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ABSTRACT

The ion-channel laser (ICL) has been proposed as an alternative to the free-electron laser (FEL), replacing
the deflection of electrons by the periodic magnetic field of an undulator with the periodic betatron motion
in an ion channel. Ion channels can be generated by passing dense energetic electron bunches or intense laser
pulses through plasma. The ICL has potential to replace FELs based on magnetic undulators, leading to very
compact coherent X-ray sources. In particular, coupling the ICL with a laser plasma wakefield accelerator would
reduce the size of a coherent light source by several orders of magnitude. An important difference between
FEL and ICL is the wavelength of transverse oscillations: In the former it is fixed by the undulator period,
whereas in the latter it depends on the betatron amplitude, which therefore has to be treated as variable. Even
so, the resulting equations for the ICL are formally similar to those for the FEL with space charge taken into
account, so that the well-developed formalism for the FEL can be applied. The amplitude dependence leads to
additional requirements compared to the FEL, e.g. a small spread of betatron amplitudes. We shall address these
requirements and the resulting practical considerations for realizing an ICL, and give parameters for operation
at UV fundamental wavelength, with harmonics extending into X-rays.
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1. INTRODUCTION

The free-electron laser (FEL)1, 2 produces highly coherent, ultra-short duration light pulses with extremely high
peak brilliance, and photon energies extending to above 10 keV. FELs are very useful for ultrafast time-resolved
studies of the structure of matter but require high energy electron beams and long undulators, which makes
them large and expensive. In spite of the high cost, several large national and international X-ray FELs3 have
been, or are being, built because of their potential for delivering new science and applications.

FELs are based on the collective interaction of high energy electrons that are periodically deflected by an
undulator. The combined undulator and radiation fields give rise to a ponderomotive force that bunches the
electrons on a wavelength scale and results in intense coherent emission. The self-amplified spontaneous emission
(SASE) FEL2 produces coherent radiation by amplifying incoherent synchrotron radiation spontaneously emitted
by the initially uncorrelated electron beam.

However, magnetostatic undulators are not the only means of providing a periodic transverse force. Whittum
et al.4 suggested in 1990 that an ion-channel laser (ICL) could use the “betatron” motion of electrons in an
ion-channel to emulate an undulator, resulting in a very compact device.

An important difference between the FEL and ICL is the spatial periodicity of the transverse oscillations. In
the FEL, this is fixed by the undulator, whereas in the ICL it depends on the ion density, and both the electron
energy and oscillation amplitude. Due to this latter dependence, maintaining resonance with the emitted field in
an ICL requires a small amplitude spread, unless the transverse momentum is very small. Only the latter case
with very small amplitudes was treated in Refs.4–6. However, this is constrained to very low emittances, that are
very difficult to achieve in practice.

We have recently7 investigated the more general and realistic case of high transverse momentum, which
requires the betatron amplitude to be treated as variable. Assuming ultra-relativistic axial and high transverse
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momenta, but non-relativistic transverse velocity, we have derived a set of equations for the ICL in the steady-
state regime describing, on a slow timescale, the complex amplitude of the amplified wave, and the axial momenta,
betatron amplitudes, and ponderomotive phases of the oscillating electrons. Space-charge effects have been
included.

The study demonstrated that the form of the equations allows to apply the well-known scaling procedure for
the FEL, with an analogous fundamental coupling parameter ρ 2, and presented analytical and numerical results
presented showing that for small ρ the evolution of field amplitude, phase bunching, and axial momentum in the
ICL is virtually identical to the FEL. We have investigated how the growth of the radiation field depends on
the initial spreads of axial electron momentum and betatron amplitude and found that the admissible betatron
amplitude spreads lead to a small source size for the emitted radiation, which necessitates guiding to avoid
diffraction. Small overlap between the radiating electrons and the guided mode makes space-charge effects
relatively much more important than in the FEL.

Here, we concentrate on the practical requirements imposed by the conditions of small energy and amplitude
spreads on experimental realizations of the ICL. Small betatron amplitude spreads (compared to the mean
oscillation amplitude) can be achieved by injecting the electrons off-axis and/ or under an angle, as shown
schematically, for just two electrons, in Fig. 1. We show that at large values of ρ electron beams with realistic
amplitude spreads and emittance can be used to drive the ICL efficiently at fundamental wavelengths down to
UV, with harmonics extending into X-rays.

