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Abstract

A fluid mechanics problem relevant to foam fractionation processes is analysed. Specif-

ically the fluid flow field transporting surfactant from foam Plateau borders (fed with

surfactant-rich material) towards comparatively surfactant-lean foam films is considered.

The extent to which this surfactant mass transfer is limited by surface viscous effects is

studied. Previous work (Vitasari et al., 2015) made assumptions about the likely flow

field along the Plateau border surface. These assumptions suggested that ‘high’ surface

viscosity (measured by a suitable dimensionless parameter) led to strong suppression of

the rate of surfactant mass transfer from Plateau border to film, whereas ‘low’ surface

viscosity did not suppress this mass transfer rate in any significant way. More detailed

fluid mechanical calculations which are carried out here corroborate the aforementioned

assumptions in the ‘high’ surface viscosity regime. However the calculations suggest that

in the ‘low’ surface viscosity regime, in contrast to the findings from the previous as-

sumptions, moderate reductions in the rate of surfactant mass transfer are also possible.

Counterintuitively these moderate reductions in mass transfer rate potentially have more

negative impact on fractionation processes than the aforementioned strong suppression.

This is because they tend to arise under conditions for which the efficiency of the frac-

tionation system is particularly sensitive to any reduction whatsoever in the surfactant
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mass transfer rate.

Keywords: Mathematical Modelling; Computational Fluid Dynamics; Interfacial

Rheology; Surfactant; Bubble; Films

Highlights

∗ Fluid mechanics of foam fractionation in reflux and/or stripping mode is modelled

∗ Surfactant transfers from surfactant-rich Plateau borders to surfactant-lean films

∗ Effect of surfactant surface viscosity on flow in Plateau border is analysed

∗ High surface viscosity strongly suppresses border to film mass transfer

∗ Even low surface viscosities can reduce surfactant mass transfer onto foam films

1. Introduction

The purpose of foam fractionation is to enrich surfactants or surface active materials

by allowing them to accumulate on foam films (Lemlich, 1968a,b). During this process,

whilst surfactant can be transported to foam film surfaces diffusively (Vitasari et al.,

2013a), transport rates can be enhanced by exploiting so called Marangoni flows (Vi-

tasari et al., 2013b), which rely on surface tension differences driving convection. There

are various foam fractionation scenarios (described more fully below) where such convec-

tive Marangoni flows are likely to arise. These all involve comparatively surfactant-lean

films being surrounded by surfactant-rich Plateau borders (tricuspid channels along which

three films meet). The Plateau borders typically contain rather more liquid (and thus

potentially more surfactant) than the foam films, and so can feed surfactant to those films

via convective Marangoni flows.

One relevant scenario is that of foam fractionation with reflux (Brunner and Lemlich,

1963; Lemlich and Lavi, 1961; Martin et al., 2010; Stevenson and Jameson, 2007). Dur-

ing this process, which can be operated either batchwise or continuously, foam collected

from the top of a fractionation column is collapsed and the liquid recovered is poured

back onto the column. This liquid then flows downward through the Plateau borders

which form a network of channels. The cross sectional area of the channels is set by
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the liquid flux through them (Weaire and Hutzler, 1999), with the dominant force bal-

ance (Grassia et al., 2001) in these channels being between gravity (acting downwards)

and viscous drag at the Plateau border walls (the drag acting upwards on the downward

flowing liquid). This downward flowing liquid added back to the column provides an

additional opportunity to increase the surfactant content in the foam. Various mass ex-

change mechanisms are expected to take place, including the surfactant-rich reflux liquid

mixing with less surfactant-rich liquid already in the Plateau borders lower down in the

column, in addition to the mechanism of main interest here, namely Marangoni flows

pulling surfactant-rich material onto surfactant-lean films.

How effective the Marangoni mechanism is in this context depends on the concentra-

tion regime in which the fractionation process is being operated. Surface tension loses

sensitivity to surfactant concentration at a critical surfactant concentration (the critical

micelle concentration or CMC (Chang and Franses, 1995)) considered to be the point

at which the surface is sufficiently crowded with surfactant that excess surfactant be-

gins to form aggregates (or micelles) in the bulk. Marangoni mechanisms are unlikely to

be effective at increasing surfactant coverage on an already crowded surface, but should

be effective at concentrations below the CMC. Exceedingly low concentration operation

(with barely any surface coverage of surfactant) will be problematic for foam stability:

in such a situation however, reflux (and the Marangoni-driven surfactant mass transfer it

induces) will help to stabilise the foam films.

