querying the model.

This choice is provided by two buttons displayed

when the tool is launched. Figure 9 shows a

screenshot of these two buttons. A model can be

created by choosing the Create Model button.

Once that button is pressed, the tool lets the user

choose the input data. The input data file is a

specifically formatted excel spreadsheet, whose

format is described in the user manual for the

emulator. The tool then generates the model data

in a folder as stated in the input file.

Figure 8. Plot of Wind Speed against
bounds of Power Produced

Figure 9. The Initial Screen of Emulator.

On choosing the Query Model button, the query

screen is displayed. A screenshot of this screen

is shown in figure 10. On entering the dataset

name, username, and password, the user has to

press the Open Model button to load the model.

This will load the output variable names in the

Output Variable list. The query points are

entered in the Query Points box in a tab

separated format. This is the format of data we

get on clipboard when the data is copied from

Microsoft Excel. On entering the query points

and choosing an output variable, the user can

press the Submit Query button to get the query

evaluated. The evaluation results are copied into

the clipboard in tab-separated format, which can

then be pasted onto Excel for plotting or further

analysis.

Proceedings of SEEP2015, 11-14 August 2015, Paisley

Figure 10. The emulator query screen

6 CONCLUSION AND SCOPE FOR
FUTURE WORK

There are infinitely many ways of connecting a

finite number of dots using continuous

functions. Figure 11 illustrates this with a plot of

several continuous curves going through 6 data

points, each made with a different type of spline

method. This tells us that we should treat the

results from the emulator with caution and not

take it as absolute truth. This is why one must

use a separate dataset to validate a model after

the model has been fitted using the training data-

set.

Statistical models have been in use for a long

time, and currently model-creation is usually

carried out by specialists using versatile tools

like SPSS, SAS, and R. The emulator is an

attempt at packaging the functionality of model

generation in such a way that the model is

automatically generated from a simple input-

output specification given by a spreadsheet.

While this makes the model creation more user-

friendly, it has its drawback that advanced

validation tools and data pre-processing tools are

not available on it. Future work may be done in

that direction. It might also be worthwhile to

revisit the wind farm simulation methodology

with the aim of reducing computational cost (for

example, by de-coupling and caching the

weather/yield part, while simulating only the

failure/repair events for O&M studies).

Further work might be directed towards

modularising the emulator in a way that allows

the model architectures and fitting algorithms to

be specified by the user.

Figure 11. Multiple smooth functions

interpolating 6 data points

ACKNOWLEDGEMENTS

The authors would like to express their
appreciation to Scottish Power Renewables
(SPR), Scottish and Southern Energy (SSE), and
Technip for their financial sponsorship of this
work. This work is funded through the
Technology Innovation Centre (TIC), University
of Strathclyde.

REFERENCES

[1] Yalcin Dalgic et al, “Cost benefit analysis of

mothership concept and investigation of

optimum chartering strategy for offshore wind

farms.”, 12th Deep Sea Offshore Wind R&D

Conference, EERA DeepWind'2015, Trondheim

[2] Yalcin Dalgic et al, “Advanced logistics

planning for offshore wind farm operation and

maintenance activities”, Ocean Engineering,

101(0):211-226, 2015.

[3] Gerald Farin et. al. Editors, “Handbook of

Computer Aided Geometric Design”, ISBN:

978-0-444-51104-1, North Holland Pub., 2002

[4] C.M. Bishop, Pattern Recognition and

Machine Learning, ISBN 978-0387310732,

Springer, 2006.

[5] Simon Haykin, “Neural Networks and

Learning Machines: A Comprehensive

Foundation”, 3rd Edn, ISBN: 978-0131471399,

Prentice Hall, 2008

[6] R Core Team., “R: A Language and

Environment for Statistical Computing”, R

Foundation for Statistical Computing, Vienna,

Austria, 2014. http://www.R-project.org/

[7] John K. Ousterhout et al, “Tcl and the Tk

Toolkit”, ISBN: 978-0321336330, Addison

Wesley; 2nd edition (2 Sept. 2009)

