Delcourt, Cécile and Cougnard-Grégoire, Audrey and Boniol, Mathieu and Carrière, Isabelle and Doré, Jean-François and Delyfer, Marie-Noëlle and Rougier, Marie-Bénédicte and Le Goff, Mélanie and Dartigues, Jean-François and Barberger-Gateau, Pascale and Korobelnik, Jean-François (2014) Lifetime exposure to ambient ultraviolet radiation and the risk for cataract extraction and age-related macular degeneration : the Alienor Study. Investigative Ophthalmology and Visual Science, 55 (11). pp. 7619-7627. ISSN 0146-0404 , http://dx.doi.org/10.1167/iovs.14-14471

This version is available at https://strathprints.strath.ac.uk/55332/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Lifetime exposure to ambient ultraviolet radiation and the risk for cataract extraction and age-related macular degeneration: the Alienor Study

Cécile Delcourt¹,², Audrey Cougnard-Grégoire¹,², Mathieu Boniol³, Isabelle Carrière⁴,⁵, Jean-François Doré⁶, Marie-Noëlle Delyfer¹,²,⁷, Marie-Bénédicte Rougier⁷, Mélanie Le Goff¹,², Jean-François Dartigues¹,², Pascale Barberger-Gateau¹,², Jean-François Korobelnik¹,²,⁷.

1 : Univ. Bordeaux, F-33000 Bordeaux, France ;
2 : INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
3 : International Prevention Research Institute, Lyon, France
4 : Inserm, U1061, Montpellier, F-34093 France
5 : University Montpellier I, Montpellier, F-34000 France
6 : Centre de Recherche en Cancérologie de Lyon, UMR Inserm U1052 - CNRS U5286, Lyon, F-69008, France
7 : CHU de Bordeaux, Service d’Ophtalmologie, Bordeaux, F-33000, France

Corresponding author/reprint request: Cécile Delcourt, Inserm U897, ISPED, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex. Tel: +33 5 47 30 42 04; Fax: +33 5 57 57 1486; email: cecile.delcourt@isped.u-bordeaux2.fr
Financial support: This study received financial support from Laboratoires Théa (Clermont-Ferrand, France) and Fondation Voir et Entendre (Paris, France). Laboratoires Théa participated in the design of the study, but no sponsor participated in the collection, management, statistical analysis and interpretation of the data, nor in the preparation, review or approval of the present manuscript. Eurosun study received a funding from the European Union’s Public Health Executive Agency under Grant Agreement No. 2006320 (EUROSUN project).
ABSTRACT

Purpose: While exposure to ultraviolet radiation is a recognized risk factor for cataract, its association is more controversial with age-related macular degeneration (AMD). We report the associations of lifetime exposure to ambient ultraviolet radiation (UVR) with cataract extraction and AMD.

Methods: The Alienor Study is a population-based study of 963 residents of Bordeaux (France), aged 73 years or more. Lifetime exposure to ambient UVR was estimated from residential history and Eurosun satellite-based estimations of ground UVR. It was divided in 3 groups (lower quartile, intermediate quartiles, upper quartile), using the intermediate quartiles as the reference. Early and late AMD were classified from retinal colour photographs. Cataract extraction was defined as absence of the natural lens at slit lamp.

Results: After multivariate adjustment, subjects in the upper quartile of lifetime ambient UVR exposure were at increased risk for cataract extraction (OR=1.53, 95 % confidence interval (CI): 1.04-2.26, p=0.03) and for early AMD (OR= 1.59, 95 % CI: 1.04-2.44, p=0.03), by comparison with subjects in the intermediate quartiles. Subjects in the lower quartile of UVR exposure were also at increased risk for early AMD (OR=1.69, 95 % CI: 1.06-2.69, p=0.03), by comparison with those with medium exposure. Associations of late AMD with UVR exposure was not statistically significant.

Conclusions: This study further confirms the increased risk for cataract extraction in subjects exposed to high ambient UVR. Moreover, it suggests that risk for early AMD is increased in subjects exposed to high UVR, but also to low UVR, by comparison with medium exposures.

Keywords: macular degeneration, cataract, light exposure, ultraviolet radiation, risk factors, epidemiology
Cataract and age-related macular degeneration (AMD) are leading causes of blindness and visual impairment worldwide. Both of these diseases are multifactorial, involving non-modifiable (e.g. age, gender, genetics) and modifiable factors. The control of these modifiable factors may represent a preventive strategy for decreasing the incidence of these diseases and of the related visual impairment. Among other modifiable factors (in particular smoking and nutrition), the potential role of sunlight exposure in the aetiology of these diseases has been investigated. The absorption of solar radiations by biological tissues results in photochemical reactions and the formation of reactive oxygen species (including singlet oxygen) which may damage all cellular components (lipids, proteins, DNA). The part of solar radiations that interacts with the eye is known as “optical radiations” and includes wavelengths from ultraviolet (100-400 nm), visible light (400-760 nm) to infrared (760-10,000 nm). Ultraviolet radiations represent the most energetic part of optical radiations, and are thus responsible for a large part of photochemical damage.

The crystalline lens is particularly exposed to phototoxic damage, because it absorbs most of ultraviolet radiations (UVR), together with the cornea. This has been confirmed by epidemiological studies, which have shown consistent associations of cataract (resulting from lens opacification) with sunlight exposure and, in particular, UVR exposure. Ultraviolet exposure has been consistently associated with the risk for cataract in numerous studies, performed in different continents with different methodologies, showing dose-dependent relationships, and specific associations with cortical cataracts. It is now a recognized risk factor for cataract.

By contrast, epidemiological data regarding the associations of light exposure with the risk for AMD remain scarce and inconsistent. Several studies have suggested an increased risk for AMD in subjects highly exposed to sunlight, but others showed no significant associations and some even suggested a decreased risk for AMD in the most exposed subjects.

