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Abstract.
In this work, we demonstrate that tipping point analysis of strain data can

provide reactive and predictive indicators of cracking and structural transitions
in a reinforced concrete system. The method is able to detect trend-driven
transitions in a short time series of approximately 2000 datapoints, providing
a clear indication of when a concrete beam under gradual bending progresses
from a linear to a non-linear strain response. The method is also able to provide
an early warning signal of the appearance of bifurcations, such as cracks, with a
forewarning of 200–500 datapoints. The method, which was originally developed
for applications in geophysics, shows promising results in the area of structural
health monitoring, in particular, for real-time observations of civil constructions.
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1. Introduction

Large-scale sensor networks for monitoring the health
of civil megastructures are becoming increasingly
common. As bridges and towers are now instrumented
with hundreds of sensors [1, 2], their safe operation
can be assured, provided the vast quantities of data
can be managed. Indeed, the growing data deluge in
structural health monitoring (SHM) will require new
methods for rapid and automated data analysis, so that
indicators of damage can be promptly investigated and
acted upon [3].

The stages of damage identification in SHM
include: 1) detection, 2) location and 3) assessment
of the severity of damage. The first task is therefore
not a choice of how to analyse the data, but where to
start the analysis [4]. Various techniques for signal or
statistical damage identification have been proposed to
solve the detection problem: Hilbert-Huang transforms
[5], independent component analysis [6] and Bayesian
approaches [7] being the most common.

These techniques all aim to identify and locate
damage (in time) so that more complex, model-based
approaches can quantify the severity within a confined
search space. The limitation of many of these methods
is that they require estimates or prior knowledge of
the system state before the damage has occurred. In
the absence of data, this choice is at risk of being
subjective and vague‡. Information on the system’s
behaviour after damage, while not strictly required,
can also greatly improve damage detection accuracy.
However, the main drawback of all of these methods
is that they are not inherently predictive and can only
detect damage once it has already occurred.

In the work presented here, we outline and apply
the novel framework of ‘tipping point analysis’ to a
reinforced concrete system to provide early warning
indicators of transitions in structural behaviour before
they occur. The tipping point framework, which
consists of the degenerate fingerprinting method [9,
10, 11] and potential analysis [11, 12, 13], can also
be used to detect damage indicators in historical
data, and requires no knowledge of the system’s state
before or after damage [14]. The method has already
been applied to large time series data, successfully
detecting the increasing non-linearities which lead
up to critical transitions in climatology [13], and

‡ It should be noted that the choice of a prior state is less
important for Bayesian approaches when the dataset is large [8].

structural temperature and tilt records [15]. Here, we
apply the method to a relatively short time series of
strain measurements, to attempt automatic detection
of cracking and degradation of a reinforced concrete
beam under three-point bending. By using a limited
dataset of 2000 timepoints, we demonstrate that the
technique could, in principle, be performed by on-
site hardware in a real-time monitoring application.
This could allow health monitoring to become more
predictive than reactive.

This paper begins with a description of the theo-
retical background linking the mechanical interpreta-
tion of a concrete beam under three-point bending to
its changes in potential energy state. This provides a
framework for the introduction of the degenerate fin-
gerprinting method and potential analysis in Section
2. The experimental and sensing set up for the three-
point bending test is described in Section 3 before the
results and discussion are presented in Sections 4 and
5 respectively.

2. Theoretical background

In SHM applications, strain sensor noise is typically fil-
tered out and used to define measurement uncertainty
[16]. Cleansed strain signals are then interpreted from
a mechanical perspective, so that damage can be esti-
mated from the presence of features or from predefined
material performance limits.

In this work, we demonstrate that if a structure
is understood in terms of its potential energy states,
then analysis of the strain noise itself can provide
early-warning indicators of the occurence of damage.
The method, alongside conventional approaches, allows
transitions in structural behaviour to be identified and
even predicted.