Figure 1. Schematic of electron injection into the ion channel. An offset in position (y(0)) and/ or momentum (p(0)) from
the channel axis (z-axis) leads to betatron oscillations (solid trajectory) in the parabolic potential V (y), with amplitude
rβ. The dashed trajectory is for an electron with slightly different initial conditions, but equal rβ. An electron bunch
with suitable initial distribution in phase space can have a small betatron amplitude spread.

2. ELECTRON AND FIELD DYNAMICS

In Ref.7, we have investigated the ion-channel laser with large variable oscillation amplitude. In the following,
we reproduce the assumptions underlying the model and the results to provide a basis for understanding the
operating conditions for an ICL:

The potential energy of a test electron in a cylindrical plasma channel with background density n0 along the
z-axis is

V = mω2
py

2/4, with ωp = [e2n0/(ε0m)]1/2

being the plasma frequency (where −e and m are the electron charge and mass, respectively, and ε0 is the
vacuum permittivity).
The Hamiltonian for motion in the y-z-plane is

H = γmc2 + V, with γ = [γ2
0 + (py + eA)2/(mc)2]1/2 and γ0 = [1 + p2z/(mc)2]1/2,

where py and pz are radial and axial components, respectively, of the canonical momentum, and

A = a0mc exp(−iφ)/(2e) + c.c.
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is the.vector potential of a propagating wave, linearly polarized along the y-axis, with phase φ = ωt − kz,
(ω ≈ ck), and slowly varying complex amplitude a0.

The test electron will perform betatron oscillations

y(t) = rβ cos(ωβt),

with amplitude rβ , frequency ωβ = ωp/(2γ)
1/2, and associated energy

Wβ = H − γ0mc2 = mω2
pr

2
β/4 ≈ γ0mv2y/2 + V ≪ γ0mc2,

with vy = (py + eA)/(γ0m) = −vβ sin(ωβt), and vβ = ωβrβ ≪ c.

The betatron energy evolves as Ẇβ = vyeȦ − mv2y γ̇0/2, where the dot designates the total time derivative,
dt = ∂t + vz∂z , and hence the betatron amplitude, on a slow scale, as

ṙβ = [ic ȧ0 exp(iθ) + c.c.]/[2ωp(2γ0)
1/2]− rβ γ̇0/(4γ0). (1)

The corresponding axial ponderomotive force is

ṗz|pond = ηhmωa0vβ exp(iθ)/4 + c.c.,

where θ = ωβt− φ is the ponderomotive phase. The factor

ηh = J0(Qβ)− J1(Qβ), with Qβ = krβvβ/(8c),

and where J0,1 are Bessel functions, accounts for the modulation of the axial velocity8:

vz = v̄z + vm cos(2ωβt),

with vm = v2β/(4c), v̄z = v0z − vm, and v0z = c[1− 1/(2γ2
0)].

Betatron oscillations and wave are in resonance when the ponderomotive phase is stationary. At the position
z(t) = z(0) + v̄zt of the electron, with time-averaged velocity v̄z, the phase evolves as

θ̇ = ωβ − ω(1− v̄z/c) ≈ ωβ − ω/(2γ̄2
z), with γ̄z = (1− v̄2z/c

2)−1/2 ≈ γ0/(1 + a2β/2)
1/2;

the betatron parameter aβ = γ0vβ/c is the normalized amplitude of transverse momentum. Resonance thus
occurs for ω = ωp(2γ

3
0)

1/2/[1 + γ0ω
2
pr

2
β/(4c

2)]. For aβ ≫ 1, which for very high γ0 is possible although vβ ≪ c,

θ̇ = ωp(2γ0)
−1/2 − ωω2

pr
2
β/(8γ0c

2), (2)

and the resonance condition is γ0 = γres, with

γres = ω2ω2
pr

4
β/(32 c

4). (3)

In an electron bunch, space-charge forces8 contribute to the slow longitudinal force; thus

γ̇0j =
[ηhωvβj

4c
a0 − iηf

ω2
b

ω
〈exp(−iθ)〉

]

exp(iθj) + c.c., (4)

where in the space-charge term, proportional to ω2
b = ω2

p nb/n0, where nb is the density in the bunch, the angled
brackets denote an average over the electrons in a slice; ηf = min(σ(y)/〈rβ〉, 1) accounts for the finite width σ(y)
of the electron bunch.