In the present study, we report the associations of lifetime exposure to ambient UVR with the risk for cataract extraction and AMD, in the framework of a population-based cross-sectional study of elderly subjects from the South of France.
Subjects and Methods

Study aims

The Alienor (Antioxydants, Lipides Essentiels, Nutrition et maladies OculaiRes) Study is a population-based prospective study aiming at assessing the associations of age-related eye diseases (AMD, glaucoma, cataract, dry eye syndrome) with nutritional factors (in particular antioxidants, macular pigment and fatty acids). It also takes into account other major determinants of eye diseases, including gene polymorphisms, lifestyle and vascular factors.

Study sample

Subjects of the Alienor Study were recruited from an ongoing population-based study on the vascular risk factors for dementia, the Three City (3C) Study. The 3C Study included 9,294 subjects aged 65 years or more from three French Cities (Bordeaux, Dijon and Montpellier), among which 2,104 were recruited in Bordeaux. Subjects were contacted individually from the electoral rolls. They were initially recruited in 1999-2001 and followed-up about every two years since. The Alienor study consists in eye examinations, which are offered to all participants from the third follow-up (2006-2008) of the 3C cohort in Bordeaux. Among the 1,450 participants re-examined in 2006-2008, 963 (66.4 %) participated in the first eye examination of the Alienor Study.

This research followed the tenets of the Declaration of Helsinki. Participants gave written consent for the participation in the study. The design of this study has been approved by the Ethical Committee of Bordeaux (Comité de Protection des Personnes Sud-Ouest et Outre-Mer III) in May 2006.

Eye examination

The eye examination took place in the Department of Ophthalmology of the University Hospital of Bordeaux. It included a recording of ophthalmological history, measures of visual acuity, refraction, two 45° non mydriatic color retinal photographs (one centred on the macula, the other centred on the optic disc), measures of intraocular pressure and central corneal thickness and tear film break-up time test. A self-completed questionnaire on risk factors specific to the eye (including residential history for...
estimation of light exposure) and dry eye symptoms was filled at home and brought back on the day of
the eye examination.

Retinal photographs were performed using a high-resolution digital non mydriatic retinograph (TRC
NW6S, Topcon, Japan). Photographs were interpreted in duplicate by two specially trained
technicians. Inconsistencies between the two interpretations were adjudicated by a retina specialist for
classification of AMD and other retinal diseases, or by a glaucoma specialist for classification of
glaucoma. All cases of late AMD, other retinal diseases and glaucoma were reviewed and confirmed
by specialists. Graders had no access to light exposure variables, or any of the potential confounders.

Cataract extraction

In each eye, cataract extraction was defined as the absence of the natural crystalline lens at slit lamp.

Classification of AMD

Retinal photographs were interpreted according to the international classification and to a
modification of the grading scheme used in the Multi-Ethnic Study of Atherosclerosis for drusen size,
location and area. Eyes were classified according into one of the three exclusive groups: no AMD,
early AMD, late AMD.

Late AMD was defined by the presence of neovascular AMD or geographic atrophy within the grid
(3000 microns from the foveola). Neovascular AMD included serous or hemorrhagic detachment of the
retinal pigment epithelium (RPE) or sensory retina, subretinal or sub-RPE hemorrhages and fibrous
scar tissue. Geographic atrophy was defined as a discrete area of retinal depigmentation, 175 microns
in diameter or larger, characterized by a sharp border and the presence of visible choroidal vessels.
Five cases of late AMD had no gradable photographs and were classified using ophthalmological
history of AMD and AMD therapy (in particular intravitreal antiangiogenic agents and photodynamic
therapy), and confirmed by their treating ophthalmologist.

Early AMD was defined by the presence of soft distinct drusen and/or soft indistinct drusen and/or
reticular drusen and/or pigmentary abnormalities. Soft distinct and indistinct drusen were larger than
125 microns in diameter and with uniform density and sharp edges or decreasing density from the center outwards and fuzzy edges, respectively. Pigmentary abnormalities were defined as areas of hyperpigmentation and/or hypopigmentation (without visibility of choroidal vessels).

Ambient UVR exposure

For each participant, average annual ambient UVR exposure was estimated using the residential history, by weighting annual ambient UVR at each location by the time spent at that location. Residential history from birth (locations, time spent at each location) was self-declared up to the first eye examination (2006-2008). In France, locations were divided in 101 geographical areas, corresponding to the 101 administrative « departments » (95 in metropolitan France and 6 overseas departments). Concerning foreign countries, ambient UVR was generally estimated for the capital of the country, except when the capital was very off-centered, in which case a more central location was chosen. Very large countries (United States, China, etc) were excluded from this analysis, since an estimation of solar radiation in a single geographic location is meaningless.

Average annual ambient solar radiation was assessed for the first 65 years of life, since almost all subjects (97.3 %) lived in Bordeaux area beyond this age.

Ultraviolet radiation

In each location, UVR was extracted from Eurosun UV database www.eurosun-project.org. Briefly, UV irradiation levels were initially extracted from surface solar irradiance derived from the Meteosat satellite’s images. From these irradiation levels, the UV component was computed by a model which exploits the algorithm set up by the Royal Institute of Meteorology, Belgium, published in the European Solar Radiation Atlas (spectral model of Joukoff ESRA). The algorithm converts the total irradiance \(E \) into its spectral distribution \(E(\lambda) \), every 10nm, and gives estimates for total UV (280-400 nm), UVA (315-400 nm) and UVB (280-315 nm). The calculation of individual exposure assumes that the irradiation levels in different regions remained constant over the years. The information provided by Eurosun corresponds to the average of daily UV radiation over the period 1988-2007 for each location.
We conducted analysis of change in UV radiation over the period 1988-2007 in Eurosun maps and found only minor changes of less than 1% yearly change. This observations were in line with the results obtained from COST 726 which also reported a stability of UV irradiation in Europe for a period of 50 years of data up to 2002 (the project COST 726's report and details are available at http://www.med-physik.vu-wien.ac.at/uv/cost726/cost726.htm). So these analyses from Eurosun data and observation from COST 726 action are suggesting a stability of UV which let us assume no change over time. These estimates were available for European and North African countries, with a resolution of 5km. However, they are not available for other countries (Americas, Sub-saharian Africa, Asia, Oceania).

