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Abstract

In this paper the spectral problem of third order for the inverse scattering
transform (IST) method is solved. For the discrete part of the spectral data,
the two-multiple poles are taken into account. The line spectrum of contin-
uum states for the IST method is examined as well. The suggested spectrum
approximates in first order the step-function. The scope for the suggested
spectral data is demonstrated through the analysis of the Vakhnenko-Parkes
equation that allows new solutions to be obtained. The account of the time-
dependence is different from the standard procedure.
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1. Introduction

The inverse scattering transform (IST) method is one of the fundamental
methods for solving various nonlinear evolution equations. The method en-
ables one to solve the initial value problem for a nonlinear evolution equation.
Moreover, it provides a proof of the complete integrability of the equation.
The essence of the application of the IST is as follows. The equation of inter-
est for study is written as the compatibility condition for two linear equations
(the Lax pair). Then the initial condition is mapped into the scattering data.
It is important that the spectrum always retains constant values. The time
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evolution of scattering data is simple and linear. From a knowledge of scat-
tering data evolution, the solution is reconstructed. Hence, for this method
the direct spectral problem and the inverse spectral problem are considered.
The latter consists of reconstructing the solution of the nonlinear equation
from the spectral data (§2). In the general case it is necessary to analyze
both the discrete part and the continuum part of the spectral data. It is
well-known that the discrete part is associated with soliton solutions, while
the continuum part of the spectral data is related to the periodical solutions.
For the spectrum of bound states, we take into account the two-multiple
poles (§3), while for continuum states, a special form of the spectral data is
considered (§4). The spectrum of continuum states is taken as a line spec-
trum that in first order approximates the step-function (§4). The problem
of reconstructing the solution from the spectral data is considered in §5 and
§6. The solution for discrete spectral data with two-multiple poles is taken
in §7.

2. The spectral problem

The inverse problem for N×N spectral equations has been considered by
Caudrey [1–3] and Kaup [4]. Following the method described by Caudrey [1],
the spectral equation for many evolution equations can be written

∂

∂X
ψ = [A(ζ) +B(X, ζ)] ·ψ. (2.1)

For the sake of convenience, we study the third-order form of the spectral
equation (2.1). The third-order spectral equation is associated with a Boussi-
nesq equation [1–6], a higher order KdV equation [4, 7], a model equation
for shallow water waves [8, 9], and the Vakhnenko–Parkes equation (VPE)
[10–14]. The VPE arises from another nonlinear integrable equation, named
the Vakhnenko equation (VE) [15, 16]

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0, (2.2)

after an appropriate change of variables [10, 11, 17, 18].
It is interesting to note that equation (2.2) follows as a particular limit

of the following generalized Korteweg-de Vries equation

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− β

∂3u

∂x3

)
= γu
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derived by Ostrovsky [19] to model small-amplitude long waves in a rotating
fluid (γu is induced by the Coriolis force) of finite depth. Subsequently,
equation (2.2) was known by different names in the literature, such as the
Ostrovsky-Hunter equation, the short-wave equation, the reduced Ostrovsky
equation and the Ostrovsky-Vakhnenko equation depending on the physical
context in which it is studied.

Using the VPE [10–14]

WXXT + (1 +WT )WX = 0 (2.3)

or, in equivalent form with U ≡ WX ,

UUXXT − UXUXT + U2UT = 0

as an example, we aim to examine both the two-multiple poles and some
special forms of the spectral data for which the inverse problem can be solved.

After the Lax pair

ψXXX +WXψX − λψ = 0, (2.4)

3ψXT + (1 +WT )ψ + µψX = 0 (2.5)

for the VPE was derived in [10], in [20] the Lax pair was written in its original
variables as a zero curvature condition. Moreover, in [20] Hone and Wang
have shown that there is a subtle connection between the Sawada-Kotera
hierarchy and the VE, between the Degasperis-Procesi equation (DPE) and
the VE (see also [21]), and between the Lax pairs of the DPE and the VE.

As expected, (2.4) and (2.5) are similar to, but cannot be transformed
into, the corresponding equations for the Hirota–Satsuma equation (HSE)
(see Eqs. (A8a) and (A8b) in [22]). Clarkson and Mansfield [23] note that
the scattering problem for the HSE is similar to that for the Boussinesq
equation which has been studied comprehensively by Deift et al. [6].

The explicit soliton solution for the VPE was obtained by the IST method
in [10] and by the Hirota method in [17, 18, 24] whereas, for the Cauchy
problem at long-time, the IST approach was presented for a Riemann-Hilbert
problem [25, 26] in original (physical) independent variables for the VE in
[26]. As usual, the transformation between the solution of the VPE and the
VE is in the form (2.12), (2.13) in [17].