The radiation from these electrons contributes to the wave amplitude:

(∂t + c∂z)a0 = −ηhηmηfω
2
b 〈vβ exp(−iθ)〉/(2ωc). (5)
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Here ηh, defined above, accounts for the reduced emission at the fundamental frequency of the harmonic spec-
trum8. For a planar source, the amplitude of the ℓth harmonic evolves as

(∂t + c∂z)a
(ℓ)
0 ≈ −ηmηfω

2
b 〈vβFℓ(Qβ) exp(−iℓθ)〉/(2ℓωc), with Fℓ(Q) = J(ℓ−1)/2(ℓQ)− J(ℓ+1)/2(ℓQ).

The resulting spectrum has a synchrotron-like envelope, with critical frequency ωc ≈ 3a3βω/8. In resonance,

Qβ = a2β/(4 + 2a2β); ηh ≡ F1(Qβ) ≈ 0.7 for aβ ≫ 1. ηm accounts for the spatial overlap of current density and
radiation mode.

In the following, we neglect slippage between electrons and wave, as in the steady-state FEL regime2, thus

dt ≈ ∂t + c∂z . Combining Eqs. (1) and (5) then yields 〈γ−1/2
0 dt(γ

1/2
0 r2β)〉 = 0, implying that 〈aβrβ〉 ∝ 〈γ1/2

0 r2β〉
is conserved if correlations between electron energy and ponderomotive phase can be neglected.

3. FEL SCALING

Neglecting slippage, Eqs. (1), (2), and (4), for each electron, and (5) form a closed set of equations, which are
similar to the FEL equations2. In analogy to the FEL-parameter, we define

ρ = [ηω2
bR

2
β/(8γ̃0c

2)]1/3 = [η(nb/n0)ṽ
2
β/(4c

2)]1/3 ≈ 0.13[ηmηf (nb/10
18 cm−3)(Rβ/µm)2/γ̃0]

1/3, (6)

where γ̃0 = 〈γ0〉(0) and Rβ = 〈γ1/2
0 r2β〉1/2/γ̃

1/4
0 are the initial average energy and betatron amplitude, respec-

tively; furthermore, ṽβ = ω̃βRβ , ω̃β = ωp/(2γ̃0)
1/2, and η = η2hηmηf .

For typical experimental parameters, nb = 1016...1020 cm−3, Rβ = 1...10µm, γ̃0 = 102...103, ηm = 0.01...0.1,
and ηf = 10−6...0.1, we find ρ ≈ 6 · 10−6...0.13. Higher values of ρ could be obtained for relativistic transverse
velocities, which are beyond the scope of this study.
In the following, we use ηm ≈ 0.01 corresponding to propagation in a channel surrounded by underdense plasma,
which will be discussed below.

We scale the vector potential amplitude

ā0 = −ηha0/(ρ
2ãβ), with ãβ = γ̃0ṽβ/c,

and define relative deviations qj = γ0,j/γ̃0−1 of the energies γ0,j, and sj = rβ,j(γ0,j/γ̃0)
1/4/Rβ−1 of the betatron

amplitudes rβ,j , of individual electrons from the initial averages, and the average detuning from resonance
δ ≡ (γ̃0/ γres|rβ=Rβ

)1/2 − 1. With this, the evolution equations become

ā′0 = (1 + δ)〈(1 + s) exp(−iθ)/(1 + q)3/4〉, (7)

θ′j = P̄j ≡ ρ−1{(1 + qj)
−1/2 − (1 + sj)

2/[(1 + δ)(1 + qj)
3/2]}, (8)

q′j = −ρā0(1 + sj) exp(iθj)/[(1 + δ)(1 + qj)
3/4]− 2iρ2(1 + δ)〈exp(−iθ)〉 exp(iθj)/(η2hηm) + c.c., (9)

s′j = −i[ρ2/(4ηh)]ā
′

0[exp(iθj)/(1 + qj)
1/4] + c.c., (10)

where the prime denotes the derivative with respect to the scaled time

τ = ρω̃βt.

Eqs. (9) and (10) suggest scaling

q̄j = qj/ρ, s̄j = 2ηhsj/ρ
2, and δ̄ = δ/ρ.