Estimation of missing ultraviolet radiation data using global solar radiation

In each location, global ambient annual solar radiation (a measure of solar energy including all wavelengths) was estimated using astronomical equations and the statistics of sunshine hours, using the same methodology as in the POLA Study [13]. Overall, global ambient annual solar radiation estimates were available in 116 locations (101 French departments, 7 European countries, 3 North African countries, 5 other countries). In 105 locations (95 French departments, 7 European countries, 3 North African countries), both UVR and global solar radiation (GSR) estimates were available. Pearson’s correlation coefficient between these two variables was 0.952. For the 11 areas with missing UVR but available solar radiation (6 French overseas departments and 5 countries), we thus estimated ambient UVR from global solar radiation, using linear regression modeling. The regression equation derived from the 105 locations with both UVR and GSR was: \(\text{UVR} = 5613.105 + 0.0729 \times \text{GSR} \)\(^2=0.91\). The same analyses were performed for UVA and UVB, leading to the following equations: \(\text{UVA} = 5467.398 + 0.0710 \times \text{GSR} \); \(\text{UVB} = 145.708 + 0.00189 \times \text{GSR} \).

Finally, estimates of UVR exposure still could not be estimated for some countries. When, for a given subject, the number of years spent in such countries was less or equal to 3 years, these countries were eliminated from the calculations. For 71 subjects, average ambient UVR was therefore calculated on 62, 63 or 64 years instead of 65. In addition, 113 subjects were excluded from the analyses because they had spent more than 3 years in countries where UVR could not be estimated.
Other variables

The following potential confounders have been selected, based on literature results reporting significant associations of AMD and/or cataract and/or light exposure with age, sex, educational level, diabetes, hypertension, asthma, oral corticosteroid use, smoking, physical activity, body mass index (BMI), plasma glucose and lipids, dietary intake of energy, antioxidants, lutein and zeaxanthin and omega3 fatty acids. We also included the two major genetic polymorphisms associated with AMD Complement Factor H (CFH) Y402H (rs1061170) and Age-Related Maculopathy Susceptibility 2 (ARMS2) A69S (rs10490924) polymorphisms. These genetic polymorphisms were also strongly associated with AMD in the Alienor study. By comparison with subjects homozygous for the most frequent allele (TT for CFH Y402H and GG for ARMS2 A69S), subjects homozygous for the less frequent allele (CC for CFH Y402H, TT for ARMS2 A69S) exhibited 5- to 15- fold increased risk for AMD. Heterozygous subjects (TC for CFH Y402H and GT for ARMS2 A69S) exhibit intermediate risks (2- to 5- fold increased risks). Indeed, all of these factors may represent confounders in the relationship of AMD with lifetime ambient UVR, since lifestyle (smoking, physical activity, diet), health conditions and genetic characteristics have been reported to vary according to geographical location, and thus with lifetime ambient UVR.

Data were collected during a face-to-face interview using a standardized questionnaire administered by a trained psychologist or nurse. At baseline (1999-2000), general data included: demographic characteristics, educational level and smoking. BMI (kg/m2) was calculated as weight/height2 using weight and height. Physical activity was assessed by 2 questions: “Do you practice sports?” (yes/no) and “Do you perspire when you practice sports?” (Never/sometimes/most of the time/always). A 3-level variable was computed to describe intensity of physical activity, as already published. Plasma glucose and lipids were measured at the Biochemistry Laboratory of the University Hospital of Dijon from baseline fasting blood samples. Dietary intake of energy, antioxidants, lutein and zeaxanthin and omega3 fatty acids were estimated from a 24h recall performed through face-to-face interview by specifically trained dietitians in 2001-2002. Genetic polymorphisms were determined by the Lille Génopôle, from the DNA samples collected at baseline (1999–2001).
Statistical methods

First, associations of ambient solar radiation with socio-demographic factors, lifestyle, biological and
dietary parameters were performed using chi-square test or analysis of variance.

Associations of cataract extraction and AMD with ambient UVR were estimated using logistic
Generalized Estimating Equations (GEE) models\(^{37}\) which allow taking into account the data from both
eyes and their intra-individual correlations. Adjusted odds-ratios were estimated using cataract
extraction or AMD as the dependent variable, and ambient UVR and potential confounders as the
independent variables. Ambient UVR was divided in three groups (lower quartile, intermediate
quartiles, upper quartile), the medium category being the reference. With regard to AMD, two models
were performed (for early and late AMD, respectively), subjects without any AMD being the reference
in both models. With regard to cataract, subjects without cataract extraction were the reference group.

With regard to cataract extraction, potential confounders retained in the analysis were known risk
factors for cataract\(^2\) (age, gender, smoking, diabetes, oral corticosteroid use and asthma) and factors
significantly associated with ambient UVR (at p<0.05). Similarly, with regard to AMD, potential
confounders retained in the analysis were well known risk factors, which are strongly associated with
AMD in our cohort (age, gender, smoking\(^30\), CFH\(^30\) and ARMS2\(^31\) polymorphisms, dietary intake of
omega3 fatty acids\(^36\) and factors significantly associated with ambient UVR (at p<0.05). No
collinearity was detected between the variables included in the final models. No major confounding
was detected (variation by more than 10 % of the estimates of the odds-ratios when deleting one
confounder from the models). All statistical analyses were performed using statistical software (SAS,

RESULTS

Figure 1 presents the distribution of annual ambient UVR exposures (total UV, UVA and UVB),
estimated from residential history. These variables showed important inter-individual variability,
ranging respectively, from 32.39 kJ/cm\(^2\) to 50.93 kJ/cm\(^2\), 31.55 kJ/cm\(^2\) to 49.61 kJ/cm\(^2\) and 0.81
kJ/cm\(^2\) to 1.32 kJ/cm\(^2\). The central peaks correspond to subjects who spent all their life in the
Bordeaux area. As shown in Table 1 for total UVR, these subjects constitute the middle group (intermediate quartiles), who were born and lived all their life in the South of France. By contrast, two thirds of subjects from the lower quartile of ambient solar radiation were born in Central or Northern France, where they spent about 23 years on average. Among subjects from the upper quartile, more than a quarter were born in Northern Africa and remained there for 32 years on average (corresponding to the independence of these countries in the 1960s) and 8.13 % were born in Southern Europe. Although the definition of the intermediate quartiles is narrow (39.649-40.173 kJ/cm²), there is significant variability, with a mean of 38.375 kJ/cm² in the lower quartile, compared with 42.718 kJ/cm² in the upper quartile. Similar findings were found for UVA and UVB (data not shown).