The spectral equation (2.4) has a matrix form (2.1) with

ψ =

 ψ
ψX

ψXX

 , A =

 0 1 0
0 0 1
λ 0 0

 , B =

 0 0 0
0 0 0
0 −WX 0

 .(2.6)
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The matrixA has eigenvalues λj(ζ) and left- and right-eigenvectors ṽj(ζ) and
vj(ζ), respectively. These quantities are defined through a spectral parameter
λ as

λj(ζ) = ωjζ, λ3j(ζ) = λ,

vj(ζ) =

 1
λj(ζ)
λ2j(ζ)

 , ṽj(ζ) =
(
λ2j(ζ) λj(ζ) 1

)
,

(2.7)

where ωj = e2πi(j−1)/3 are the cube roots of 1 (j = 1, 2, 3). Obviously the
λj(ζ) are distinct and they and ṽj(ζ) and vj(ζ) are analytic throughout the
complex ζ-plane.

The solution of the system of the linear equations (2.1) has been ob-
tained by Caudrey [1, 3] in terms of Jost functions ϕj(X, ζ) which have the
asymptotic behaviour

Φj(X, ζ) := exp{−λj(ζ)X}ϕj(X, ζ) → vj(ζ) as X → −∞. (2.8)

Caudrey [1] showed how the Eq. (2.1) can be solved by expressing it as a
Fredholm integral equation.

The complex ζ-plane is to be divided into regions such that, in the interior
of each region, the order of the numbers Re(λi(ζ)) is fixed (see Fig. 1). As we
pass from one region to another this order changes and hence, on a boundary
between two regions, Re(λi(ζ)) = Re(λj(ζ)) for at least one pair i ̸= j. The
Jost function ϕj is regular throughout the complex ζ-plane apart from poles
and finite singularities on the boundaries between the regions. At any point
in the interior of any region of the complex ζ-plane, the solution of Eq. (2.1)
is obtained by the relation (2.12) from [1]. It is the direct spectral problem.

However, we will start from preassigned spectral data for reconstructing
the solution W of the analyzed nonlinear equation, i.e. we will consider only
the inverse spectral problem. The information about the singularities of the
Jost functions ϕj(X, ζ) reside in the spectral data. First let us consider the

poles. It is assumed that a pole ζ
(k)
i of ϕi(X, ζ) does not coincide with a pole

of ϕj(X, ζ), j ̸= i and does not lie on a boundary between two regions. Note

that, for ϕj(X, ζ
(k)
i ), the point ζ

(k)
i lies in the interior of a regular region. We

will need the well-known relations for simple poles [1, 3] in order to compare
them with new results which will be obtained in Sec. 3. As proven in [1], the
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residue of a simple pole can be calculated as

Resϕi(X, ζ
(k)
i ) =

n∑
j=1
j ̸=i

γ
(k)
ij ϕj(X, ζ

(k)
i ). (2.9)

The quantities ζ
(k)
i and γ

(k)
ij constitute the discrete part of the spectral data

in the case of simple poles.
In contrast to the papers [1, 3] we do not restrict ourselves to simple

poles. Indeed, one of the results we will prove in the next section is that
the two-multiple poles can be taken into account in the discrete part of the
spectral data.

Now we consider the singularities on the boundaries between regions.
However, in order to simplify matters, we first make some observations. The
solution of the spectral problem can be facilitated by using various symmetry
properties. In view of (2.1), we need only consider the first elements of

ϕi(X, ζ) =

 ϕi(X, ζ)
ϕi(X, ζ)X
ϕi(X, ζ)XX

 , (2.10)

while the symmetry

ϕ1(X, ζ/ω1) = ϕ2(X, ζ/ω2) = ϕ3(X, ζ/ω3) (2.11)

means we need only consider ϕ1(X, ζ). In our case, for ϕ1(X, ζ), the complex
ζ-plane is divided into four regions by two lines (see Fig. 1) given by

(i) ζ ′ = ω2ξ, where Re(λ1(ζ)) = Re(λ2(ζ)),

(ii) ζ ′ = −ω3ξ, where Re(λ1(ζ)) = Re(λ3(ζ)),
(2.12)

where ξ is real. The singularity of ϕ1(X, ζ) can appear only on these bound-
aries between the regular regions on the ζ-plane and it is characterized by
functions Q1j(ζ

′) at each fixed j ̸= 1. We denote the limit of a quantity, as
the boundary is approached, by the superfix ± in according to the sign of
Re(λ1(ζ)− λj(ζ)) (see Fig. 1).

In [1] (see Eq. (3.14) there) the jump of ϕ1(X, ζ) on the boundaries is
calculated as

ϕ+
1 (X, ζ)− ϕ−

1 (X, ζ) =
3∑

j=2

Q1j(ζ)ϕ
−
j (X, ζ), (2.13)
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where, from (2.12), the sum is over the lines ζ ′ = ω2ξ and ζ ′ = −ω3ξ given
by

(i) ζ ′ = ω2ξ, with Q
(1)
12 (ζ

′) ̸= 0, Q
(1)
13 (ζ

′) ≡ 0,

(ii) ζ ′ = −ω3ξ, with Q
(2)
12 (ζ

′) ≡ 0, Q
(2)
13 (ζ

′) ̸= 0.
(2.14)

The quantities Q1j(ζ
′) along all the boundaries constitute the continuum part

of the spectral data.
Thus, for simple poles, the spectral data are [1, 3]

