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Abstra
t

A random re
tangular graph (RRG) is a generalization of the random ge-

ometri
 graph (RGG) in whi
h the nodes are embedded into a re
tangle with

side lengths a and b = 1/a, instead of on a unit square [0, 1]2 . Two nodes are

then 
onne
ted if and only if they are separated at a Eu
lidean distan
e smaller

than or equal to a 
ertain threshold radius r. When a = 1 the RRG is iden-

ti
al to the RGG. Here we apply the 
onsensus dynami
s model to the RRG.

Our main result is a lower bound for the time of 
onsensus, i.e., the time at

whi
h the network rea
hes a global 
onsensus state. To prove this result we

need �rst to �nd an upper bound for the algebrai
 
onne
tivity of the RRG,

i.e., the se
ond smallest eigenvalue of the 
ombinatorial Lapla
ian of the graph.

This bound is based on a tight lower bound found for the graph diameter. Our

results prove that as the re
tangle in whi
h the nodes are embedded be
omes

more elongated, the RRG be
omes a 'large-world', i.e., the diameter grows to

in�nity, and a poorly-
onne
ted graph, i.e., the algebrai
 
onne
tivity de
ays

to zero. The main 
onsequen
e of these �ndings is the proof that the time of


onsensus in RRGs grows to in�nity as the re
tangle be
ome more elongated.

In 
losing, 
onsensus dynami
s in RRGs strongly depend on the geometri
 
har-

a
teristi
s of the embedding spa
e, and rea
hing the 
onsensus state be
omes

more di�
ult as the re
tangle is more elongated.
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1. Introdu
tion

Many real-world networked systems are embedded into geometri
al spa
es.

These spatial networks, as they are known, may represent many di�erent kinds

of s
enarios [1℄. For instan
e, in urban street networks the nodes des
ribe the

interse
tion of streets, whi
h are represented by the edges of the graph. These

streets and their interse
tions are embedded in the two-dimensional spa
e repre-

senting the surfa
e o

upied by the 
orresponding 
ity. Similar situations o

ur

with infrastru
tural and transportation systems ranging from water supply net-

works and railroads to the internet and wireless sensor networks (WSNs). In

WSNs [2℄, the nodes represent the sensors whi
h are deployed on a given geo-

graphi
al region and their 
ommuni
ation de�nes the 
onne
tivity of the nodes.

This is analogous to many other 
ommuni
ation systems ranging from mobile

phones to radio signals. On a di�erent s
ale we 
an mention the vas
ular and


ellular networks of nodes embedded into 
ells and biologi
al tissues [3℄; pro-

tein residue networks [3℄; the networks of 
hannels in fra
tured ro
ks [4℄; the

networks representing the 
orridors and galleries in animal nests [5, 6℄; and

lands
ape networks [7℄, among others. For modeling these spatial networks it

is ne
essary to have a theoreti
al model that 
aptures both the topologi
al fea-

tures typi
al of 
omplex networks and the spatial embedding of these spe
i�


kinds of systems. The most 
ommonly used model for spatial networks is the

so-
alled random geometri
 graph (RGG) [8, 9, 10, 11℄. In RGGs ea
h node

is randomly assigned geometri
 
oordinates and then two nodes are 
onne
ted

if the (Eu
lidean) distan
e between them is smaller than or equal to a 
ertain

threshold r.
The RGG model has been widely used in the study of wireless sensor net-

works (WSNs) and peer-to-peer networks [12, 13, 14℄, where the problem of


onsensus has re
eived great attention due to the fa
t that it allows the a
hiev-

ing of tasks with a minimum overhead of 
ommuni
ation [15, 16, 17, 18, 19℄.

