Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy

Corr, Serena and Amores, Marco and Ashton, Thomas and Baker, Peter J and Cussen, Edmund (2015) Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy. Journal of Materials Chemistry. A. ISSN 2050-7488

[thumbnail of Amores-etal-JOMCA-2015-Fast-microwave-assisted-synthesis-of-Li-stuffed-garnets-and-insights-into=Li-diffusion-from-muon]
Text (Amores-etal-JOMCA-2015-Fast-microwave-assisted-synthesis-of-Li-stuffed-garnets-and-insights-into=Li-diffusion-from-muon)
Accepted Author Manuscript

Download (6MB)| Preview


    Lithium-stuffed garnets attract huge attention due to their outstanding potential as solid-state electrolytes for lithium batteries. However, there exists a persistent challenge in the reliable synthesis of these complex functional oxides together with a lack of complete understanding of the lithium-ion diffusion mechanisms in these important materials. Addressing these issues is critical to realizing the application of garnet materials as electrolytes in all solid-state lithium-ion batteries. In this work, a cubic phase garnet of nominal composition Li6.5Al0.25La2.92Zr2O12 is synthesized through a microwave-assisted solid-state route for the first time, reducing considerably the reaction times and heating temperatures. Lithium-ion diffusion behavior is investigated by electrochemical impedance spectroscopy (EIS) and state-of-art muon spin relaxation (mSR) spectroscopy, displaying activation energies of 0.55 0.03 eV and 0.19 0.01 eV respectively.  This difference arises from the high inter-grain resistance, which contributes to the total resistance in EIS measurements. In contrast, mSR acts as a local probe providing insights on the order of the lattice, giving an estimated value of 4.6210􀀀11 cm2s􀀀1 for the lithium diffusion coefficient. These results demonstrate the potential of this lithium-stuffed garnet as a solid-state electrolyte for all-solid state lithium-ion batteries, an area of growing interest in the energy storage community.

    ORCID iDs

    Corr, Serena, Amores, Marco, Ashton, Thomas, Baker, Peter J and Cussen, Edmund ORCID logoORCID:;