S = {ζ(k)1 , γ
(k)
1j , Q1j(ζ

′); j = 2, 3, k = 1, 2, . . . , m}. (2.15)

One of the important features which is to be noted for the IST method is
as follows. After the spectral data have been obtained, we need to seek the
time-evolution of the spectral data. In Refs. [10–14] it is proved that for the
VPE the T -dependence is revealed as

ϕi(X,T, ζ) = exp
[
− (3λi(ζ))

−1 T
]
ϕi(X, 0, ζ),

then for spectral data (2.15)

ζ
(k)
j (T ) = ζ

(k)
j (0),

γ
(k)
1j (T ) = γ

(k)
1j (0) exp

{[
−
(
3λj(ζ

(k)
1 )

)−1

+
(
3λ1(ζ

(k)
1 )

)−1
]
T

}
,

Q1j(T ; ζ
′) = Q1j(0; ζ

′) exp
{[

− (3λj(ζ
′))−1 + (3λ1(ζ

′))−1]T} .
(2.16)

The final step in the application of the IST method is to reconstruct the
matrix B(X,T ; ζ) and the solutionW (X,T ) from the spectral data S (2.15).

Caudrey has proved that for simple poles the spectral data define Φ1(X, ζ)
uniquely in the form (see Eq. (6.20) in [1]))

Φ1(X,T ; ζ) = 1− Ωd(X,T ; ζ) + Ωc(X,T ; ζ), (2.17)

where

Ωd(X,T ; ζ) ≡
K∑
k=1

3∑
j=2

γ
(k)
1j (T )

exp{[λj(ζ(k)1 )− λ1(ζ
(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

×Φ1(X,T ;ωjζ
(k)
1 ),

(2.18)
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Ωc(X,T ; ζ) ≡
1

2πi

∫ 3∑
j=2

Q1j(T ; ζ
′)
exp{[λj(ζ ′)− λ1(ζ

′)]X}
ζ ′ − ζ

×Φ−
1 (X,T ;ωjζ

′)dζ ′.

(2.19)

Equations (2.17)–(2.19) contains the spectral data, namely K simple poles

with the quantities γ
(k)
1j for the bound state spectrum as well as the functions

Q1j(ζ
′) given along all the boundaries of regular regions for the continuous

spectrum. The integral in (2.18) is along all the boundaries (see the dashed
lines in Fig. 1). The direction of integration is taken so that the side chosen to
be Re(λ1(ζ)−λj(ζ)) < 0 is shown by the arrows in Fig. 1 (for the lines (2.12),
ξ sweeps from −∞ to +∞).

It is necessary to note that we should carry out the integration along the
lines ω2(ξ + iε) and −ω3(ξ + iε) with ε > 0. In this case the condition (2.8)
is satisfied. Passing to the limit ε→ 0 we can obtain the periodical solution
which does not satisfy the condition (2.8). However, for any finite ε > 0,
the restricted region on X can be determined where the solution associated
with a finite ε > 0 (for which the condition (2.8) is valid) and the solution
associated with ε = 0 are sufficiently close to each other. In this sense, taking
the integration at ε = 0, we remain within the inverse scattering theory [1],
and so the condition (2.8) can be omitted. The solution obtained at ε = 0
can be extended to sufficiently large finite X. Thus, we will interpret the
solution obtained at ε = 0 as the solution of the VPE (2.3) which is valid for
arbitrary but finite X.

With appropriate choice of values for ζ, the left-hand side in (2.17) can

be Φ1(X,T ;ωjζ
(k)
1 ), or by allowing ζ to approach the boundaries from the

appropriate sides, the left-hand side can be Φ−
1 (X,T ;ωjζ

′). We acquire a set

of linear matrix/Fredholm equations in the unknowns Φ1(X,T ;ωjζ
(k)
1 ) and

Φ−
1 (X,T ;ωjζ

′) [1]. The solution of this equation system enables one to define
Φ1(X,T ; ζ) from (2.17).

By knowing Φ1(X,T ; ζ), we can take extra information into account,
namely that the expansion of Φ1(X,T ; ζ) as an asymptotic series in λ−1

1 (ζ)
connects with W (X,T ) as follows (cf. Eq. (2.7) in [4]):

Φ1(X,T ; ζ) = 1− 1

3λ1(ζ)
[W (X,T )−W (−∞)] +O(λ−2

1 (ζ)). (2.20)

Consequently, the solution W (X,T ) and the matrix B(X,T ; ζ) can be re-
constructed from the spectral data.

7



In the remaining sections we will study both the multiple poles for the
discrete part of spectral data and the continuum part of the spectral data in
special form. Apart from the relation (2.18), all other formulas are true for
the suggested spectral data and will be used subsequently.

3. The two-multiple poles

For single poles the formula (2.18) are true. Now we take into account the
two-multiple poles. Let us consider the additional equation to the spectral
equation (2.4)

χXXX +WζXψX +WXχX − ζ3χ− 3ζ2ψ = 0. (3.1)

For χ = ψζ the equation (3.1) stems from (2.4) by differentiation with respect
to ζ. For convenience, the spectral parameter λ is written as λ = ζ3 by virtue
of (2.7).