In the 
onsensus proto
ols, as they are known in te
hnologi
al appli
ations, the

problem 
onsists of making the s
alar states of a set of agents 
onverge to the

same value under lo
al 
ommuni
ation 
onstraints [20, 21℄. Thus, sin
e the 
om-

muni
ation requires only lo
al information there is no 
ongestion due to network

tra�
. RGGs are also used to model populations whi
h are geographi
ally 
on-

strained in a 
ertain region, like a 
ity. This s
enario is important, for instan
e,

for the analysis of epidemi
 spreading in su
h populations [22, 17, 23, 24℄. In

this sense Riley et al. [25℄ have remarked that RGGs �provide a ni
e way of

es
aping the la
k of lo
al 
orrelation and 
lustering that are impli
it proper-

ties of the 
on�guration graphs often used to explore epidemi
 dynami
s�. In a

similar fashion, RGGs 
an be used to model stru
tured populations in whi
h

opinions, instead of viruses, are propagated. In this 
ase the RGGs also 
aptures

very well the geographi
 
onstraints of the population and, in 
omparison with

other models [26℄, they �are more realisti
 for a number of reasons: (i) RGG is

isotropi
 (on average) while regular latti
e is not; (ii) the average degree for an

RGG 
an be set to an arbitrary positive number, instead of a small �xed number

for the latti
e; (iii) RGGs 
losely 
apture the topology of random networks of
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short-range-
onne
ted spatially-embedded arti�
ial agents�.

In the formulation of the RGG model it is assumed that the nodes are uni-

formly and independently distributed on a unit square (or a higher dimensional

hyper
ube in the general 
ase) [8, 9℄. This unit square represents the area on

whi
h the agents are intera
ting to rea
h a 
onsensus state, and it 
ould be a

workpla
e, a 
ity, or a forest, just to mention some examples. Su
h a square-like

area is typi
al of many real-world s
enarios. For instan
e, the 
ity of San Fran-


is
o (USA) is known as the "seven-by-seven-mile square", due to the fa
t that

the mainland part of the 
ity is a square of nearly 11 km by 11 km. However, if

we 
onsider other 
ities, like Manhattan, the pi
ture looks very di�erent. Man-

hattan is 13.4 miles (21.6 km) long and 2.3 miles (3.7 km) wide, whi
h resembles

a re
tangular shape instead of a square one. Based on this ne
essity of 
onsid-

ering the in�uen
e of the re
tangular shape on the topologi
al and dynami
al

properties of the random networks deployed on these areas we have re
ently

introdu
ed the random re
tangular graph (RRG) model [27℄. In this 
ase, the

nodes are uniformly and independently distributed on a unit re
tangle of given

side lengths. When both sides are of the same length we re
over the RGG in

su
h a way that the RRG model generalizes the RGG one.

Here, we are interested in investigating analyti
ally and 
omputationally

how the elongation of the re
tangle in the RRG a�e
ts the 
onsensus dynami
s

taking pla
e on the nodes and edges of the networks 
onstru
ted on them. We

start by introdu
ing the 
on
ept of the random re
tangular graph (RRG), and


ontinue with the des
ription of the 
onsensus model to be 
onsidered. Then,

we state the main result of this work whi
h proves that for a RRG with a �xed

number of nodes and a given 
onne
tion radius, the time for rea
hing 
onsensus

grows to in�nity when the re
tangle is very elongated. We �nally support our

analyti
 results with 
omputational simulations for RRGs.

2. Preliminaries

Here we present some de�nitions, notations, and properties whi
h will be

used in this work (see [3℄). For the basi
 de�nitions about networks the reader

is dire
ted to the literature (see for instan
e [3℄). The notation used here is

standard. For instan
e, ki designate the degree of the node i. The matrix K =
diag (ki) designate the degree matrix of the graph and the matrix L = K − A
is the graph Lapla
ian, where A stands for the adja
en
y matrix of the graph.

It has entries

Luv =







ki if u = v
−1 if (u, v) ∈ E
0 otherwise

∀u, v ∈ V.

The eigenvalues of the Lapla
ian matrix are denoted here by: 0 = µ1 ≤ µ2 ≤
· · · ≤ µn. If the network is 
onne
ted the multipli
ity of the zero eigenvalue

is equal to one, i.e., 0 = µ1 < µ2 ≤ · · · ≤ µn and the smallest nontrivial

eigenvalue µ2 is known as the algebrai
 
onne
tivity of graph [28, 29℄. Let U be
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the matrix of orthonormalized eigenve
tors

~ψj of L, i.e., U =
[

~ψ1 · · · ~ψn

]

.