Socio-demographic, lifestyle and biological characteristics of participants appear different according to their lifetime solar exposure. As shown in Table 2, compared with subjects from the middle quartiles, subjects in the higher quartile were more often males (42.58 % versus 31.74 %) and tended to have a higher frequency of the TC genotype of CFH Y402H (47.12 % versus 37.43 %) and lower frequency of TT genotype of CFH Y402H (45.03 % versus 49.21 %), while subjects from the lower quartiles had a higher educational level (48.80 % with University degree versus 26.97 %) and tended to have a higher frequency of the TC genotype of CFH Y402H (47.15 % versus 37.43 %) and lower frequency of TT genotype of CFH Y402H (40.93 % versus 49.21 %). As shown in Table 3, both subjects from the upper and lower quartiles had more smoked during their life (18.36 % and 22.93 % having smoked more than 20 pack-years respectively), by comparison with intermediate exposures (12.50 %). Subjects in the upper quartile also had higher total energy intake (1835.7 Kcal/day versus 1678.2 Kcal/day). These variables (education, smoking, CFH Y402H genotypes and total energy intakes) were therefore considered as potential confounders in the analyses of association of solar radiation with cataract extraction and AMD.

Cataract extraction status was available in at least one eye of 958 subjects (99.5%). Of those, 837 had complete data for light exposure variables. In addition, 143 subjects had missing values in potential confounders, leaving 694 subjects in the fully adjusted models, representing 1388 eyes among which 542 had undergone cataract surgery. Participants with missing data were not significantly different from those without missing data, with regard to age, gender, ambient UVR or genetic polymorphisms (data not shown). As shown in Table 4, after adjustment for confounders, by comparison with
participants exposed to medium ambient total UVR, participants exposed to high ambient total UVR were at increased risk for cataract extraction (OR=1.53, 95 % CI: 1.04-2.26, p=0.03), while participants with low exposure had similar risk as those with medium exposures (0.75 (0.51-1.12)). Similar results were observed for UVA and UVB. Among the potential confounders included in the multivariate models, those significantly associated with cataract surgery were age (OR=1.18 for 1-year increase, 95 % CI: 1.13-1.22, p<0.0001), gender (OR=1.86 for females versus males, 95 % CI: 1.23-2.80, p=0.003), having smoked 20 pack-years or more (OR= 2.23, 95 % CI: 1.37-3.64, p=0.001), history of asthma (OR=1.99 1.15-3.42, p=0.01).

AMD status was available in at least one eye of 875 subjects (91 %). Of those, 769 had complete data for light exposure variables. In addition, 172 subjects had missing values in potential confounders, leaving 597 subjects in the fully adjusted models, representing 1154 eyes among which 238 with early AMD and 49 with late AMD. Participants with missing data were not significantly different from those without missing data, with regard to age, gender, ambient UVR or genetic polymorphisms (data not shown).Participants exposed to high ambient total UVR tended to be at increased risk for early AMD (OR=1.59, 95 % CI: 1.04-2.44, p=0.03), by comparison with participants with medium exposures (Table 5). In addition, participants exposed to low ambient solar radiation were increased risk for early AMD (OR=1.69, 95 %CI: 1.06-2.69, p=0.03), by comparison with medium exposures. By contrast, no statistically significant associations of late AMD with UVR exposures were found. Overall, results were very similar for total UV, UVA and UVB exposures. Among the potential confounders included in the multivariate models, those significantly associated with early AMD were age (OR=1.06 for 1-year increase, 95% CI: 1.02-1.10, p=0.008), gender (OR=1.95 for females versus males, 95% CI: 1.19-3.21, p=0.01), ARMS2 A69S GT genotype (OR=1.62, 95 % CI: 1.12-2.35, p=0.01), ARMS A69S TT genotype (OR=12.09, 95 % CI: 4.63-31.55, p<0.0001) and CFH Y402H CC genotype (OR=1.89, 95% CI: 1.13-3.16, p=0.01). The factors significantly associated with late AMD were age (OR=1.24, 95% CI: 1.14-1.35, p<0.0001), gender (OR=2.93, 95 % CI: 1.16-7.43, p=0.02), ARMS A69S TT genotype (OR=59.71, 95 % CI: 15.53-229.57, p<0.0001), CFH Y402H TC genotype (OR=3.49, 95 % CI: 1.31-9.30, p=0.009), CFH Y402H CC genotype (OR=6.68, 95 % CI: 2.05-21.77, p=0.001), dietary omega3 fatty acids intake (OR=0.63, 95% CI: 0.41-0.96, p=0.03) and secondary education (OR=7.46, 95 % CI: 1.63-34.05, p=0.01). We detected no significant interactions of genetic polymorphisms with UVR exposure.
While confirming the well-known association of cataract with high ambient UVR, the present study suggests a U-shaped association of early AMD with ambient UVR, with increased risk both in low- and high-UVR exposures. The effects of UVR on human health generally follows such a U-shaped (or J-shaped) relationship. Indeed, on one hand, high exposures have well documented effects on skin diseases (skin cancers, sunburns and chronic sun damage...) and several eye diseases (acute photokeratitis and conjunctivitis, acute solar retinopathy, pterygium, cortical cataract...). On the other hand, cutaneous UVR exposure is necessary for endogenous production of vitamin D, so that low UVR exposures are associated with an increased risk for osteo-muscular diseases and possibly of other diseases related to vitamin D deficiency (in particular several cancers, cardiovascular disease, autoimmune diseases). Indeed, besides its effects on bone health, vitamin D has many cellular effects, including regulation of cellular differentiation, proliferation, apoptosis and angiogenesis and anti-inflammatory properties. Many of these processes are implicated in the physiopathology of AMD and some studies have suggested that low vitamin D status may be associated with an increased risk for AMD. Whether vitamin D deficiency may explain the higher risk for AMD observed with low sunlight exposure in the present study will need to be determined in future studies.