Another scenario of relevance here is fractionation in stripping mode (Lemlich, 1968a).

During a continuous stripping operation, liquid feed is introduced part-way up the column

(instead of to a liquid pool underneath the foam) and (as with fractionation employing

reflux) drains downward through the Plateau border network, again with the channel cross

sections being determined by the liquid flux. Given that the purpose of the process is to

strip as much surfactant as possible from the feed stream, even if the feed concentration

is above the CMC, at some point lower down in the column it should fall below the CMC.

The Marangoni-driven mass transfer processes described above will then become active

pulling material onto (comparatively uncrowded) foam films.
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Yet another potentially relevant scenario is multicomponent foam fractionation (Brown

et al., 1999). Such a system involves two surfactants: a more surface active one and a

less surface active one. Marangoni flows onto films are expected if a more surface active

species in a Plateau border contacts a film covered with less active species (but not the

other way round). If (as could happen in stripping mode multicomponent operation)

the feed to the Plateau border network contains a mixture of two surface active species,

the Marangoni flows themselves are unlikely to be selective, carrying both species of the

mixture onto the film. However the less active species is more likely to desorb to the

interior of the film (Vitasari et al., 2013a). Drainage flows in the film interior might then

carry that species back towards the Plateau border (Vitasari et al., 2013b) and after that

downwards to the liquid pool underneath the foam.

In view of the importance of Marangoni flows to the above mentioned fractionation

scenarios, recently a model has been developed (Vitasari et al., 2013b) for the Marangoni-

driven surfactant accumulation on foam films. It is expected however that (over and

above Marangoni mechanisms) additional interfacial rheology effects (e.g. surface vis-

cosity (Scriven, 1960)) should affect surfactant convection onto foam films. Hence the

surfactant accumulation model of Vitasari et al. (2013b) was extended (Vitasari et al.,

2015) to incorporate the surface viscosity (in addition to the viscous effects in the bulk of

the films which were included in the models from the outset). The basic finding was that

(unsurprisingly) the presence of surface viscosity tends to limit the surfactant movement

and hence can reduce the rate of surfactant accumulation on the films.

It is important to note that the model of Vitasari et al. (2015, 2013b) is mathematically

very simple. As explained in Vitasari et al. (2015), it consists of a 1-d ordinary differential

equation for the surface velocity on the foam film surface, coupled to a partial differential

equation (in terms of time and one spatial dimension) for the evolution of the surfactant

concentration. The model was therefore sufficiently simple (and hence sufficiently quick

to solve, typical run times being just a few minutes) that it is feasible to incorporate it

into design algorithms for fractionation columns.

In order to solve the model, it was necessary (Vitasari et al., 2015) to make assumptions
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(described in more detail later) about how the flow on the film matched onto that in

the Plateau border. The assumptions made were plausible, but nevertheless need to be

checked by more detailed fluid mechanical calculations. The objective of the present

work then is to perform fluid mechanical calculations to check the modelling assumptions

of Vitasari et al. (2015) and if necessary indicate how to modify these assumptions.

The remainder of this discussion is laid out as follows. Section 2 sets up governing

equations for the fluid flow field on a film employing simple lubrication theory approxima-

tions. Section 3 then sets up corresponding governing equations for the fluid flow in the

Plateau border (considering both a 2-d flow field and a quasi-1-d asymptotic approach)

whilst Section 4 considers matching between the film and the border. Section 5 identifies

and estimates the values of a number of key dimensionless groups. This section also in-

cludes a discussion of how the values of these dimensionless groups are believed to affect

the solution for the flow field. Section 6 considers a special case where we are able to solve

analytically for the flow field in the film: this shows directly how the nature of the film-

Plateau border coupling influences the film flow field (and thereby the surfactant mass

transfer rate from border to film). Next Section 7 describes the numerical methodology

for solving the Plateau border flow fields with results presented in Section 8. Section 9

discusses and summarises the results. Finally overall conclusions are given in Section 10.