The eigenve
tor

~ψ2 asso
iated with the algebrai
 
onne
tivity is known as the

Fiedler ve
tor [28℄. Let Λ be the diagonal matrix of eigenvalues of the Lapla
ian

matrix. Then, L = UΛUT
.

2.1. Random Re
tangular Graphs

The RGG is de�ned by distributing uniformly and independently n points

in the unit d-dimensional 
ube [0, 1]d [8℄. Then, two points are 
onne
ted by

an edge if their Eu
lidean distan
e is at most r, whi
h is a given �xed number

known as the 
onne
tion radius. That is, we 
reate a disk of radius r 
entred

at ea
h node, and every node inside that disk is 
onne
ted to the 
entral node.

This disk plays the role of the area of in�uen
e of a given node, su
h as the area

of 
overage of a mobile or wireless sensor.

In [27℄ we have 
onsidered a unit hyperre
tangle as the Cartesian produ
t

[a1, b1]× [a2, b2]× · · · × [ad, bd] where ai, bi ∈ R, ai ≤ bi, and 1 ≤ i ≤ d instead

of the unit square of the RGG. Hereafter we will restri
t ourselves to the 2-

dimensional 
ase, whi
h 
orresponds to a re
tangle of unit area. Now, the RRG

has been de�ned by distributing uniformly and independently n points in the

unit re
tangle [a, b] and then 
onne
ting two points by an edge if their Eu
lidean
distan
e is at most r. The rest of the 
onstru
tion pro
ess remains the same as

for the RGG. This implies that RRG → RGG as (a/b) → 1 and 
onsequently

the RRG is a generalization of the RGG.

In Fig. 1 we illustrate two RRGs with di�erent values of the re
tangle side

length a and the same number of nodes and edges. In the �rst 
ase when a = 1
the graph 
orresponds to the 
lassi
al random geometri
 graph in whi
h the

nodes are embedded into a unit square. The se
ond 
ase 
orresponds to a = 2
and it represents a slightly elongated re
tangle.
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Figure 1: Illustration of a RRG 
reated with 250 nodes embedded into a unit square, a = 1,

(top) and a unit re
tangle with a = 2 (bottom). In both 
ases the nodes are 
onne
ted if they

are at a Eu
lidean distan
e smaller than or equal to r = 0.15.

A few important stru
tural parameters of RRGs have been determined an-

alyti
ally in a previous work by the 
urrent authors (see [27℄). They in
lude

the average degree, the probability that the graphs are 
onne
ted, their degree

distributions, average path length and 
lustering 
oe�
ient.

2.2. Consensus dynami
s on graphs

Let us 
onsider that the state of the nodes of the graph at time t are stored
in the ve
tor ~u (t). Then, the variation of the state of the node i with time is


ontrolled by the equation [21, 20℄:

~̇ui (t) =
∑

(i,j)∈E

( ~uj (t)− ~ui (t)) , i = 1, 2, . . . , n, (1)

whi
h, for the kind of graphs we analyze in this work 
an be written as

~̇ui (t) = −
n
∑

j=1

aij (~ui (t)− ~uj (t)) , i = 1, 2, . . . , n. (2)

This equation indi
ates that the evolution of the state of the node i in time

6



depends on the 'agreement' that this node rea
hes with all its nearest neighbors.

It is obvious now that we 
an write 1 by using the Lapla
ian matrix of the graph:

~̇u (t) = −L~u (t) , (3)

~u (0) = ~z. (4)

In the equation (3) the Lapla
ian matrix is a
ting over the ve
tor ~u (t) whi
h
is updated in time. That is, ~up (t) is a s
alar whi
h represents the 'opinion' of

the node p at the time t. The solution of this equation is:

~u (t) = e−tL~z. (5)

where 0 = µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues and

~ψj,p the pth entry of

the 
orresponding jth eigenve
tor of the Lapla
ian matrix. Then, the solution

of the 
onsensus equation on the graph is given by

~u (t) = e−tµ1

(

~ψ1 · ~z
)