If qj , sj, and δ are small compared to unity, Eqs. (7) to (10) may be linearised and, using P̄j ≈ q̄j−ρs̄j/ηh+ δ̄,
the last two merged to obtain

ā′0 = 〈exp(−iθ)〉, (11)

θ′j = P̄j , (12)

P̄ ′

j = −[ā0 + iρ̃〈exp(−iθ)〉] exp(iθj) + c.c., (13)
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with
ρ̃ = ρ(4/ηm − ηh)/(2η

2
h).

Except for this coefficient (rather than ρ), these eqs. are nearly identical to those of the FEL with space-charge8.
However, due to the small value of ηm, space-charge effects are relatively enhanced.

For small signal, assuming ā0 ∝ exp(i[κ− δ̄]τ) results in the secular equation

κ3 − κ2δ̄ − κρ̃+ 1 + ρ̃δ̄ = 0,

which is similar to that for the FEL2. For δ̄ below a threshold value, there is an unstable solution with amplitude
growing exponentially at a rate Γ = ρ ω̃β|Im(κ)|, which gives the gain of the ICL. For small δ̄ and ρ̃,

Γ̄ = Γ/(ρ ω̃β) ≈
√
3[1− ρ̃/3− (δ̄2 − 2ρ̃δ̄)/9]/2.

4. NUMERICAL RESULTS

We have numerically solved the set of Eqs. (7) to (10) for different values of ρ and δ, with small initial field,
|ā0|(0) = 10−3, and vanishing initial bunching b ≡ 〈(1 + s) exp(−iθ)/(1 + q)3/4〉 = 0 (thus ā′0(0) = 0). We varied
the initial spreads of momenta, σ(q̄(0)), and of betatron amplitudes, σ(s̄(0)) (where σ(f) = (〈f2〉 − 〈f〉2)1/2) to
explore their effect on the interaction and determine the threshold conditions for a realizable ICL.
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Figure 2. Evolution of spreads of momenta, σ(q̄), and amplitudes, σ(s̄), and corresponding field intensity |ā0|
2, for ρ = 0.01

and varying initial conditions: (a) σ(q̄) and (b) |ā0|
2 for σ(s̄(0)) = 21 and σ(q̄(0)) = 0.3 (solid), σ(q̄(0)) = 0.6 (dashed),

σ(q̄(0)) = 0.9 (dotted), and σ(q̄(0)) = 1.2 (dot-dashed); (c) σ(s̄) and (d) |ā0|
2 for σ(q̄(0)) = 0.3 and σ(s̄(0)) = 21 (solid),

σ(s̄(0)) = 42 (dashed), σ(s̄(0)) = 63 (dotted), and σ(s̄(0)) = 84 (dot-dashed ).

Figure 2 shows the spreads of momentum σ(q̄), and betatron amplitude σ(s̄) as functions of τ for varying
initial values, together with the corresponding field intensities, for ρ = 0.01 and δ̄ = 2.0, which is optimized for
fastest growth. For small initial spreads, the evolution of intensity |ā0|2, bunching |b|, and average |〈q̄ 〉| and
spread σ(q̄) of the momentum deviations is similar to the conventional FEL, with stages of lethargy, exponential
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growth, and saturation, where each of the scaled variables is of order unity and oscillates quasi-periodically9. If
σ(q̄) initially is close to its saturation value, ∼ 2.0, it remains approximately constant, and the growth of the
field is suppressed. Interestingly, the amplitude spread σ(s̄), which does not play a role in the FEL but affects
the resonance in the ICL, evolves in an analogous way to σ(q̄). However, the threshold for σ(s̄(0)) to suppress
the growth of |ā0|2 is ∼ 0.7/ρ; the contribution from σ(s̄) to the relevant spread σ(P̄ ) is scaled with ρ/ηh, cf.
Eq. (12).

