Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Electrowetting controls the deposit patterns of evaporated salt water nanodroplets

Zhang, Jun and Borg, Matthew K. and Ritos, Konstantinos and Reese, Jason M. (2016) Electrowetting controls the deposit patterns of evaporated salt water nanodroplets. Langmuir, 32 (6). pp. 1542-1549. ISSN 0743-7463

[img]
Preview
Text (Zhang-etal-Langmuir2016-Electrowetting-controls-the-deposit-patterns)
Zhang_etal_Langmuir2016_Electrowetting_controls_the_deposit_patterns.pdf
Final Published Version
License: Other

Download (6MB) | Preview

Abstract

So-called “coffee-ring” stains are the deposits remaining after complete evaporation of droplets containing non-volatile solutes. In this paper we use Molecular Dynamics to simulate the evaporation of salt water nanodroplets in the presence of an applied electric field. We demonstrate, for the first time, that electrowetted nanodroplets can produce various deposit patterns, which vary substantially from the original ring-like deposit that occurs when there is no electric field. If a direct current (DC) electric field with strength greater than 0.03 V/Å is imposed parallel to the surface, after the water evaporates the salt crystals form a deposit on the substrate in a ribbon pattern along the field direction. However, when an alternating current (AC) electric field is applied the salt deposit patterns can be either ring-like or clump, depending on the strength and frequency of the applied AC field. We find that an AC field of high strength and low frequency facilitates the regulation of the deposit patterns: the threshold electric field strength for the transition from ring-like to clump is approximately 0.006 V/Å. These findings have potential application in fabricating nanostructures and surface coatings with desired patterns.