~ψ1 + e−tµ2

(

~ψ2 · ~z
)

~ψ2 + · · ·+ e−tµn

(

~ψn · ~z
)

~ψn, (6)

where ~x ·~y represents the inner produ
t of the 
orresponding ve
tors. When

the time tends to in�nity every node tends to the state di
tated by the average of

the values of the initial 
ondition. This state is usually known as the 
onsensus

set [21℄ and it 
an be formally de�ned as the set A ⊆ R
n
whi
h is the subspa
e

span {1} , i.e.,

A = {~u ∈ R
n |~ui = ~uj , ∀i, j ∈ V } . (7)

The following is a well-known result in the theory of 
onsensus dynami
s on

networks.

Lemma 1. ([21℄ p. 46) Let G be a 
onne
ted graph. Then, the 
onsensus dy-

nami
s 
onverges to the agreement set with a rate of 
onvergen
e that is di
tated

by µ2.

Proof. As t → ∞

~u (t) →
(

~ψ1 · ~z
)

~ψ1 =
~1 � ~z

n
~1 (8)

and hen
e ~ut → A. As µ2 is the smallest positive eigenvalue of the graph

Lapla
ian, it di
tates the slowest mode of 
onvergen
e in the equation 6.

For the sake of simulations it is sometimes useful to 
onsider the dis
rete-

time model of 
onsensus, whose equation 
an be written as follows [21, 20℄:
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~ui (k + 1) = ~ui (k) + ǫ
n
∑

j=1

aij (~uj (k)− ~ui (k)) , (9)

where 0 < ǫ < k−1
max is the time step for the simulation. The equation 9 
an

be written in matrix form as follows:

~u (k + 1) = (I − ǫL) ~u (k) , (10)

where I is the identity matrix. The matrix (I − ǫL) is usually known as the

Perron matrix [20℄.

3. Algebrai
 
onne
tivity and diameter of RRGs

As we have seen in the previous se
tion the so-
alled algebrai
 
onne
tivity

µ2 [28, 29℄ di
tates the slowest mode of 
onvergen
e in the 
onsensus dynami
s.

That is, the rate at whi
h a given group of nodes 
onne
ted in a network rea
hes

the global 
onsensus is mainly determined by the se
ond smallest eigenvalue of

the Lapla
ian matrix. Consequently, we obtain the �rst result here, whi
h is an

upper bound for the algebrai
 
onne
tivity of a RRG.

Theorem 2. Let GR (n, a, r) be a 
onne
ted RRG with n nodes embedded in a

re
tangle of sides with lengths a and b = a−1
, and 
onne
tion radius r. Then,

the algebrai
 
onne
tivity, i.e., the se
ond smallest eigenvalue of the Lapla
ian

matrix, is bounded as

µ2 (GR) ≤
8 (n− 1) (ar)

2

a4 + 1
log22 n. (11)

In order to prove Theorem 2 we need the following result.

Lemma 3. Let GR (n, a, r) be a 
onne
ted RRG with n nodes embedded in a

re
tangle of sides with lengths a and b = a−1
, and two nodes are 
onne
ted if and

only if their at a Eu
lidean distan
e smaller or equal than r. Let D = D (GR)
be the diameter of the 
orresponding RRG. Then,

D (GR) ≥
√
a4 + 1

ar
. (12)

Proof. The nodes of the RRG are uniformly and independently distributed in

the unit re
tangle. Then, let us assume that the n points are equally spa
ed in

the area of the re
tangle separated by a Eu
lidean distan
e of r. In this 
ase the

largest number of points are 
onne
ted along the main diagonal of the re
tangle.

If the length of the main diagonal is c there are
c

r

onne
ted nodes in this line.

Thus, the maximum shortest path distan
e in the RRG is

c

r
with c =

√
a4 + 1

a
.

For a 
onne
ted RRG this is the shortest the diameter 
an be, be
ause if two

8



points in the main diagonal are separated at a Eu
lidean distan
e larger than

r, then the diameter of GR will be larger than

c

r
, whi
h proves the result.