2.1. Conventional mechanical approach

Figure 1 illustrates how the performance of a singly
reinforced concrete beam of length L = 60 cm, width
b = 10 cm, and height h =10 cm, can be analysed
during three-point bending. If the applied load, F ,
is small and does not induce stresses which exceed
the modulus of concrete rupture, then the maximum
tensile strain in the beam will be a linear function of
the force applied [17].

If the strain in the tensioned surface of the
concrete beam exceeds around 60 µε, then brittle
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Figure 1. a) Side profile and b) cross-section of a single
reinforced, simply supported concrete beam in three-point
bending. The positions of the neutral axis (NA) and the Whitney
stress block are highlighted.

fracture occurs and a distribution of cracks emerge
[18]. The boundary layer below the steel reinforcement
loses its strength, causing a shift in the neutral axis
towards the compressive face, loss of beam stiffness and
onset of non-linear behaviour. Under increasing loads,
the reinforcement holds the concrete together until the
steel begins to yield at a nominal load given by [19]:

Ff =
Asσy
L

(
d− a

2

)
, (1)

where As, σy and d are the effective area, yield
strength, and depth of the reinforcement respectively.
The depth of the Whitney stress block is given by [20]:

a =
Asσy

0.85σcb
= 0.85CNA, (2)

where CNA is the depth of the neutral axis.
In this work, σc = 30 MPa strength concrete is

used with two 8 mm diameter steel rebars placed at
depth d = 8 cm. Substitution of steel yield strength, σy
= 500 MPa, suggests that the beam will completely fail
at Ff = 12 kN. Assuming the strain transfer from the
reinforcement to the concrete is perfect, the maximum
strain in the tensile face of the concrete beam at failure
will be:

εmax =
σy
Es

(
h− CNA
d− CNA

)
. (3)

Substituting a steel stiffness of Es= 200 GPa reveals
that εmax ≈ 3.5 mε.

2.2. Energy state approach

During three-point bending, the concrete beam can
also be represented as a saddle-node bifurcation in

Figure 2. The strain energy G as a function of the strain ε, for
a concrete beam which is a) uncracked, b) at its critical point
and c) cracked. The time-dependence of the strain signal at a
constant force is also shown for each case.

energy-state space, as illustrated in Figure 2a. As
shown, the undamaged, unloaded concrete beam
is an elevated strain energy state with a local
minimum (a so-called attractor) denoted Gu. Random
perturbations, such as thermal or vibrational noise,
induce small oscillations about the minimum, but the
steep sides of the potential well cause the system to
rapidly return to its equilibrium strain state, εu. Under
these conditions, the decay rate, κ, of perturbations,
has a large value. This results in rapid, uncorrelated
oscillations in the measured strain noise (right panel of
Fig.2a).

As the beam is loaded, the energy states begin
to shift. Figure 2b represents a system which is
at its tipping point: tensile stresses are nearing the
magnitude required to cause a crack or some critical
transition (otherwise known as a bifurcation). The
sides of the potential well become shallower and so the
system takes longer to leave and return to equilibrium.
This manifests as a ‘slowing down’ of the system’s
response to perturbations: fluctuations change their
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dynamics as κ decreases [10]. This behaviour
is monitored using the degenerate fingerprinting
technique described in Section 2.3.

Finally, as the transition occurs, there is a release
of strain energy, ∆G, as two new concrete surfaces are
exposed to the air [21]. As shown in Figure 2c, the
system irreversibly settles at some new strain state, εc,
with a new local attractor, Gc. The strain noise again
becomes rapid and uncorrelated until the next critical
transition.