Varying ρ from 0 to 0.05, while maintaining optimized detuning, space-charge effects increase the scaled
saturation intensity by about one third, and reduce the scaled gain coefficient by one half; for the unscaled
quantities, these reductions are more than outweighed by their respective scaling, a0 = −ρ2ãβ ā0 and Γ = ρ ω̃βΓ̄.
The linearization yielding Eqs. (11) to (13) is valid for ρ < 0.003. Figure 3 shows the dependence of the growth
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Figure 3. Contours of growth rate Γ̄ = d ln |ā0|/dτ for varying σ(q̄(0)), and σ(s̄(0)), for (a) ρ = 0.005, δ̄ = 1.5, and (b)
ρ = 0.05, δ̄ = 5.5.

rate on initial momentum and amplitude spreads. These plots (and similar ones for the saturation amplitude)
yield an approximate condition for amplification in the ICL:

[σ(γ0(0))/γ̃0]
2 + [σ(rβ(0))/Rβ]

2 ≤ (1 + 10ρ)2ρ2, (14)

i.e. the relative spread, between different electrons, in the variable P̄ , Eq. (8), must be less than ∼ ρ. These
admissible spreads imply optimum detuning δ. The condition ∆γz/γz < ρ in Ref.10, referring to variations of
the “axial energy” within a cycle, does not apply, since these are taken into account by the emission efficiency
ηh for the fundamental frequency of the harmonic spectrum.

The dependence on the relative amplitude spread in condition (14) suggests scaling the filling factor with the
FEL-parameter: ηf = ρη̄f , with η̄f ≈ 0.5, say. This results in a new scaling for ρ:

ρ = [η2hηmη̄fω
2
bR

2
β/(8γ̃0c

2)]1/2 ≈ 3.3 · 10−3[(nb/10
18 cm−3)/γ̃0]

1/2(Rβ/µm). (15)

For the parameters given after Eq. (6), ρ ≈ 10−5...0.03.

5. PRACTICAL CONSIDERATIONS

Whittum’s original proposal4 for the ICL would be very difficult to realize experimentally, at least for high γ̃0,
due to the restriction to very small transverse momenta, aβ ≪ 1, which would also lead to very low gain and
low efficiency and thus unfeasibly long devices. However, our study shows that large transverse momenta can
realistically be used, by explicitly taking into account the effect of the betatron amplitude on the resonance,
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which allows the coupled radiation-matter equations to be cast in a form similar to that of the conventional
FEL.

Experimentally, an ion channel can be realized by focusing a laser pulse with relativistic amplitude EL >
mωLc/e (where ωL is the laser frequency) into plasma. Its ponderomotive force displaces the electrons from its
path and a “bubble” structure is formed, which provides the required transverse field in addition to a longitudinal
wakefield11. To minimize the variation of γ̃0, the electron bunch should be close to dephasing, at the centre of
the “bubble”; as their velocities are different this limits the useful propagation length.

Figure 4. Schematic of initial phase-space distributions of electron bunches injected off-axis (a) and under an angle (b),
respectively, with different widths σ(y) and velocity spreads σ(vy), but resulting in equal betatron amplitude Rβ and
spread σ(rβ) ≪ Rβ.

Figure 4 shows possible initial phase-space distributions resulting in low amplitude spread.

Small σ(rβ)/Rβ , ∼ 0.7ρ, can be achieved by injecting electrons either off-axis at a distance Rβ , with width
and range of betatron phases

σ(y) ≈ 0.5ρRβ and σ(ϕβ) ≈ σ(vy)/ṽβ ≤ 0.8
√
ρ,

respectively, or at an angle arctan(ṽβ/c), with

σ(vy) ≈ 0.5ρṽβ and σ(y) ≈ 0.8
√
ρRβ .

A possible way to offset an electron bunch trapped in the “bubble” from the axis would be to perturb the
propagation direction of the laser and thus of the “bubble”12.

The normalized emittance,
ǫyn ≈ πγ̃0σ(y)σ(vy)/c ≤ 0.4πρ3/2ãβRβ,

sets a lower limit for the emitted fundamental wavelength: Using Eqs. (3) and (15), the latter is given by

λ = πω̃βR
2
β/(2c) ≥ ǫyn/(0.8ρ

3/2γ̃0) = 6.6 · 103ǫyn/[(nb/10
18 cm−3)3/4(Rβ/µm)3/2γ̃

1/4
0 ].