Now, we 
onsider the following bound obtained by Alon and Milman [30℄ for

the algebrai
 
onne
tivity of any simple graph.

Theorem 4. ([30℄). The se
ond smallest eigenvalue of the Lapla
ian matrix of

any graph is bounded as

µ2 (G) ≤
8kmax

D2
log22 n. (13)

Then, by substituting 12 into 13 we have

µ2 (G) ≤
8kmax

dD2
log22 n ≤ 8kmax (ar)

2

a4 + 1
log22 n ≤ 8 (n− 1) (ar)

2

a4 + 1
log22 n, (14)

where the last inequality uses the fa
t that for any simple graph kmax ≤ n−1,
whi
h �nally proves the Theorem 2.

Remark 5. The results in this se
tion prove that the elongation of the re
tangle

in the RRG makes the graphs drasti
ally less 
onne
ted for a given radius.

However, as 
an be seen in the inequalities (11) and (12) the redu
tion of the

algebrai
 
onne
tivity with the re
tangle elongation 
an be 
ompensated with

the in
rease of the 
onne
tion radius, whi
h also de
reases the diameter of the

graph. For instan
e, if we are 
onsidering the deployment of wireless sensors in

very elongated region it is 
ustomary to use sensors whi
h have 
overage radius

signi�
antly larger than those typi
ally used for 
overing more squared regions.

Otherwise, there is a high risk that the whole network is dis
onne
ted.

4. Consensus time

Here we are interested in analyzing the in�uen
e of the algebrai
 
onne
tivity

on the time of 
onsensus tc, i.e., the time for whi
h |~ui − ~uj | ≤ δ, where δ is a
given threshold. Then, we state our main result of this work.

Theorem 6. Let GR (n, a, r) be a 
onne
ted RRG with n nodes embedded in

a re
tangle of sides with lengths a and b = a−1
, and two nodes are 
onne
ted

if and only if they are at a Eu
lidean distan
e smaller than or equal to r. Let

〈tc〉 be the time of 
onsensus averaged for all the nodes in the graph. Let µ2 be

the algebrai
 
onne
tivity of the RRG and

~ψ2 the 
orresponding Fiedler ve
tor.

Then

〈tc〉 ≥
1

nµ2

n
∑

p=1

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

.
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Proof. First, we write the eq. 6 for a given node p as

~up (t) =

n
∑

q=1

~zq

n
∑

j=1

~ψj,p
~ψj,qe

−tµj , (15)

whi
h represents the evolution of the state of the 
orresponding node as

time evolves. Now, let us 
onsider that the time tends to the time of 
onsensus

t → tc, where tc is the time at whi
h u (t) →
(

~ψT
1 ~z
)

~ψ1. Let us designate this

time by t−c

~up
(

t−c
)

=
1

n

n
∑

q=1

~zq +

n
∑

j=2

(

~ψj,pe
−t−c (p)µj

n
∑

q=1

~ψj,q~zq

)

, (16)

here t−c (p) means the time at whi
h the node p is 
lose to rea
hing the


onsensus state. Let 〈~u0〉 = 1
n

∑n

q=1 ~zq and let us write 16 as follows

~up
(

t−c
)

− 〈~z〉 =
n
∑

j=2

(

~ψj,pe
−t−c (p)µj

n
∑

q=1

~ψj,q~zq

)

. (17)

Let us sele
t a node p su
h that

~ψ2,p has the same sign as

~ψ2 · ~z.
Sin
e µ2 
orresponding to j = 2 is the smallest eigenvalue in the sum on the

right hand of the expression, this terms tends to 0 slower than the terms for the

other values of j. This means that, if we 
hoose a small enough value of δ, the
values of tc and thus t−c will be very large. Thus, we 
an ensure that the left

side of the equation is small enough that

n
∑

j=3

(

~ψj,pe
−t−c (p)µj ( ~ψj · ~z)

)

< 0. This

implies that

(

~up
(

t−c
)

− 〈~z〉
)

< ~ψ2,pe
−t−c (p)µ2

(

~ψ2 · ~z
)

. (18)