2.3. Degenerate fingerprinting

Degenerate fingerprinting is a tool for detecting the
slowing down in noise which precedes many critical
transitions [9, 10, 11, 15]. Strain data, like that
illustrated in Figure 2, can be described by a discrete
time series of the form:

εr[t] = εo[t] + εn[t], (4)

where εo[t] is the strain offset at each time point t =
1, 2, ...,M . This offset is what conventional analyses
aim to extract independently of Gaussian strain noise,
εn. In degenerate fingerprinting, we instead extract
either the raw strain data, εr, or the noise, εn, and
consider it within a sliding window of length N . This
yields a set of vectors:

~εi = εn|r[i, ..., i+N − 1] (5)

for i = 1, . . . , M −N .
Raw strain data, like that shown in Figure 6,tends

to be non-stationary. When εr is used as an input,
the linear trend in each vector must be estimated and
removed prior to continuing with the analysis. The
method will then react to any ‘trend-driven transitional
tipping’ — that is, transitions between linear and non-
linear behaviour in the overall strain response will be
highlighted after they have occurred. Alternatively,
the noise is extracted from εr and input independently
of all trends (in this work, we use wavelet denoising
using a 4th order Daubechies wavelet transform to
extract εn [22]). Using εn in the analysis allows us to
better detect bifurcational tipping, such as cracks, as
these manifest themselves as a slowing down in strain
fluctuations. As described in Section 2.2, the use of
fluctuations is also predictive, as it allows the method
to detect the approach to a critical transition.

To detect non-linearity or slowing down, the lag-
1 autocorrelation function (ACF) of each vector is
calculated to obtain an ‘ACF-indicator’:

ci = ACF1{~εi}. (6)

Here, the ACF is defined:

ACFs =

∑N
t=s+1(εt − ε)(εt−s − ε)∑N

t=1(εt − ε)2
(7)

and lag-1 autocorrelation is given for s = 1. This
indicator (which is normalised due to ACF properties)
is a measure of how much each value of εi[t] is
dependent on its previous value, εi[t−1]. If the value of
c is plotted as the window slides along the series (note
that c is mapped to the end of the sliding window), then
it will increase when non-linearity appears, or when
critical slowing down creates trends in the noise. In
this work, c is estimated by fitting each ~εi to a lag-1
autoregressive AR(1) model of the form:

yt = cyt−1 + ηt, (8)

where ηt is Guassian white noise.
Note that, for noise fluctuations, the ACF-

indicator is also directly related to the time-step of the
series, ∆t, and to the decay rate of perturbations, κ:

c = e−κ∆t. (9)

Therefore, when a bifurcation is being approached and
the decay rate slows, κ → 0 and c → 1. Meanwhile,
a flat and stable indicator suggests that there are no
critical transitions in the time series [15].

2.4. Potential analysis

The tipping point framework allows one to analyse the
number of potential wells in the dynamical system.
Bifurcations in the time series are then visualised using
a potential contour plot [13].

The double-well potential shown in Figure 2a
can be parametrically described by a fourth order
polynomial:

G(ε) = a4ε
4 + a3ε

3 + a2ε
2 + a1ε. (10)

The dynamic behaviour of the system is described by
the pull, G′(ε), of the local attractor, added to random
perturbations:

dε

dt
= −G′(ε) + ση, (11)

where the the stochastic component is described by
unit variance Gaussian white noise, η, multiplied by
some noise level, σ.

The probability of the system being at any given
strain state, ε, at any given time, t, is described by the
Fokker-Planck equation:

∂p

∂t
=

∂

∂ε
[G′(ε)p] +

σ2

2

∂2p

∂ε2
, (12)

where p = p(ε, t) is a probability density of the system’s
strain state. The stationary solution of equation (12)
is [23]:

p(ε) ∼ exp[−2G(ε)/σ2], (13)

which can be rearranged to:

G(ε) = −σ
2

2
log pd(ε). (14)
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Here pd is an empirically measurable probability
density. The crucial outcome of equation (14) is that
there is a one-to-one mapping between the number of
modes in pd and the number of potential wells in G.
This means that the number of potential wells can be
estimated simply by analysing time-series data.

Detailed information on the method of the
potential contour plot can found in [13], but
essentially, the multiscale potential portrait is derived
by estimation of the number of states based on the
probability density function, which is performed in
sliding windows of varying size. The number of wells
detected is allocated to the time point on which the
window is centered (i.e. the time point closest to
[i+N]/2). A potential contour plot (see Figure 7 for an
example) is then generated, which maps time points
against window size and allocates a colour to the
number of wells detected, where 1: red, 2: green, 3:
cyan and 4: purple. The appearance of a vertical stripe
of solid colour on a contour plot is strong evidence for a
given number of potential wells, as it has been detected
for all window sizes (along all time scales in the time
series). If the vertical stripes in the plot transition from
red to green, then this suggests that a second local
potential well has been detected, and that bifurcation
is about to occur.