The matrix form of the system of equations (2.4) and (3.1) is as (2.1)
with

ψ =


ψ
ψX

ψXX

χ
χX

χXX

 , A =


0 1 0 0 0 0
0 0 1 0 0 0
ζ3 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3ζ2 0 0 ζ3 0 0

 ,

B =


0 0 0 0 0 0
0 0 0 0 0 0
0 −WX 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −WζX 0 0 −WX 0

 .

(3.2)

The matrixA has three pairs of 2-multiple eigenvalues and right-eigenvectors

λj(ζ) = λj+3(ζ), λj(ζ) = ωjζ, λ3j(ζ) = λ,

vj(ζ) =


0
0
0
1

λj(ζ)
λ2j(ζ)

 = vj+3(ζ) =


0
0
0
1

λj+3(ζ)
λ2j+3(ζ)

 , j = 1, 2, 3.
(3.3)
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It is known [27] that for system (2.4), (3.1) at W = 0 to every pair of vectors
vj(ζ), vj+3(ζ) (j = 1, 2, 3), there corresponds a system of solutions

ψj = vj exp(λjX), ψj+3 = (vj +Xv2j) exp(λjX), (3.4)

where (see p. 97 in [27])

Avj = λjvj, Av2j = λjv2j + vj. (3.5)

The multiplicity of eigenvalues does not allow us to obtain the fundamen-
tal system of solutions for the system (2.4), (3.1). To avoid this obstacle we
introduce the equation

χXXX +WζXψX +WXχX − (ζ + ε)3χ− 3(ζ + ε)2ψ = 0 (3.6)

instead of equation (3.1). The system (2.4), (3.6) in matrix form has the
matrix

A =


0 1 0 0 0 0
0 0 1 0 0 0
ζ3 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3(ζ + ε)2 0 0 (ζ + ε)3 0 0

 (3.7)

with different eigenvalues and right-eigenvectors, which in the first approxi-
mation O(ε) have the forms

λj(ζ) = ωjζ, λj+3(ζ) = ωj(ζ + ε),

vj(ζ) =


−ε
−ελj
−ελ2j
1
λj
λ2j

 , vj+3(ζ) =


0
0
0
1

λj+3

λ2j+3

 , j = 1, 2, 3.
(3.8)

As ε→ 0 the relations (3.8) tend to (3.3). At W = 0 the solutions of system
(2.4), (3.6) are

ψj = vj exp(λjX), j = 1 . . . 6. (3.9)

In the accepted approximationO(ε), we takeψj+3 = vj+3(1+ωjεX) exp(λjX)
(here j = 1, 2, 3) then (3.9) is in accord with (3.4).
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Since the eigenvalues (3.8) for matrix A (3.7) are different, we can state
that a fundamental system of solutions for the system of the equations (2.4),
(3.6) exists (here, for the sake of convenience, the variable X is omitted),
namely

ϕj(λj(ζ)), j = 1 . . . 6. (3.10)

According to [1, 3] we consider the Wronskian

Wr = det [ϕ1(λ1), ϕ2(λ2), . . . ,ϕ6(λ6) ] . (3.11)

If the Wronskian Wr is non-zero at least at one point X0, then it is proved
in [27] (see p. 132 there) to be finite and non-zero even when ζ approaches a
pole.

Let ϕ1(λ1(ζ)) have poles at ζ = ζ
(k)
1 , (k = 1, 2). Then (ζ − ζ

(k)
1 )Wr =

det
[
(ζ − ζ

(k)
1 )ϕ1(λ1), ϕ2(λ2), . . . ,ϕ6(λ6)

]
and taking the limit ζ → ζ

(k)
1 we

obtain

0 = det [ Resϕ1(λ1), ϕ2(λ2), . . . ,ϕ6(λ6) ] . (3.12)

Thus the columns (vectors) are linearly dependent. The dependence on the
vector ϕ4(λ4) is omitted, since it has the same poles as ϕ1(λ1) at ε→ 0.

As a result from (3.12), we obtain the solution of the spectral equation
(2.4) for the bound state spectrum

Φ1(X; ζ)= 1−
2∑

k=1

3∑
j=2

[
γ̃
(k)
1j

exp{[λj(ζ(k)1 )− λ1(ζ
(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

×Φ1(X;ωjζ
(k)
1 )

+γ̃
(k)
1j+3

exp{[λj(ζ(k)1 + ε(k))− λ1(ζ
(k)
1 + ε(k))]X}

λ1(ζ
(k)
1 + ε(k))− λ1(ζ)

×Φ1(X;ωj(ζ
(k)
1 + ε(k)))

]
.