2. Model for film flow

Figure 1(a) shows a sketch of a film joining up to a Plateau border. In the first instance

we focus on the flow in the film. We adopt the model already considered by Vitasari et al.

(2015) in which the film is taken to be perfectly flat (i.e. we ignore the complications

associated with possible dimpled shapes of the film near its junction with the Plateau

border (Frankel and Mysels, 1962; Joye et al., 1992, 1994, 1996)). The film is also assumed

not to drain so its thickness is taken to be constant as well as uniform (although effects

of film drainage causing thickness to vary with time could be incorporated into the model

if desired (Vitasari et al., 2013b); film Marangoni flows tend to start off dominating

film drainage flows, but the Marangoni flows also decay more rapidly as surfactant is
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transported onto the film surface, and film drainage might then be a significant contributor

to any remaining transport (Vitasari et al., 2013b)). Moreover the film thickness is much

smaller than its length (the half-thickness being denoted δ0 and the half-length being

denoted L with δ0 ≪ L): lubrication theory approximations apply. These give a parabolic

flow profile across the film thickness as sketched in Figure 1(b)

u = us(x)

(

3

2

y2

δ20
− 1

2

)

(1)

where x is a coordinate along the film (with x = 0 corresponding to the point where the

film meets the Plateau border, and defined such that x < 0 on the film), y is a coordinate

across the film (with y = 0 midway across), u is the velocity in the film, us is the velocity

on the film surface, and δ0 is the film half-thickness.

This profile implies a viscous shear stress at the film surface

µ ∂u/∂y|y=δ0 = 3µus/δ0 (2)

where µ is viscosity of the liquid in the film. On the gas-liquid surface we then have

(matching the shear stress to Marangoni and surface viscous stresses)

µ ∂u/∂y|y=δ0 = ∂γ/∂x + µs∂
2us/∂x

2 (3)

where γ is surface tension and µs is surface viscosity. Substituting (2) into (3) gives

3µus/δ0 = ∂γ/∂x + µs∂
2us/∂x

2. (4)

The question of interest here is, given an instantaneous distribution of γ vs x, what is

the value of us|x=0? This quantity is of interest because us|x=0 governs the flow and hence

mass transfer between Plateau border and film (and hence the time evolution of γ).

In order to determine us|x=0, equation (4) needs to be solved subject to suitable

boundary conditions. On symmetry grounds, us vanishes at the centre of the surface of

the film. Again on symmetry grounds, us vanishes at the centre of the surface of the

6



Plateau border: see Figure 1(a). Given that we have one condition on the film, and one

condition on the border (with equation (4), as formulated above, applying only to the

film), we need somehow to match the film flow to the border flow in order to solve for us.

The approach of Vitasari et al. (2015) was to assume that the velocity field us(x) on

the film could be ‘extrapolated’ onto the border. Matching was achieved by ‘unfolding’

the surface of the border onto a straight line, taking a uniform surface strain rate (and

hence a uniform ∂us/∂x equal to the value ∂us/∂x|x=0 at the junction with the film)

on the now ‘unfolded’ border. The question we plan to address is whether or not this

assumption used by Vitasari et al. (2015) to achieve matching was appropriate or not.

3. Flow in a Plateau border

The complete set of fluid mechanical calculations required to check the aforementioned

assumptions of Vitasari et al. (2015) turn out to be rather detailed and complicated ones.

The reasons for these complications (and a possible way around them, which we employ

in this work) are outlined below.

Conventionally one thinks of the surface of a Plateau border as being highly curved by

comparison with the films (see e.g. Figure 1(a)). Films must meet threefold at Plateau

borders at 2π/3 angles, but since cross-sections of Plateau borders (for a dry foam at

least) are much smaller than lengths of films, sharp curvatures at the borders are required

so as to turn through these 2π/3 angles over a comparatively small length scale.