3. Experimental and sensor design

To test the performance of the tipping point analysis
during an application related to SHM, we monitored
the strain and deflection of reinforced concrete beams
while the force was controlled under three-point
bending. Two beams (cross section 10 cm × 10 cm,
length 110 cm), were cast using a 30 MPa strength
concrete mix. To encourage cracking at the centroid of
each beam, a greased acrylic card of width 2 mm was
inserted 3 cm into the beams at their midsection during
casting. The card was removed after 8 hours of curing,
resulting in notched beams. Minimal reinforcement
was provided on the notched side by two, internal, 8
mm diameter rebars. The beams were allowed to cure
for 28 days prior to instrumentation and testing.

3.1. FBG sensor design

Optical fibre sensors are frequently used for SHM
in civil engineering due to their high measurement
performance, small size and multiplexability [24]. In
this work, optical fibre Bragg grating (FBG) sensors
were used to monitor surface strains in the tensioned
face of the beam. FBG sensors are a 10 mm
long periodic modulation in the refractive index of
an optical fibre [25]. The gratings are illuminated
using broadband light, guided within the optical fibre,
and reflect a narrow distribution of wavelengths back

Figure 3. Photographs showing a) side profile and b)
approximate FBG location of sensor housing construction. The
sensor location is also coated in silicone sealant while the
addressing fibre is protected by a flexible stainless steel conduit.

towards the light source. The centre of this wavelength
distribution, termed the Bragg peak, λB , undergoes
linear fractional shifts as strain, εs, and temperature
changes, ∆T , are applied to the FBG sensor:

∆λ

λ
= Kεεs +KT∆T. (15)

Here Kε and KT are the sensor’s strain and
temperature sensitivity respectively. Thermal and
strain effects in equation (15) are decoupled by
monitoring local temperatures using a second, adjacent
FBG sensor which is isolated from strain (i.e. not
bonded to the concrete beam).

In this work FBG strain sensors were epoxied to
carbon-steel shim/bolt housing construction of length
Lh = 30 cm, shown in Figure 3. The 4 mm diameter
bolts were inserted through holes in the shim and then
bonded using induction brazing. Two 6 mm holes
were drilled either side of the notch in the concrete
beam and the bolts were grouted into these holes to
affix the sensor (see Figure 4). FBGs at wavelengths
between 1520 nm and 1580 nm were monitored via an
armoured fibre connection, using a commercial optical
interrogator at a rate of 2 Hz (strain resolution of 1
µε).

3.2. Strain transfer

Brazing, epoxying and grouting are all inexact
manufacturing processes. Strains in the concrete, εc,
are therefore not perfectly transferred to the sensor (i.e.
the strain transfer, α = εs/εc < 1).

The FBG itself is a short-gauge sensor of 10 mm
length, so it can effectively monitor the peak strain
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in the housing under bending. Meanwhile, the sensor
housing is Lh = 30 cm long, and so its strain is
described by:

εh =
∆Lh
Lh

=
uB − uA
xB − xA

=
1

L

∫ xB

xA

ε(x)dx+
1

L

∑
j

∆wj ,(16)

where uA,B are the displacements of the anchoring
bolts, which are grouted into the concrete beam at
locations xA,B . The quantities ∆wj are a set of added
strain discontinuities caused by the concrete cracking
[26]. The integral in equation (16) shows that the
sensor housing provides an average measurement of
the concrete strain between its two bonding points,
resulting in a reduced strain and spatial resolution.
This long-gauge sensing is, however, required in this
case because concrete is an inhomogenous material.
Monitoring over small length scales may provide
measurements of single crack growth, but long-gauge
sensors allow multiple cracks and bulk properties to be
measured.