(3.13)
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By expanding the functions depending on ε(k) in series within accuracy of
O(ε(k)), we rewrite the solution

Φ1(X; ζ)= 1−
2∑

k=1

3∑
j=2

{
γ
(k)
1j

exp{[λj(ζ(k)1 )− λ1(ζ
(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

× Φ1(X;ωjζ
(k)
1 )

+
∂

∂ζ
(k)
1

[
γ
(k)
1j+3

exp{[λj(ζ(k)1 )− λ1(ζ
(k)
1 )]X}

λ1(ζ
(k)
1 )− λ1(ζ)

×Φ1(X;ωjζ
(k)
1 )

]}
,

(3.14)

where γ
(k)
1j = γ̃

(k)
1j + γ̃

(k)
1j+3, γ

(k)
1j+3 = ε(k)γ̃

(k)
1j+3. It is important to note that the

solution (3.14) is independent of ε(k) now.
The relationship (3.14) formally passes into (5.1), (5.2) with appropriate

change of variables. For this reason the reconstruction of the solution W
for (3.14) is similar to the problem we will consider for the special form of
continuum states (5.1).

4. Special form for the continuum part of the spectral data

Now we consider the continuous spectrum of the associated eigenvalue
problem (2.1), (2.6), (2.7), i.e. assume that at least some of the functions
Q1j(ζ

′) are non-zero. At each fixed j ̸= 1 the functions Q1j(ζ
′) character-

ize the singularity of Φ1(X, ζ). As we have shown, this singularity can ap-
pear only on boundaries between the regular regions on the ζ-plane, where
the condition Re(λ1(ζ

′) − λj(ζ
′)) = 0 defines these boundaries [1]. For the

VPE (2.3), as we know, the complex ζ-plane is divided into four regions by
two lines (2.14)

(i) ζ ′ = ω2ξ, with Q
(1)
12 (ζ

′) ̸= 0, Q
(1)
13 (ζ

′) ≡ 0,

(ii) ζ ′ = −ω3ξ, with Q
(2)
12 (ζ

′) ≡ 0, Q
(2)
13 (ζ

′) ̸= 0,

where ξ is real (see Fig. 1) and sweeps from −∞ to +∞.
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Recently in [12–14] we have considered the singularity functions Q1j(ζ
′)

on the boundaries, on which the Jost function ϕ1(X, ζ) is singular, in the
form (m = 1, 2, ...,M) on the line ζ ′ = ω2ξ

Q
(1)
12 (ζ

′) = −2πi
M∑

m=1

q
(2m−1)
12 δ(ζ ′ − ζ ′2n−1),

Q
(1)
13 (ζ

′) = −2πi
M∑

m=1

q
(2m−1)
13 δ(ζ ′ − ζ ′2n−1) ≡ 0,

(4.1)

and on the line ζ ′ = −ω3ξ

Q
(2)
12 (ζ

′) = −2πi
M∑

m=1

q
(2m)
12 δ(ζ ′ − ζ ′2n) ≡ 0,

Q
(2)
13 (ζ

′) = −2πi
M∑

m=1

q
(2m)
13 δ(ζ ′ − ζ ′2n).

(4.2)

Now we extend the functional dependence for Q1j(ζ
′). We focus on the

step-function as a possible singularity function

f(x) =
1

h
(Θ(x)−Θ(x− h)), (4.3)

where Θ(x) is a Heavyside function. Expanding the Heavyside function Θ(x−
h) into a Taylor series in the neighborhood of the point x

Θ(x− h) = Θ(x) +
∞∑
n=1

(−1)n
hn

n!
Θ(n)(x), (4.4)

the step-function (4.3) can be rewritten in terms of the derivatives δ(n)(x) =
Θ(n+1)(x) as follows

f(x) =
∞∑
n=1

(−1)n+1h
n−1

n!
Θ(n)(x) =

∞∑
n=0

(−1)n
hn

(n+ 1)!
δ(n)(x)

= δ(x)− 1
2
hδ(1)(x) + . . . .

(4.5)

We restrict our consideration to only two terms of the series (4.5) for mod-
elling the singularity functions Q1j(ζ

′). In the limit h → 0, the functions

Q1j(ζ
′) =

−2πi

h
q1j(Θ(ζ ′) − Θ(ζ ′ − h)) have to be subject to the relations

12



(4.1), (4.2). Therefore the singularity functions Q1j(ζ
′) that we will examine

have the following forms (m = 1) on the line ζ ′ = ω2ξ:

Q
(1)
12 (ζ

′) = −2πi
(
q
(1)
12 δ(ζ

′ − ζ ′1)− 1
2
q
(1)
12 h1δ

(1)(ζ ′ − ζ ′1)
)
,

Q
(1)
13 (ζ

′) ≡ 0, i.e. q
(1)
13 ≡ 0,

h1 = h(1),

(4.6)

and on the line ζ ′ = −ω3ξ:

Q
(2)
12 (ζ

′) ≡ 0, i.e. q
(2)
12 ≡ 0,

Q
(2)
13 (ζ

′) = −2πi
(
q
(2)
13 δ(ζ

′ − ζ ′2)− 1
2
q
(2)
13 h2δ

(1)(ζ ′ − ζ ′2)
)
,

h2 = h(2).