To avoid emittance growth in the x-direction, perpendicular to the polarization, the bunch should be matched
to the focusing potential; for ǫxn = ǫyn this results in a width σ(x) ≤ 0.6ρ3/4Rβ . The source size is thus
πσ(x)Rβ/4 ≤ 0.5ρ3/4R2

β , and the Rayleigh length 0.5ρ3/4R2
β/λ = 0.05ρ3/4λβ . This is shorter than the gain

length, lg = λβ/(
√
3πρ) by a factor of ∼ 0.3ρ7/4, making some form of guiding necessary. Optical guiding is

naturally provided by the plasma channel, since the refractive index in the channel (≈ 1) is higher than in

the surrounding plasma (
√

1− ω2
p/ω

2). An analysis similar to Ref.13 shows that the plasma channel can guide

high-frequency modes if its radius exceeds c/ωp. For ω ≫ ωp, the overlap factor of an electron bunch oscillating
inside the channel, with amplitude matched to the channel radius, with the lowest order mode is ηm ≈ 0.01.

Electron bunches can be accelerated in laser wakefields to γ̃0 = 200 − 300 with relative energy spread as
small as σ(γ0(0))/γ̃0 ∼ 0.01 14, and normalized emittance ǫyn ∼ 10−6 πm15. This emittance together with
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nb = 1020 cm−3, Rβ = 10µm, and γ̃0 = 300, thus ρ = 0.02, yields λ ≥ 5µm; for the shortest wavelength,
ω̃β = 1013 s−1, ωp = 2.4 · 1014 s−1, n0 = 1.8 · 1019 cm−3, ṽβ = 108ms−1 = 0.33c, ãβ = 100, and gain length
lg = 1.7mm.
The critical harmonic number of the synchrotron-like spectrum is hc = 3a3β/8 = 3.8 · 103, resulting in a critical

wavelength λc = 1.3 ·10−11m. These latter values are for guidance only, as the high oscillation amplitude, larger
than the bunch width, leads to a modified emission spectrum.
Improving the emittance to ǫyn ∼ 4 · 10−8 πm, as proposed in Ref. 16, allows λ ≥ 2 · 10−7m; in this case,
ω̃β = 4 · 1011 s−1, ωp = 9.6 · 1012 s−1, n0 = 2.7 · 1016 cm−3, ṽβ = 4 · 106ms−1 = 0.013c, ãβ = 4, lg = 4.5 cm,
hc = 24, and λc = 8.3 · 10−9m.
The current in these cases is I ≈ 600A, and the efficiency of converting kinetic electron energy into radiated
energy, ρ|ā20| ≈ 2% at saturation, giving a peak power, at the fundamental wavelength, of 2 GW and respective
photon rates of 5 · 1028 s−1 and 2 · 1027 s−1.
Increasing nb to 1.5 ·1020 cm−3 and Rβ to 15µm, with γ̃0 = 200, results in ρ = 0.049. For emittance ǫxn = ǫyn =
10−6 πm and ωp = 3.4 · 1013 s−1, the fundamental wavelength is λ = 2µm and the gain length 4 mm. In this
case, ãβ = 17 and λc = 1.1 · 10−9m; the current is 10 kA, the peak power, emitted at λ, 50 GW, and the photon
rate 5 · 1029 s−1.

A potential alternative to the essentially planar electron motion described so far is a spiralling trajectory
initiated by an injection offset in one direction, but with a momentum component perpendicular to this and
the channel axis. In this case, parts (a) and (b) of Fig. 4 correspond to the initial distributions in y-vy- and
x-vx-phase space, respectively. If the betatron amplitudes in both directions are equal, the electron bunch can
interact with a circularly polarized wave. Due to the constant magnitude of the transverse momentum in this
case, coupling at the fundamental frequency is improved (ηh = 1). While this increases the FEL-parameter and
reduces the fundamental wavelength by factors of ∼ 1.4 and ∼ 0.6, respectively, it also makes the synchrotron-like
spectrum disappear.

6. CONCLUSIONS

Building on our recent study7 of the ion-channel laser, where we have extended the formalism for the conventional
FEL to allow for variable betatron amplitudes and shown the similar behaviour of both devices, we have here
discussed possible configurations and parameters for realizing an ICL in an experiment. In addition to the
requirement of small engine spread known from the FEL, in the ICL the relative amplitude spread must also
be less than the analogous FEL parameter ρ. This can be achieved by using oscillation amplitudes exceeding
the transverse beam size. Realistic values of ρ, up to 0.03, permit operating an ICL down to UV fundamental
wavelengths, with harmonics potentially extending to X-rays.
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