3.3. Characterisation

Prior to grouting, the temperature sensitivity of the
sensor, shown in equation (15), was characterised
using an environmental chamber so that ambient
temperature fluctuations during testing could be
accounted for. The FBG temperature sensitivity after
epoxying to the steel housing was found to be kT =
16.2 ppm/◦C. This sensitivity is approximately 10
ppm/◦C higher than that for an unbonded FBG [25].
The difference can be attributed to the added thermal
expansion of the steel housing.

For this work, exact knowledge of the overall strain
sensitivity was not essential. It could, however, be
roughly estimated during three-point bending of the
concrete beam by comparing the measured strains at
concrete rupture and beam failure with the theoretical
values derived in Section 2.1.

3.4. Testing

The instrumented beams were installed with sensors
facing downwards, on simple supports placed 60 cm
apart. Forces were applied to the top surface of
the beam using a hydraulic force head. In the first
experiment, an undamaged beam was loaded using
a linear ramp rate of 0.0025 kN/s up until failure.
The second beam, meanwhile, was cycled up to 5 kN
(equivalent to approximately 250 µε measured strain)
several times to simulate a damaged or aged structure.
This ‘damaged beam’ was then force ramped to failure
at a rate of 0.005 kN/s.

Figure 4. Photograph showing cracking of the beam at the
grouted sensor anchorage.

Figure 5. Measured strain in the undamaged concrete beam as
a function of bending force. The linear strain portion is shown
inset along with a linear fit.

4. Results

4.1. Undamaged concrete beam

4.1.1. Mechanical behaviour. Figure 5 shows the
strain, measured using the FBG sensor, as a function of
the bending force for the undamaged beam. As shown
inset, the divergence from linear behaviour occurs at
around 40 µε, which broadly agrees with the 60 µε limit
outlined in Section 2.1, assuming 60 % strain transfer
from the beam to the sensor. As the force is increased
further, there are two competing effects:

- the build up of cracks at the centre of the beam
causes the strain rate to increase: this is the
dominant effect up to 6 kN force;

- cracking at the sensor anchorages (shown in Figure
4) causes the strain transfer and strain rate to
decrease: this is the dominant effect beyond 8 kN.
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Between 6 kN and 8 kN the strain rate is almost linear
as the two competing effects balance.

Beyond 10 kN, sudden cracking at the sensor
anchorages leads to discontinuous strain loss. The
beam failed at 14 kN at a measured strain of 0.45 mε.
The force broadly agrees with equation (1), but the
strain is lower than the 3.5 mε predicted by equation
(3). This suggests that cracking around the sensor
anchorages has degraded the final strain transfer to
around 10 %.

4.1.2. Strain data analysis. The top panel of Figure 6
shows the raw strain data, εr, as a time series (dashed
line) and the corresponding ACF-indicator after linear
detrending within the sliding window. Uncertainty
in the indicator is calculated by varying the window
length from 1

4 to 3
4 of the series length, and is shown

by the shaded area around the curves. Beyond 500
seconds, the algorithm acquires enough time points
to begin analysis and the indicator begins plotting.
Between 600 and 800 seconds, the indicator remains
reasonably flat as the strain response is linear. The
onset of non-linear behaviour due to the decreasing
strain transfer of the sensor is apparent as an increasing
trend in the indicator at the point labelled ‘A’. The
sudden cracks cause the indicator to jump and then
climb upwards at points labelled ‘B’ and ‘C’, showing
that the indicator has reacted to the discontinuities.

The ACF-indicator after wavelet denoising is
shown in the bottom panel of Figure 6. The absolute
value of the ACF-indicator is very low (in fact,
negative, due to the effect of detrending), which shows
the dynamics of the fluctuations contribute little to the
tipping in the raw data. Nevertheless, upward trends
at points labelled ‘D’ and ‘E’ are still visible, and these
precede the discontinuities in the strain by 200-500
datapoints. This demonstrates that the method can
provide early-warning indications of changing system
behaviour, even when the time series is short.