Only few epidemiological studies have addressed the potential link of AMD with UVR exposure, with inconsistent results. This is probably due to major methodological difficulties in the assessment of UVR exposure. Indeed, UVR exposure and its health effects result from distal factors (such as latitude, season, cloud cover, stratospheric ozone levels and lower atmospheric pollution), conditioning ambient UVR, in addition to proximal factors (in particular occupational and leisure exposures to sunlight, use of hats and sunglasses, skin pigmentation and sun sensitivity...), conditioning individual exposure and response to exposure. Moreover, previous studies have shown that health effects of UVR exposure are cumulative over the lifetime. Thus, estimation of lifetime ocular UVR exposure requires detailed questionnaires on lifetime distal and proximal factors, combined with complex modeling of their effects on ocular UVR exposure. Since most epidemiological studies in the field of AMD, including the present study, addressed not only the effect of sunlight exposure, but also of many
other factors (smoking, cardiovascular risk factors, genetics, nutrition...), only partial information on
distal and/or proximal factors was collected, limiting the validity of the estimates of UVR exposure, and
the comparability of studies.

The Maryland Watermen Study included detailed questionnaires of ocular exposures, combined with
field and laboratory data, in order to assess ocular UVR exposure. In this study, ocular UVR exposure
was not significantly associated with prevalent AMD. In the Beaver Dam Eye Study, ambient UV-B
exposure, estimated from residential history, was not significantly associated with prevalent or
incident AMD, but subjects having spent more than 5 hours/day outside during summer in their
youth were more likely to have prevalent and incident AMD. In the POLA Study performed in
the South of France, the risk for prevalent early AMD was higher in subjects exposed to low ambient
solar radiation. In the Blue Mountains Eye Study, prevalent AMD was associated both with high and
low sun sensitivity index, by comparison with medium sun sensitivity index, although this was not
confirmed in the prospective analysis of the same cohort. Finally, an Australian case-control study,
AMD was associated with poorer tanning ability and lower time of ocular sunlight exposure.

In the present study, only estimates of ambient UVR exposure were available, based on residential
history and satellite-based estimates of UVR, while no data were available on sun-related behaviors,
skin pigmentation or sun sensitivity. This may have led to significant misclassification of exposures,
since actual ocular UVR exposure may be quite different from ambient UVR exposure in those
subjects with very low time spent outdoors. However, it seems most likely that misclassification was
unrelated to ambient UVR (i.e. that there would be similar proportions of people with low/high outdoors
activities in areas with different ambient UVR), and was thus unlikely to have biased the associations
of eye diseases with UVR exposure. Moreover, the well known association of UVR exposure with
cataract was confirmed in the present study, suggesting that our measure of UVR exposure had some
validity.

While the lack of information on proximal factors is clearly a limitation, the use of satellite-based
estimates of UVR is a strength. Indeed, most previous studies relied on formulas, estimating UVR
mainly from latitude and altitude. While these are major determinants of UVR, weather conditions also
contribute to actual ground UVR, in particular because of attenuation by cloud cover. UVR estimations
in the present study rely on Meteosat satellite measurements of total solar irradiance by the earth’s
surface by reflection, over thirty years.

Using detailed estimation of ocular lifetime exposure, the Maryland Watermen study and the EUREYE study have suggested that AMD risk may be associated with blue light exposure, which is also supported by animal and laboratory studies. In the present study, we could only estimate ambient UVR, since no data on blue light are currently available in the Eurosun project. It is however difficult to distinguish the effect of the different wavelengths, since they are naturally highly correlated. For instance, in the present study, global solar radiation (a measure of solar energy including all wavelengths) showed a correlation coefficient of 0.95 with UV radiation, measured in 105 geographical areas.

The present study has several limitations. One limitation of our study could come from the representativeness of the sample. The Alienor subsample tends to over-represent younger subjects and high socioeconomic status, among subjects participating to the 3C Study. The individuals included in this study may therefore be healthier and have different lifestyles, particularly concerning sunlight exposure, than the general population. These differences may have affected the distribution of sunlight exposure or the prevalence of eye diseases. However, subjects participating in the 3C study and included in the Alienor study were not different from those who were not included for most parameters of interest in our study. Furthermore, as described previously, the age-gender-specific prevalence rates of AMD in the Alienor study were similar to that observed in other studies performed in Europe and other industrialized countries. Data collection was performed in the same way in all individuals regardless of their AMD stage and photograph graders had no access to sunlight exposure data. Therefore, we can assume that the error was not differential and was unlikely to have biased the estimation of any of the associations of AMD with ambient solar radiation.

In observational studies, confounding is always a concern. We therefore adjusted for potential confounders, including all known risk factors for cataract and AMD. However, we cannot totally exclude residual confounding. In the present study, it is in particular striking that not only socio-demographic and lifestyle variables varied with ambient UVR exposure, but also genetic background (mainly CFH Y402H). While there are major differences in distribution of CFH Y402H alleles among ethnic groups (with low frequency of the at-risk C allele in non-Europeans), to our knowledge, there are no available data on its geographical distribution within the European continent (where most
of the Alienor participants were born). However, large variations of allele frequencies between
European countries have been reported, in particular for Apolipoprotein E^{33}. Since AMD has a strong
genetic component, and there may be geographical variation in the distribution of gene
polymorphisms, gene polymorphisms may be confounders in the relationship of AMD with any factor
affected by geographical variation (including UVR exposure, but also lifestyle, diet…). This underlines
the importance of taking into account both environmental and genetic confounders in studies of
associations of eye diseases with sunlight exposure. None of the previously published studies took
potential genetic confounders into account. In the present study, although we took into account the
two major genetic risk factors for AMD (CFH Y402H and ARMS A69S), we cannot exclude that these
groups of subjects differ for other genetic factors related to AMD (complement factors CF1, C2, C3
and CFB, LIPC, CETP…). Since this study was cross-sectional, recall bias may have affected the results. However, only few
prospective studies are available in this field. Our study included only a small number of cases of late
AMD, which induced low statistical power for detecting associations with ambient solar radiation and of
interactions of genetic polymorphisms with UVR exposure. Finally, cataract status was determined
only on the basis of cataract surgery, rather than on the presence of lens opacities, which were not
available in our study because of lack of pupil dilation. This may have caused misclassification of
cataract status and therefore may have biased the estimates.