Now, be
ause |~up (t−c )− 〈~z〉| ≥ δ we have

δ ≤
∣

∣~up
(

t−c
)

− 〈~z〉
∣

∣ <
∣

∣

∣

~ψ2,pe
−t−c (p)µ2

(

~ψ2 · ~z
)
∣

∣

∣
. (19)

Then, the time at whi
h the 
onsensus is rea
hed tc (p) is bounded by

tc (p) ≥ t−c (p) ≥ 1
µ2

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

. (20)

Finally, the average time of 
onsensus is bounded by
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〈tc〉 ≥
1

µ2n

n
∑

p=1

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

, (21)

whi
h proves the result.

If we are using a dis
rete-time approa
h like the one given in 10 then

〈tc〉 ≥ 1

ǫµ2n

n
∑

p=1

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

. (22)

The importan
e of the Theorem 6 is that when µ2 → 0 the time of 
onsensus

grows to in�nity. Previously, we have already proved in Theorem 2 that the

elongation of a random geometri
 graph with a given number of nodes and a �xed


onne
tion radius means that the algebrai
 
onne
tivity goes asymptoti
ally to

zero. The immediate 
onsequen
e of this result is that the 
onsensus time

grows to in�nity in RRG when a → ∞ due to the inverse relation between the


onsensus time and the algebrai
 
onne
tivity.

5. Simulations

In this se
tion we 
arry out simulations with the main goal of investigating

how the elongation of a re
tangle in�uen
es the 
onsensus time. However, due

to its importan
e for the 
urrent paper as well as in general for the further

study of RRG we �rst investigate the in�uen
e of the re
tangle side length on

the diameter of the graphs and on their algebrai
 
onne
tivity. Here we will


onsider RRGs 
onstru
ted by pla
ing n = 500 nodes in a unit re
tangle of side

lengths a and b = a−1
. The 
onne
tion radius will be �xed to r = 0.15 and we

systemati
ally vary the side length from a = 1 to a = 12. For ea
h value of a
we take 100 random realizations of the RRG and report the average value of

the 
orresponding property. In Fig. 2(a) we illustrate the plot of the average

values of the diameter 〈D〉 versus the values of a (blue squares). As 
an be seen

the diameter in
reases linearly with the elongation of the re
tangle. In fa
t,

〈D〉 ≈ 7.927a− 0.237. This result agrees with our analyti
al ones (see Theorem

3) whi
h indi
ates that as a→ ∞ the diameter of the RRG also grows to in�nity.

The lower bound (12) is also plotted in Fig. 2(a) (red 
ir
les) where it 
an be

seen that it follows identi
al trend as the observed value of the diameter for

RRG. Indeed, the observed diameter linearly 
orrelates with the one obtained

by eq. 12 with a 
orrelation 
oe�
ient of 0.999.

The diameter is mainly used here to �nd an upper bound for the algebrai



onne
tivity µ2 of the graph, i.e., the se
ond smallest eigenvalue of the Lapla
ian

matrix. We have 
al
ulated the average values of the algebrai
 
onne
tivity for

the RRGs studied here and the results are plotted in Fig. 2(b) (blue squares).
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As 
an be seen the algebrai
 
onne
tivity de
ays as a power-law with the side

length of the re
tangle: µ2 ≈ 0.7487a−1.968 − 0.00661 with Pearson 
orrelation


oe�
ient equal to 0.9999. This 
on�rms our analyti
al result that as a → ∞
the algebrai
 
onne
tivity de
ays to zero. We also in
lude in this �gure the

plot 
orresponding to the values of the upper bound found for the algebrai



onne
tivity (red 
ir
les). As 
an be seen, although the observed values are

signi�
antly smaller than the ones provided by the upper bound, they both

de
ay following similar power-laws with the 
hange of the re
tangle side length.

The observed values of the algebrai
 
onne
tivity do not 
hange linearly with

those provided by the upper bound. Instead, they are related by a power-law

relation of the type: 〈µ2〉 ≈ 4476µ̂0.61
2 − 84.65, where µ̂2 is the upper bound

obtained by the eq. (11).