Potential contour plots for the raw strain data
and fluctuations are shown in Figure 7. The raw
strain contour plot in Figure 7a shows some signs
of vertical red bands after 1100 seconds and 1500
seconds due to the discontinuities of the crack, but the
plot generally appears noisy. As was shown in [11],
the patchy patterns in the plot indicate the absence
of any global potential in the time series. This is
expected, because the raw strain has a clear increasing
trend. The contour plot for the fluctuations, shown
in Figure 7b, is more promising. The plot is largely
flat red (i.e., a one-well potential) but the analysis
shows early stage green bands prior to 300 seconds,
corresponding to a double-well potential. These bands
precede the strain behaviour becoming non-linear after
40 µε, so may indicate the onset of early stage cracking

Figure 6. Strain analysis of the undamaged concrete beam, top
panel: the ACF-indicator after linear detrending, middle panel:
the strain fluctuations, εn, after wavelet denoising, bottom
panel: the ACF-indicator after wavelet denoising. The strain
data time series is also shown (dashed line) in the ACF-indicator
plots for reference.

during concrete rupture. The other vertical green
bands at around 500 seconds and 800 seconds precede
the transitions between non-linear and linear strain
behaviour. Other green bands may be indicative of
bifrucations which are too minor to see in the data, or
they could be false positives. Future work will aim to
provide further thresholding and pattern recognition
to objectively distinguish these.

4.1.3. Stroke data analysis. In real SHM applications,
true displacement or deflection data for the structure
is rarely available, and so conclusions must be drawn
from strain data alone. However, in this beam test,
data for the stroke of the force head could also be
collected and analysed in the same manner as the strain
data. The displacement data has a lower resolution and
is less sensitive to small cracks, but provides a reliable
measurement of the beam’s global behaviour.

As shown in Figure 8, the ACF-indicator for
the stroke after wavelet denoising generally increases
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Figure 7. Potential contour plots for a) raw strain data and b)
fluctuations after wavelet denoising for the undamaged concrete
beam

throughout the test as the beam gradually reaches
global failure. The indicator for the raw stroke data,
meanwhile, appears to settle down at the point labelled
‘A’ as the stroke behaviour is linear at this point. The
potential contour plots for the raw stroke data, shown
in Figure 9a shows a solid red band at 800 seconds,
while the contour plot for the flutuations in Figure
9b shows some double-well potential behaviour prior
to this time. All of these behaviours suggest some
change in material properties occurs at 800 seconds.
Comparison with the strain data in Figure 6 reveals
that this time matches up to the decreasing strain
transfer regime of the strain sensor. This suggests
that, at 800 seconds, the holes drilled in to the beam
to install the sensor become a critical flaw. This is
unsurprising given their depth and size, and is further
confirmed by the fact that the beam failed at cracks
which passed through the bolts.

4.2. Damaged concrete beam (after cycling)

4.2.1. Mechanical behaviour. Figure 10 shows the
strain and stroke data for the damaged, pre-cycled
beam as a function of the bending force. It is clear
that the prior cycling has relaxed non-linearities below
250 µε, as cracking has already occurred. The stroke
displacement reveals that the entire beam behaves non-
linearly after 6 kN, while the strain sensor behaves
reasonably linearly up until beam failure. Again, this
is thought to be due due to the balancing of cracking
between and at the sensor bolt location. The beam
failed at 13 kN, at strain of 650 µε, suggesting that the
final strain transfer was 20 %.

4.2.2. Strain data analysis. Figure 11 demonstrates
that, even though the loading rate of the beam is
higher, the discontinuities in the strain at points
labelled ‘A’ and ‘C’ are successfully picked up by the
raw ACF-indicator after they occur. The indicator

Figure 8. Stroke analysis of the undamaged concrete beam,
top panel: the ACF-indicator after linear detrending, bottom
panel: the ACF-indicator after wavelet denoising. The stroke
time series is also shown (dashed line) for reference.