In conclusion, our study confirms the high risk for cataract in subjects exposed to high ambient solar
radiation. It also suggests a U-shaped association of early AMD with UVR exposure, with an increased
risk for both low- and high-exposures. This will need to be confirmed in future, possibly prospective,
studies. The reasons for a potentially increased risk for early AMD with low solar radiation remain
unclear and need to be further studied.

References:

27. Chakravarthy U, McKay GJ, de Jong PT, et al. ARMS2 increases the risk of early and late age-

29. Seddon JM, Gensler G and Rosner B. C-reactive protein and CFH, ARMS2/HTRA1 gene variants are

with Early Age-Related Macular Degeneration: The ALIENOR Study. *Invest Ophthalmol Vis Sci*. 2011;
52: 5955-5962.

31. Delcourt C, Delyfer MN, Rougier MB, et al. ARMS2 A69S Polymorphism and the Risk for Age-

32. Czernichow S, Bruckert E, Oppert JM, et al. Intake of added oils and fats among middle-aged
105: 1889-1894.

34. Al Delaimy WK, Van Kappel AL, Ferrari P, et al. Plasma levels of six carotenoids in nine European
countries: report from the European Prospective Investigation into Cancer and Nutrition (EPIC).

community dwellers and association with socio-demographic characteristics: data from the Bordeaux

37. Zeger SL, Liang KY and Albert PS. Models for longitudinal data: a generalized estimating equation

review and meta-analysis of observational cohort and randomised intervention studies. *BMJ*. 2014;
348: g1903.

41. Mora JR, Iwata M and von Andrian UH. Vitamin effects on the immune system: vitamins A and D

42. Parekh N, Chappell RJ, Millen AE, Albert DM and Mares JA. Association between vitamin D and
age-related macular degeneration in the Third National Health and Nutrition Examination Survey,

43. Millen AE, Voland R, Sondel SA, et al. Vitamin D status and early age-related macular

for vitamin D metabolism in the pathogenesis of age-related macular degeneration. *Hum Genomics.*
2011; 5: 538-568.

45. Seddon JM, Reynolds R, Shah HR and Rosner B. Smoking, dietary betaine, methionine, and
vitamin d in monozygotic twins with discordant macular degeneration: epigenetic implications.

46. Lucas R, McMichael T, Smith W and Armstrong B. Solar Ultraviolet Radiation - Global burden of

47. West SK, Rosenthal FS, Bressler NM, et al. Exposure to sunlight and other risk factors for age-

544

545
Table 1. Light exposure-related characteristics of participants according to lifetime ambient total UVR exposure of the Alienor Study (Bordeaux, France, 2006-2008) (N=837)

<table>
<thead>
<tr>
<th>Total UVR, kJ/cm²</th>
<th>≤ 39.649 (N=209)</th>
<th>39.649-40.173 (N=419)</th>
<th>≥ 40.173 (N=209)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean total UVR, kJ/cm² (sd)</td>
<td>38.375 (1.26)</td>
<td>39.887 (0.08)</td>
<td>42.718 (2.29)</td>
<td>P<0.0001</td>
</tr>
</tbody>
</table>

Place of birth (n (%)) (N=837)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South of France</td>
<td>66 (31.58)</td>
<td>392 (93.56)</td>
<td>102 (48.80)</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Central France</td>
<td>52 (24.88)</td>
<td>9 (2.15)</td>
<td>14 (6.70)</td>
<td></td>
</tr>
<tr>
<td>Northern France</td>
<td>88 (42.11)</td>
<td>12 (2.86)</td>
<td>14 (6.70)</td>
<td></td>
</tr>
<tr>
<td>Southern Europe</td>
<td>0 (0.00)</td>
<td>4 (0.95)</td>
<td>17 (8.13)</td>
<td></td>
</tr>
<tr>
<td>Northern Africa</td>
<td>0 (0.00)</td>
<td>1 (0.24)</td>
<td>57 (27.27)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3 (1.44)</td>
<td>1 (0.24)</td>
<td>5 (2.39)</td>
<td></td>
</tr>
</tbody>
</table>

Time spent at place of birth, years (median (range)) (N=837)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South of France</td>
<td>68 (39-89)</td>
<td>79 (55-94)</td>
<td>74 (35-92)</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Central France</td>
<td>22 (2-58)</td>
<td>13 (1-34)</td>
<td>20 (4-37)</td>
<td>P=0.11</td>
</tr>
<tr>
<td>Northern France</td>
<td>23.5 (3-69)</td>
<td>3.5 (1-42)</td>
<td>12.5 (1-31)</td>
<td>0.001</td>
</tr>
<tr>
<td>Southern Europe</td>
<td>2.5 (1-6)</td>
<td>17 (2-31)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Northern Africa</td>
<td>1 (1-1)</td>
<td>32 (17-48)</td>
<td>P<0.0001</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3 (1-6)</td>
<td>3 (3-3)</td>
<td>18 (1-30)</td>
<td>P=0.13</td>
</tr>
</tbody>
</table>
Table 2. Socio-demographic, medical and genetic characteristics of participants according to lifetime ambient total UVR exposure of the Alienor Study (Bordeaux, France, 2006-2008) (N=837)