(4.7)

Consequently, the spectral data for the continuum spectrum with special
singularity functions (4.6), (4.7) are

S = {ζ ′l , q
(l)
1j , hl ; j = 2, 3, l = 1, 2}. (4.8)

5. The inverse spectral problem for a special continuum spectrum

Let us consider the problem of reconstructing the solution W (X) from
the spectral data (4.8). This will be straightforward if we can find the vec-
tors Φ1(X,T ; ζ). Now we study only the special form of the continuum
part of the spectral data (4.6), (4.7), while the variable Ωd(X,T ; ζ) (2.18) is
considered to be identically zero. For the singularity functions (4.6), (4.7)
the relationship (2.17) with (2.19) is reduced to the form (provisionally the
time-dependence is not written)

Φ1(X, ζ) = 1−
2∑

l=1

3∑
j=2

[
q
(l)
1j Lj(X; ζ ′l , ζ)Φ1(X,ωjζ

′
l)

+
1

2
q
(l)
1j hl

(
∂

∂ζ ′
Lj(X; ζ ′, ζ)Φ1(X,ωjζ

′)

)
ζ′=ζ′l

]
,

(5.1)

where

Lj(X; ζ ′, ζ) ≡ exp{[λj(ζ ′)− λ1(ζ
′)]X}

ζ ′ − ζ
. (5.2)
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We note once again that the relationships (3.14) and (5.1) are similar.
As was proved in Refs.[12–14], the singularities appear in pairs

ζ ′1 = ω2ξ1, ζ ′2 = −ω3ξ1, (5.3)

where ξ1 is a real constant. Moreover

ω2q
(1)
12 = q

(2)
13 . (5.4)

It is evident that from (5.3)

h1 = ω2h, h2 = −ω3h,

where h is a real constant.
Here it is convenient to note that the time-evolution of the spectral data

appears through (2.16) in the form

ξ1 = const, h = const, q
(k)
1j (T ) = q

(k)
1j (0) exp

(
1

i
√
3

T

ξ1

)
. (5.5)

The equation (5.1) allows us to define the functions Φ1(X, ζ). Indeed,
differentiating this equation (5.1) with respect of ζ, and substituting the
values ζ = ω2ζ

′
1, ζ = ω3ζ

′
2 in the left-hand side of these equations, we obtain

a system of four linear algebraic equations in the unknowns Φ1(X,ω2ζ
′
1),

Φ1(X,ω3ζ
′
2),

∂

ω2∂ζ
Φ1(X,ω2ζ)

∣∣∣∣
ζ=ζ′1

,
∂

ω3∂ζ
Φ1(X,ω3ζ)

∣∣∣∣
ζ=ζ′2

. Hence, we could

take the function Φ1(X, ζ) from Eq. (5.1).
However, there is a more direct method, in which there is no need to

obtain the variables Φ1(X,ω2ζ
′
1), Φ1(X,ω3ζ

′
2) explicitly. It turns out that

we need to calculate only a determinant of some matrix. This approach is
similar to the method referred to in [1, 3, 10, 12–14]. It is convenient to use
new variables introduced by the definition

Ψl(X; ζ ′l) =
3∑

j=2

q
(l)
1j exp(λj(ζ

′
l)X)Φ1(X,ωjζ

′
l), l = 1, 2, (5.6)

i.e.

Ψ1(X; ζ ′1) = q
(1)
12 exp(λ2(ζ

′
1)X)Φ1(X,ω2ζ

′
1),

Ψ2(X; ζ ′2) = q
(2)
13 exp(λ3(ζ

′
2)X)Φ1(X,ω3ζ

′
2).

14



We may rewrite the relationship (5.1) as

Φ1(X; ζ) = 1−
2∑

l=1

exp(−λ1(ζ ′l)X)

ζ ′l − ζ
Ψl(X; ζ ′l)

+
2∑

l=1

1

2
hl

∂

∂ζ ′l

(
exp(−λ1(ζ ′l)X)

ζ ′l − ζ
Ψl(X; ζ ′l)

)
.

(5.7)

Here we introduce the notations

L(X; ζ, ζ ′l) ≡ exp{[λ1(ζ)− λ1(ζ
′
l)]X}

ζ ′l − ζ

= −
∫
X

exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′,
(5.8)

and then

∂

∂ζ ′l
L(X; ζ, ζ ′l) =

∫
X

X ′ exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′, (5.9)

∂2

∂ζ∂ζ ′l
L(X; ζ, ζ ′l) =

∫
X

X ′ 2 exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′. (5.10)

Taking into account (2.20), namely

Φ1(X, ζ) = 1− 1

3λ1(ζ)
[W (X)−W (−∞)] +O(λ−2

1 (ζ)),

and (5.6) and (5.7), the following relationship may be found

−1

3
[W (X)−W (−∞)] =

2∑
l=1

[
exp(−λ1(ζ ′l)X)Ψl(X; ζ ′l)

− 1

2
hl

∂

∂ζ ′l
exp(−λ1(ζ ′l)X)Ψl(X; ζ ′l)

]
.

