Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Cost benefit analysis of mothership concept and investigation of optimum chartering strategy for offshore wind farms

Dalgic, Yalcin and Lazakis, Iraklis and Dinwoodie, Iain and McMillan, David and Revie, Matthew and Majumder, Jayanta (2015) Cost benefit analysis of mothership concept and investigation of optimum chartering strategy for offshore wind farms. Energy Procedia, 80. pp. 63-71. ISSN 1876-6102

[img]
Preview
Text (Dalgic-etal-EP2015-cost-benefit-analysis-of-mothership-concept-and-investigation-of-optimum-chartering-strategy-for-offshore)
Dalgic_etal_EP2015_cost_benefit_analysis_of_mothership_concept_and_investigation_of_optimum_chartering_strategy_for_offshore.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

The focus of this research is the cost benefit analysis of the mothership concept and the investigation of the optimum chartering strategy, which brings financial and operational benefits. This is achieved by performing operational simulations in the offshore wind operational expenditure and logistics planning tool StrathOW-OM, which is developed by the University of Strathclyde and commercial partner organisations. In this paper, a fixed accommodation platform concept, two mothership concepts and different vessel chartering periods are simulated. The simulation results are compared with a base case scenario, in which the O&M activities are performed through a conventional onshore base. The simulation results show that significant travel time is spent in far offshore, if only a single conventional onshore base is utilised in the operations. Among different vessel chartering periods (continuous, only summer months, only winter months or combination of summer months and winter months), October-December is identified as the most critical period for chartering a mothership.