The main 
on
lusion of this part of the work is that when the re
tangle be-


omes more elongated, the RRG be
omes a larger world (the diameter in
reases)

and also it displays less 
onne
tivity (de
rease of µ2), whi
h makes the graph

more vulnerable to be split into isolated 
omponents by removing just a few

nodes/edges. The 
onsequen
es of this result for the analysis of the 
onsensus

dynami
s are analyzed below.
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Figure 2: Change of the diameter (a) and the algebrai
 
onne
tivity (b) of RRGs with the

variation in the side length of the re
tangle, a. All the graphs have n = 500 nodes and the


onne
tion radius is r = 0.15. The squares 
orrespond to the average values observed for the

RRG after 100 random realizations, and the 
ir
les represents the bounds obtained by eq. 12

and eq. 11, respe
tively. Noti
e the semilog plot on the y-axis for the plot (b).

We now study the in�uen
e of the re
tangle elongation over the 
onsensus

dynami
s on RRGs. We take 
are with the elongation pro
ess so that the graphs

do not be
ome dis
onne
ted. First we 
ompare the dis
rete-time evolution of

two RRGs with n = 500 nodes and r = 0.15, but one having a = 1 (a '
lassi
al'

RGG) and the other having a = 5. In Fig. 5 (a) and (b) we plot the time

evolution of this 
onsensus dynami
s, where it 
an be seen that the time of

12




onsensus for the graph embedded into the unit square is at least 10 times

shorter than that for the elongated RRG (see further). Be
ause these plots are

the results of only one random realization we perform a systemati
 variation

of the re
tangle side length and report the average of the time of 
onsensus

after 100 random realizations for ea
h value of a with a stopping 
riterion of

δ = 10−4
. The results are illustrated in Fig. 5 (
), where we plot the values of

the average time for 
onsensus versus the re
tangle side lengths (blue squares).

As 
an be seen the time for 
onsensus in
reases with the elongation of the

re
tangle. The best �t for this 
orrelation is a 4th order polynomial: 〈tc〉 ≈
0.1885a4− 1.651a3+19.59a2− 37.06a2+30.59; the �t has a Pearson 
orrelation


oe�
ient of 0.9997. Using this model we 
an obtain a more pre
ise estimation

of the average time for 
onsensus of the random realization illustrated in Fig.

5 (a) and (b). For a value of δ = 10−4
the 
onsensus is rea
hed for a = 1 at a

time of 11.66, while for a = 10 at a time of 1853. We will go ba
k to this kind

of analysis later on in this paper.

The estimated times for 
onsensus obtained from the equation (21) are also

plotted in Fig. 5 (
) (red 
ir
les), where it 
an be seen that they follow the same

trend as the observed values. Indeed, the plot of the observed values versus those

expe
ted from the eq. (21) (see Fig. 5 (d)) indi
ates a perfe
t linear 
orrelation

between the two with a Pearson 
orrelation 
oe�
ient of 0.9999.
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Figure 3: Illustration of the 
onsensus dynami
s for a RRG with a = 1 (a) and for a = 5 (b).

The simulations were 
arried out using a dis
rete time 
onsensus model (see 10) with a random

allo
ation of initial states for the nodes. Both networks have 500 nodes and the 
onne
tion

radius is r = 0.15. Noti
e that the s
ale for the time axis has 
hanged by a fa
tor of 10 from

one plot to the other. (
) Dependen
e of the time for 
onsensus with the length of the side of

the re
tangle. Here the squares represent the average values of the 100 simulations and the


ir
les are the values obtained by the equation 21. The solid lines represent the best �t whi
h

were obtained using 4th order polynomials. (d) Linear plot of the observed and estimated

(using equation 21) for the time of 
onsensus of the RRGs with 500 nodes and r = 0.15.