(5.11)
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Eq. (5.7) with (5.6) in notations (5.8)–(5.10) can be rewritten as follows:

exp(λ1 (ζ)X)Φ1(X; ζ) = exp(λ1(ζ)X)−
2∑

l=1

L(X; ζ, ζ ′l)Ψl(X; ζ ′l)

+
2∑

l=1

1

2
hlΨl(X; ζ ′l)

∫
X

X ′ exp{[λ1(ζ)− λ1(ζ
′
l)]X

′}dX ′

+
2∑

l=1

1

2
hlL(X; ζ, ζ ′l)

∂

∂ζ ′l
Ψl(X; ζ ′l) .

(5.12)

In contrast to the standard procedure, here it is necessary to take into account
the time-evolution for q

(k)
1j (T ) (5.5). Differentiating Eq. (5.12) with respect

to ζ, and substituting the values ζ = ω2ζ
′
1, ζ = ω3ζ

′
2 in the left-hand side

of these equations, we obtain a system of four linear algebraic equations in

the unknowns Ψl(X; ζ ′l),
∂

∂ζ ′l
Ψl(X; ζ ′l) for l = 1, 2. The matrix form of this

system of equations is

MΨ = b, (5.13)

where

Ψ =


Ψ1(X; ζ ′1)
Ψ2(X; ζ ′2)

ω3
∂

∂ζ ′1
Ψ1(X; ζ ′1)

ω2
∂

∂ζ ′2
Ψ2(X; ζ ′2)

 , b =


q
(1)
12 exp(ω2ζ

′
1X)

q
(2)
13 exp(ω3ζ

′
2X)

q
(1)
12 X exp(ω2ζ

′
1X)

q
(2)
13 X exp(ω3ζ

′
2X)

 . (5.14)

The elements of matrix M are

M11 = 1− q
(1)
12

exp(−i
√
3ξ1X)

−i
√
3ξ1

− 1

2
q
(1)
12 h1

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′,

M12 = −q(1)12

exp(2ω3ξ1X)

2ω3ξ1
− 1

2
q
(1)
12 h2

∫
X

X ′ exp(2ω3ξ1X
′)dX ′,

M13 =
1

2
q
(1)
12 ω2h1

exp(−i
√
3ξ1X)

−i
√
3ξ1

,
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M14 =
1

2
q
(1)
12 ω3h2

exp(2ω3ξ1X)

2ω3ξ1
,

M21 = −q(2)13

exp(−2ω2ξ1X)

−2ω2ξ1
− 1

2
q
(2)
13 h1

∫
X

X ′ exp(−2ω2ξ1X
′)dX ′,

M22 = 1− q
(2)
13

exp(−i
√
3ξ1X)

−i
√
3ξ1

− 1

2
q
(2)
13 h2

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′,

M23 =
1

2
q
(2)
13 ω2h1

exp(−2ω2ξ1X)

−2ω2ξ1
,

M24 =
1

2
q
(2)
13 ω3h2

exp(−i
√
3ξ1X)

−i
√
3ξ1

, (5.15)

M31 =−q(1)12

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′

−1

2
q
(1)
12 h1

∫
X

X ′ 2 exp(−i
√
3ξ1X

′)dX ′ +
T

i
√
3ω3ξ21

,

M32 =−q(1)12

∫
X

X ′ exp(2ω3ξ1X
′)dX ′

−1

2
q
(1)
12 h2

∫
X

X ′ 2 exp(2ω3ξ1X
′)dX ′,

M33 = 1 +
1

2
q
(1)
12 ω2h1

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′,

M34 =
1

2
q
(1)
12 ω3h2

∫
X

X ′ exp(2ω3ξ1X
′)dX ′,

M41 =−q(2)13

∫
X

X ′ exp(−2ω2ξ1X
′)dX ′

−1

2
q
(2)
13 h1

∫
X

X ′ 2 exp(−2ω2ξ1X
′)dX ′,
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M42 =−q(2)13

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′

−1

2
q
(2)
13 h2

∫
X

X ′ 2 exp(−i
√
3ξ1X

′)dX ′ − T

i
√
3ω2ξ21

,

M43 =
1

2
q
(2)
13 ω2h1

∫
X

X ′ exp(−2ω2ξ1X
′)dX ′,

M44 = 1 +
1

2
q
(2)
13 ω3h2

∫
X

X ′ exp(−i
√
3ξ1X

′)dX ′.

Note that the time-dependence in the matrix elements appears both through
q
(k)
1j and, in contrast to the standard procedure, through the last terms in

M31 and M42 which appear because
∂q

(k)
1j

∂ξ1
̸= 0.

Since for any column j of the matrix M we have

exp(ωkξ1X)
∂

∂X
Mij = bi, k =

{
2, if i = 2n+ 1
3, if i = 2n+ 2

,

the sum for (5.11) is

2∑
l=1

[
exp(−ζlX)Ψl(X; ζl)−

1

2
hl
∂

∂ζl
exp(−ζlX)Ψl(X; ζl)

]
=

1

detM

∂ detM

∂X
.