<table>
<thead>
<tr>
<th>Ambient total UVR, kJ/cm²</th>
<th>≤ 39.649 (N=209)</th>
<th>39.649-40.173 (N=419)</th>
<th>≥40.173 (N=209)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (mean (sd))</td>
<td>80.50 (4.42)</td>
<td>80.21 (4.49)</td>
<td>79.96 (4.44)</td>
<td>0.46</td>
</tr>
<tr>
<td>Male gender (n (%))</td>
<td>87 (41.63)</td>
<td>133 (31.74)</td>
<td>89 (42.58)</td>
<td>0.008</td>
</tr>
<tr>
<td>Education (n (%))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None or primary school</td>
<td>48 (22.97)</td>
<td>130 (31.00)</td>
<td>54 (25.84)</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Secondary school</td>
<td>34 (16.27)</td>
<td>137 (32.70)</td>
<td>63 (30.14) (global)</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>25 (11.96)</td>
<td>39 (9.31)</td>
<td>23 (11.00)</td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>102 (48.80)</td>
<td>113 (26.97)</td>
<td>69 (33.01)</td>
<td></td>
</tr>
<tr>
<td>Diabetes (n (%))</td>
<td>23 (12.17)</td>
<td>53 (13.80)</td>
<td>21 (11.05)</td>
<td>0.63</td>
</tr>
<tr>
<td>Hypertension (n (%))</td>
<td>161 (77.03)</td>
<td>318 (75.89)</td>
<td>152 (72.73)</td>
<td>0.56</td>
</tr>
<tr>
<td>Asthma (n (%))</td>
<td>21 (10.14)</td>
<td>36 (8.67)</td>
<td>14 (6.80)</td>
<td>0.47</td>
</tr>
<tr>
<td>Oral corticosteroid use</td>
<td>3 (1.44)</td>
<td>2 (0.48)</td>
<td>4 (1.91)</td>
<td>0.22</td>
</tr>
<tr>
<td>CFH Y402 H (n (%))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT (low AMD risk)</td>
<td>79 (40.93)</td>
<td>188 (49.21)</td>
<td>86 (45.03)</td>
<td>0.05</td>
</tr>
<tr>
<td>TC (intermediate AMD risk)</td>
<td>91 (47.15)</td>
<td>143 (37.43)</td>
<td>90 (47.12) (global)</td>
<td></td>
</tr>
<tr>
<td>CC (high AMD risk)</td>
<td>23 (11.92)</td>
<td>51 (13.35)</td>
<td>15 (7.85)</td>
<td></td>
</tr>
<tr>
<td>ARMS2 A69S (n (%))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG (low AMD risk)</td>
<td>118 (66.67)</td>
<td>232 (66.48)</td>
<td>112 (63.28)</td>
<td>0.91</td>
</tr>
<tr>
<td>GT (intermediate AMD risk)</td>
<td>53 (29.94)</td>
<td>103 (29.51)</td>
<td>59 (33.33) (global)</td>
<td></td>
</tr>
<tr>
<td>TT (high AMD risk)</td>
<td>6 (3.39)</td>
<td>14 (4.01)</td>
<td>6 (3.39)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Lifestyle and nutritional characteristics of participants according to lifetime ambient total UVR exposure of the Alienor Study (Bordeaux, France, 2006-2008) (N=837)

<table>
<thead>
<tr>
<th>Ambient total UVR, kJ/cm²</th>
<th>≤ 39.649 (N=209)</th>
<th>)39.649-40.173(N=419)</th>
<th>≥40.173 (N=209)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking (n (%)) (N=828)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non smoker</td>
<td>111 (54.15)</td>
<td>296 (71.15)</td>
<td>138 (66.67)</td>
<td>0.0005</td>
</tr>
<tr>
<td>< 20 pack-years</td>
<td>47 (22.93)</td>
<td>68 (16.35)</td>
<td>31 (14.98)</td>
<td></td>
</tr>
<tr>
<td>≥ 20 pack-years</td>
<td>47 (22.93)</td>
<td>52 (12.50)</td>
<td>38 (18.36)</td>
<td></td>
</tr>
<tr>
<td>Physical activity (n (%)) (N=837)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>29 (13.88)</td>
<td>83 (19.81)</td>
<td>31 (14.83)</td>
<td>0.20</td>
</tr>
<tr>
<td>Medium</td>
<td>112 (53.59)</td>
<td>226 (53.94)</td>
<td>108 (51.67)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>47 (22.49)</td>
<td>76 (18.14)</td>
<td>43 (20.57)</td>
<td></td>
</tr>
<tr>
<td>No answer</td>
<td>21 (10.05)</td>
<td>34 (8.11)</td>
<td>27 (12.92)</td>
<td></td>
</tr>
<tr>
<td>Body mass index, kg/m² (mean (sd)) (N=829)</td>
<td>25.90 (4.00)</td>
<td>26.17 (3.97)</td>
<td>26.61 (3.65)</td>
<td>0.17</td>
</tr>
<tr>
<td>Fasting plasma measurements, mmol/l (mean (sd)) :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose (N=759)</td>
<td>5.16 (1.03)</td>
<td>5.13 (1.12)</td>
<td>5.13 (1.22)</td>
<td>0.96</td>
</tr>
<tr>
<td>Total cholesterol (N=787)</td>
<td>5.83 (0.91)</td>
<td>5.83 (1.03)</td>
<td>5.72 (0.92)</td>
<td>0.37</td>
</tr>
<tr>
<td>HDL- cholesterol (N=786)</td>
<td>1.60 (0.40)</td>
<td>1.61 (0.39)</td>
<td>1.57 (0.39)</td>
<td>0.66</td>
</tr>
<tr>
<td>LDL- cholesterol (N=785)</td>
<td>3.66 (0.80)</td>
<td>3.67 (0.91)</td>
<td>3.61 (0.79)</td>
<td>0.73</td>
</tr>
<tr>
<td>Triglycerides (N=786)</td>
<td>1.25 (0.61)</td>
<td>1.23 (0.60)</td>
<td>1.18 (0.48)</td>
<td>0.37</td>
</tr>
<tr>
<td>Dietary intake (mean (sd)):</td>
<td>1835.7 (574.1)</td>
<td>1678.2 (513.4)</td>
<td>1704.5 (535.3)</td>
<td>0.003</td>
</tr>
<tr>
<td>Total energy Kcal/day (N=797)</td>
<td>89.62 (56.98)</td>
<td>81.95 (60.96)</td>
<td>92.10 (82.66)</td>
<td>0.15</td>
</tr>
<tr>
<td>Vitamin C, mg/day (N=797)</td>
<td>6.72 (4.72)</td>
<td>6.30 (4.51)</td>
<td>6.70 (4.43)</td>
<td>0.45</td>
</tr>
<tr>
<td>Vitamin E, mg/day (N=797)</td>
<td>0.60 (0.92)</td>
<td>0.55 (0.91)</td>
<td>0.71 (0.90)</td>
<td>0.14</td>
</tr>
<tr>
<td>Lutein and zeaxanthin, mg/day (N=781)</td>
<td>0.48 (1.20)</td>
<td>0.43 (1.00)</td>
<td>0.41 (1.16)</td>
<td>0.79</td>
</tr>
<tr>
<td>Omega 3 fatty acids, mg/day (N=797)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Associations of cataract extraction with lifetime ambient UVR exposure in the Alienor Study (Bordeaux, France, 2006-2008) (Odds-ratios (OR) and 95 \% confidence intervals (CI))