Figure 9. Potential contour plots for a) raw and b) fluctuation
stroke data for undamaged beam.

does not pick up on the occurrence of the discontinuity
at point ‘B’ because it happens shortly after the
discontinuity at point ‘A’. This demonstrates that the
ACF-indicator needs more time to recover between
events when the sliding window is large. Such
close events may be monitored with small-size sliding
windows.

Due to the higher speed of the force ramp in this
test, the ACF indicator after wavelet denoising begins
to climb before the crack at 1200 seconds (as shown
by the point labelled ‘D’), but does not have a chance
to provide a reliable early warning indicator. Indeed,
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Figure 10. Measured strain and stroke in the damaged concrete
beam as a function of bending force.

Figure 11. Strain analysis of the damaged concrete beam, top
panel: the ACF-indicator after linear detrending, bottom panel:
the ACF-indicator after wavelet denoising. The strain data time
series is also shown (dashed line) in the ACF-indicator plots for
reference.

the indicator after denoising generally fails to show
any predictions, and this suggests that the changes in
the system force are too rapid compared to the data
acqusition rate. Note also that the upward step in
strain at point ‘B’, is due to a sudden jump in the force
applied to the beam. This simulates a rapid, external
impact — something that cannot be predicted.

5. Discussion

Degenerate fingerprinting and potential analysis have
proven to be quick and highly adaptable methods
for damage identification during a reinforced concrete
monitoring application. However, tasks such as
quantifying damage severity, tuning the algorithm’s
sensitivity and detecting false positives, still require
an in-depth understanding of the behaviour of the
structure, the sensor, and the interrogation system.
The detection of cracking in the sensor anchorages
highlights that the method does not discriminate
between failure in the concrete beam, and failure in
the sensor. While both events are arguably important,
non-contact sensing methods, such as imaging, could
be used to circumvent this issue in future work.
However, a reasonable imaging stability would need
to be demonstrated to prevent spurious indicators of
damage.

The method’s use of a sliding window means that
a given number of time points are required before the
ACF-indicator is generated. This caused some loss
of early-stage strain behaviour in the work presented
here. However, during continuous monitoring of a
structure, only a minimal portion of data would be lost.
In this work, we also chose to apply the method to a
system under time-varying loads, but it could equally
be applied to detect ageing in structural systems
under more stationary conditions. The method is
also transferable to other structural loads, such as
temperature, as demonstrated in previous work [15].

A key limitation of degenerate fingerpinting is
that the early warning indicators cannot detect abrupt
bifurcations or those caused by sudden external
variables such as impacts. For an increasing trend in
the ACF-indicator to become apparent, bifurcational
transitions should be gradual and accompanied by
memory change (a slowing down in system noise).
Fortunately, these limitations do not exclude the
method’s use in real-world applications, as many
civil structures are relatively static. Even if
the strain transitions are rapid compared to the
interrogation rate, reactive monitoring to trend-driven
transitions (using raw strain data) is still possible.
If predictive monitoring for dynamically loaded
structures is required, then this could be achieved by
deploying high-speed measurement systems with ∼kHz
interrogation rates [27]. In this work, a reasonably low
interrogation rate was chosen to demonstrate that the
algorithm could work without contributing further to
data management problems.

The low computational cost of the tipping
point analysis makes it highly suited to real-time
monitoring. Furthermore, if the trends in the
indicator could be classified automatically, then the
sensor’s communication network would only require
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higher rates of data streaming when nearing a critical
transition. This would be particularly useful in wireless
sensor networks, as data communication represents a
significant portion of power consumption [28].

6. Conclusion

Comparative tipping-point analyses of raw strain
data can provide information about the dominating
influence of trend-driven transitional tipping in
structural systems. Analysis of the strain fluctuations
after wavelet denoising can also provide an early
warning indicator of system bifurcations, such as
cracking, with a forewarning of 200–500 datapoints.
These methods could be applied to the real-time
monitoring of structures which are experiencing
various loads, and could facilitate both reactive
and predictive damage detection in structural health
monitoring.
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