Finally, from the relation (5.11), the following key relationship may be ob-
tained

W (X)−W (−∞) = 3
∂

∂X
ln(detM(X)). (5.16)

6. Calculating the determinant of the matrix M

We will prove that the determinant of the matrix M is given by

detM =

[
1 +

(
s1 + ir1

{
X − T

3ξ21

})
exp(θ1) + p1 exp(2θ1)

]2
, (6.1)
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where

s1 = c1

(
1 +

h

2ξ1

)
, r1 =

√
3

2
hc1, p1 = − h2c21

3 · 24ξ21
, (6.2)

c1 =
β1

−i2
√
3ξ1

, θ1 = −i
√
3ξ1X +

T

i
√
3ξ1

.

Since the singularities occur in pairs, detM is to be a perfect square for
some auxiliary function F . This statement is not proved directly. However,
numerical calculations using the software Maple showed that the matrix M
has two pairs of equal eigenvalues λ

(M)
i (i = 1 . . . 4), i.e. λ

(M)
1 = λ

(M)
2 ,

λ
(M)
3 = λ

(M)
4 . It is known that the coefficient in O(λ2) in the eigenfunction

(eigenpolynomial?) of the [4× 4] matrix is written

4∑
i,j=1
i<j

det

(
Mii Mij

Mji Mjj

)
.

On the other hand, under conditions λ
(M)
1 = λ

(M)
2 , λ

(M)
3 = λ

(M)
4 this coefficient

is equal to 2λ
(M)
1 λ

(M)
3 +

(
λ
(M)
1 + λ

(M)
3

)2

. Thus, we have the relationship

4∑
i,j=1
i<j

det

(
Mii Mij

Mji Mjj

)
= 2λ

(M)
1 λ

(M)
3 +

(
λ
(M)
1 + λ

(M)
3

)2

. (6.3)

In as much as TrM =
4∑

i=1

Mii = 2
(
λ
(M)
1 + λ

(M)
3

)
, and detM =

(
λ
(M)
1 λ

(M)
3

)2

,

the relationship (6.3) enables us to find the auxiliary function F =
√
detM

as follows:

F (X) =
√
detM =

1

4

4∑
i,j=1
i<j

MiiMjj −
1

2

4∑
i,j=1
i<j

MijMji −
1

8

4∑
i=1

M2
ii. (6.4)

Omitting the cumbersome calculation, we finally obtain the relation (6.1).
There are three constants, namely ξ1, h which are are real, and β1 which

could be complex in the general case.
The substitution of the relation (6.4) into (5.16) and the taking into

account of the T–evolution of the spectral data for the VPE [10] (see also

19



(2.16)) allows one to find the solution for the special continuum spectrum
(4.6), (4.7) as

W (X,T )−W (−∞) = 6
∂

∂X
ln(F (X,T )). (6.5)

The problem of selecting the real solution from the complex relation (6.5) is
open for study.

7. The solution for discrete spectral data with two-multiple poles

The results for the continuum part of the spectral data obtained in Sec. 5
and Sec. 6 can be reduced to the bound state spectrum since the relationships
(3.14) and (5.1) are similar to each other. The formal replacements

h→ ih, ξ1 → iξ1 (7.1)

lead to the solution (5.16) of the VPE for the discrete spectrum with two-
multiple poles (3.14), namely

W (X,T )−W (−∞) = 6
∂

∂X
ln(F (X,T )) (7.2)

with auxiliary function

F (X,T ) = 1 +

(
s2 + r2

{
X +

T

3ξ21

})
exp(θ2) + p2 exp(2θ2) , (7.3)

s2 = c2

(
1 +

h

2ξ1

)
, r2 = −

√
3

2
hc2 , p2 = − h2c22

3 · 24ξ21
,

c2 =
β1

2
√
3ξ1

, θ2 =
√
3ξ1X − T√

3ξ1
.

The constants ξ1, h are real. There is one arbitrary constant β1. It is to be
real for a real solution.

Note that the auxiliary function F is associated with the τ -function (see,
for example, [28–30]).

By taking into account the transformation (7.1), we can apply all math-
ematical manipulations stated in Sec. 5 and Sec. 6 to the discrete part of the
spectral data.
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Since p2 < 0 for arbitrary real β1, we have lim
X→−∞

F = 1, and lim
X→+∞

F =

−∞, hence there is Xr such that F (Xr) = 0. Thus the real solution (7.2)
with (7.3) is a singular function.

If we determine the value β1 as an imaginary one, the solutions will be
smooth but complex. The selection of the real solutions from complex ones
is an open problem.

8. Conclusion

Using the VPE as an example, we have shown how, in the IST method, to
take into account the two-multiple poles, among single poles, in the discrete
part of the spectral data. The special line spectrum of continuum states in
the IST method, for which the mathematical procedure is similar to that
for the discrete spectrum for two-multiple poles, is considered as well. New
solutions are obtained and verified by means of direct substitution into the
initial equation by Maple software. The account of the time-dependence is
different from the standard procedure.

The important problem which remains is finding the connection between
the Lax pairs for the VPE and for the VE, and can be a matter for scientific
enquiry in future. This problem is difficult because the solutions of the VPE
are single-functions, while the loop-like solutions of the VE can usually be
expressed in parametric form only.
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