<table>
<thead>
<tr>
<th>Cataract surgery</th>
<th>No</th>
<th>Yes</th>
<th>Odds-ratio*</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=846 eyes)</td>
<td>(N=542 eyes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Total UV (kJ/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤39.649 (n=350 eyes)</td>
<td>230</td>
<td>65.71</td>
<td>120</td>
<td>34.29</td>
</tr>
<tr>
<td>39.649-40.173 (n=696 eyes)</td>
<td>430</td>
<td>61.78</td>
<td>266</td>
<td>38.22</td>
</tr>
<tr>
<td>≥40.173 (n=342 eyes)</td>
<td>186</td>
<td>54.39</td>
<td>156</td>
<td>45.61</td>
</tr>
<tr>
<td>UVA (kJ/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤38.617 (n=350 eyes)</td>
<td>230</td>
<td>65.71</td>
<td>120</td>
<td>34.29</td>
</tr>
<tr>
<td>38.617-39.131 (n=696 eyes)</td>
<td>430</td>
<td>61.78</td>
<td>266</td>
<td>38.22</td>
</tr>
<tr>
<td>≥39.131 (n=342 eyes)</td>
<td>186</td>
<td>54.39</td>
<td>156</td>
<td>45.61</td>
</tr>
<tr>
<td>UVB (kJ/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1.028 (n=350 eyes)</td>
<td>230</td>
<td>65.71</td>
<td>120</td>
<td>34.29</td>
</tr>
<tr>
<td>1.028-1.042 (n=696 eyes)</td>
<td>430</td>
<td>61.78</td>
<td>266</td>
<td>38.22</td>
</tr>
<tr>
<td>≥1.042 (n=342 eyes)</td>
<td>186</td>
<td>54.39</td>
<td>156</td>
<td>45.61</td>
</tr>
</tbody>
</table>

* estimated using multivariate Generalized Estimating Equations (GEE) logistic regression models, adjusted for age, gender, educational level, smoking, diabetes, oral corticosteroid, asthma, total energy intake and CFH Y402H.
Table 5. Associations of AMD with lifetime ambient UVR exposure in the Alienor Study (Bordeaux, France, 2006-2008) (Odds-ratios (OR) and 95% confidence intervals (CI))

<table>
<thead>
<tr>
<th></th>
<th>Early AMD</th>
<th></th>
<th>Late AMD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (CI)*</td>
<td>P</td>
<td>OR (CI)*</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>(N=238 eyes)</td>
<td></td>
<td>(N=49 eyes)</td>
<td></td>
</tr>
<tr>
<td>Total UV (kJ/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤39.649 (n=300 eyes)</td>
<td>1.69 (1.06-2.69)</td>
<td>0.03</td>
<td>1.03 (0.33-3.26)</td>
<td>0.95</td>
</tr>
<tr>
<td>39.649-40.173 (n=559 eyes)</td>
<td>1.00 (ref)</td>
<td></td>
<td>1.00 (ref)</td>
<td></td>
</tr>
<tr>
<td>≥40.173 (n=295 eyes)</td>
<td>1.59 (1.04-2.44)</td>
<td>0.03</td>
<td>1.11 (0.36-3.36)</td>
<td>0.86</td>
</tr>
<tr>
<td>UVA (kJ/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤38.617 (n=300 eyes)</td>
<td>1.69 (1.06-2.69)</td>
<td>0.03</td>
<td>1.03 (0.33-3.26)</td>
<td>0.95</td>
</tr>
<tr>
<td>38.617-39.131 (n=559 eyes)</td>
<td>1.00 (ref)</td>
<td></td>
<td>1.00 (ref)</td>
<td></td>
</tr>
<tr>
<td>≥39.131 (n=295 eyes)</td>
<td>1.59 (1.04-2.44)</td>
<td>0.03</td>
<td>1.11 (0.36-3.36)</td>
<td>0.86</td>
</tr>
<tr>
<td>UVB (kJ/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1.028 (n=302 eyes)</td>
<td>1.66 (1.04-2.64)</td>
<td>0.03</td>
<td>1.03 (0.33-3.25)</td>
<td>0.96</td>
</tr>
<tr>
<td>1.028-1.042 (n=557 eyes)</td>
<td>1.00 (ref)</td>
<td></td>
<td>1.00 (ref)</td>
<td></td>
</tr>
<tr>
<td>≥1.042 (n=295 eyes)</td>
<td>1.58 (1.03-2.42)</td>
<td>0.04</td>
<td>1.11 (0.36-3.36)</td>
<td>0.86</td>
</tr>
</tbody>
</table>

* estimated using multivariate Generalized Estimating Equations (GEE) logistic regression models, age, gender, educational level, smoking, CFH Y402H and ARMS2 A69S polymorphisms, cataract extraction, dietary intake of total energy and of omega3 fatty acids.
Figure 1. Distribution of lifetime ambient total UV, UVA and UVB radiations exposure in participants of the Alienor Study (Bordeaux, 2006-2008)