Finally, we plot in Fig. 4 the dependen
e of the time of 
onsensus with

respe
t to both the 
onne
tion radius and the re
tangle side length. The line

that divides the region of relatively fast 
onsensus (deep blue region in the


ontour plot) from that of relatively slow one is given by a = κ · r − 1.5, where
κ = 28 for the analyti
al and κ = 26 for the observed results. Thus, a 
ondition

for fast 
onsensus in RRG with n = 500 
an be simply approximated by

a+ 1.5

r
< κ. (23)
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We would like to briey explore some of the 
onsequen
es that our results

have on the study of 
onsensus in real-world situations. As we have seen in the

Introdu
tion a 
ity like Manhattan has dimensions whi
h resemble a re
tangle

more than a square. That is, Manhattan is 21.6 km long and 3.7 km wide. This


an be represented as a unit re
tangle of dimensions a ≈ 2.42 and b ≈ 0.41.
Using our �tted model, and 
onsidering that we embed 500 nodes, e.g., wireless

sensors to monitor the 
ity, we obtain the expe
ted time for 
onsensus on this

RRG, whi
h is 38.3. This time is 3.3 times longer than the one expe
ted if the

network is 
onsidered to be embedded into a unit square, i.e., a = 1. That is,

we would be underestimating the time for 
onsensus of the sensors by a fa
tor

of three. Also, a

ording to (23) we 
an estimate that a fast 
onsensus 
an be

rea
hed in this network only if r > 0.157.
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Figure 4: Contour plot showing the dependen
e of the time of 
onsensus with the 
onne
tion

radius and the re
tangle side length in RRGs with 500 nodes. a) Analyti
al results. b)

Observed results from the simulations. The diagonal white line 
orresponds to the equations

a = κ · r − 1.5, where κ = 28 for the analyti
al and κ = 26 for the observed results.

6. Con
lusions

In this work we have found some interesting stru
tural and dynami
al prop-

erties of graphs embedded into re
tangular areas. The re
ently de�ned random

re
tangular graphs (RRGs) a

ount for the spatial distribution of nodes allowing

the variation of the shape of the unit re
tangle 
ommonly used in random geo-

metri
 graphs (RGGs). In parti
ular, we have found an ex
ellent lower bound

for the diameter of RRGs. The diameter is an important parameter per se

as well as for its in
lusion in many inequalities for other network stru
tural

parameters. For instan
e, we have used this bound to �nd an upper bound

for the algebrai
 
onne
tivity of RRGs. The algebrai
 
onne
tivity, the se
ond

smallest eigenvalue of the graph Lapla
ian, is one of the most important param-

eters relating network stru
ture and dynami
al pro
esses taking pla
e on them,

e.g., 
onsensus/di�usion dynami
s, syn
hronization. Finally, we have studied

the 
onsensus dynami
s on RRGs where we have found analyti
ally that as the
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re
tangle be
omes more elongated, the time for rea
hing 
onsensus in
reases

polynomially with the side length of the re
tangle. The simulation results al-

lowed us to 
on�rm these results and to �nd empiri
al relations between the

topologi
al and dynami
al parameters with the re
tangle side length.

The results obtained in this work have important pra
ti
al 
onsequen
es

for modeling real-world s
enarios. First, modeling a real-world s
enario whi
h

is not geometri
ally similar to a square using the `
lassi
al' RGG, produ
es

a signi�
ant error in estimating important stru
tural and dynami
al network

parameters. More importantly, the RRG provides a modeling s
enario in whi
h

we 
an simulate the in�uen
e of the shape of a geographi
al region on the

topologi
al and dynami
al properties of the graphs embedded on them.

There are many new resear
h avenues that the study of RRGs open for the

study of spatially embedded graphs. One of them is the analysis of other dy-

nami
al pro
esses, su
h as syn
hronization, and epidemi
 spreading on RRGs.

Another area of development is the extension of RRGs to higher dimensions, spe-


ially to three-dimensional (3D) ones. 3D-RRGs will allow the e�e
tive modeling

of many real-world s
enarios in whi
h the nodes are embedded into elongated


ubi
 regions of the 3D spa
e. Finally, a third area of interesting development is

the 
onsideration of other proximity graphs, su
h as Gabriel graphs and random

neighborhood graphs, embedded into re
tangular regions instead of unit squared

ones. We hope these developments will 
ontribute to be better understanding

of networks embedded into geometri
al spa
es.
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