Idealising, the curved Plateau border surfaces are treated as being arcs of circles,

whilst films are treated as flat. In a foam, the pressure difference (Weaire and Hutzler,

1999) (or more correctly, the normal stress difference) between the gas in the bubbles

and the liquid in either Plateau borders or films depends on curvature of the gas-liquid

interface (the Young-Laplace law). Since the borders are highly curved, they tend to

have lower pressure than the films, meaning that liquid can drain from the films into the

borders. Over and above this, in the application of interest here (a fractionation column

operated e.g. with reflux and/or in stripping mode) there is a flux of liquid added to the

foam, which flows through the Plateau borders swelling them. The result of all of this
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is that borders tend to contain rather more liquid than films: even though the border

cross-section is smaller than the lengths of the films, the film thicknesses can be very tiny

indeed, and hence the total amount of liquid in the films can be small1.

In fluid flow problems involving films joining up with Plateau borders, pressure must

change continuously with position moving from the films into the borders. The complica-

tion of course is that the curvature of the liquid-gas interfaces is tied to pressure difference:

the picture whereby borders are uniformly curved and films are flat is not strictly valid.

What one can observe in the neighbourhood of where the film meets the border is a so

called ‘transition region’ (a concept introduced by Bretherton (1961) and discussed also

by Reinelt and Kraynik (1989, 1990); Schwartz and Princen (1987)), with pressures and

curvatures varying significantly over a comparatively small distance near that film-Plateau

border junction. Away from the transition region, the film can be thought of as compar-

atively flat (i.e. zero curvature) and likewise, the border can be thought of as a circular

arc of uniform curvature. In the transition region neither of these two situations applies.

The distribution of curvature along the interfaces determines their position, which in

turn defines the solution domain where liquid is present. This domain itself must strictly

speaking be obtained as a part of the solution of a free boundary problem, alongside the

fluid flow fields themselves. Fluid flows between films and Plateau borders can produce

complex interface shapes (e.g. dimpled shapes2 as referred to earlier (Frankel and Mysels,

1962; Joye et al., 1992, 1994, 1996)). Adding surface rheological effects (Marangoni and

surface viscous forces) to the above description complicates matters even further. Com-

pared to the simple and quick-to-solve models studied by Vitasari et al. (2015, 2013b)

(as already alluded to above), such complex fluid mechanical calculations are less readily

incorporated into design algorithms for fractionation columns.

The question we wish to ask here is whether there might be some way to explore the

validity (or otherwise) of the aforementioned ‘extrapolation’ and ‘unfolding’ assumptions

1For a stable foam, the films, when they eventually become thin enough, are stabilised by colloidal
disjoining pressures and film drainage then stops.

2Note that colloidal disjoining forces are also neglected here, but these can become relevant in exceed-
ingly thin films, and might tend to counteract dimpling.
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used by Vitasari et al. (2015) for flow fields on Plateau border surfaces without resorting

to the full complexity of a free boundary problem.

The suggestion (analogous to what has been done in some other surface rheology

driven flows (Grassia and Homsy, 1998a,b; Smith and Davis, 1983)) is to solve a fluid

flow problem in a known domain, in this particular case where the entirety of the surfaces

of the Plateau borders are treated as uniform curvature arcs (see Figure 1(a)), ignoring

transition regions, dimpling, etc.. We permit tangential motion along the Plateau border

surfaces (tangential motion is essential to permit mass exchange between border and film)

but no normal motion. The shape of the flow domain is then not only specified, but also is

constant over time. The shape of the flow domain is by assumption unaffected by dynamic

parameters such as e.g. capillary number which otherwise would govern the surface shape

in systems of this type (Bretherton, 1961). With the aid of computational fluid dynamics

simulations, it is now possible to determine the flow fields throughout the border and,

specifically at the point where the border meets the film, check for consistency with the

assumptions employed by Vitasari et al. (2015).

In addition to flow fields, these computational fluid dynamics calculations can also

access pressure fields. Note that the computed pressure (more correctly the computed

normal stress) will in general be non-uniform along the border surface whereas curvature

is (by assumption) uniform. Such a situation violates the Young-Laplace law, but the

level of non-uniformity in the computed pressure profile is informative: zones where the

pressure deviates most strongly from uniformity are also zones where the assumption of

constant border curvature is least tenable.

The remainder of this section is laid out as follows. Section 3.1 gives the governing

equations for the Plateau border flow field with boundary conditions given in Sections 3.2–

3.4. Following that, Section 3.5 contains an asymptotic ‘quasi-1-dimensional’ description

of the flow fields as an alternative to the fully 2-d formulation of Section 3.1–Section 3.4.

3.1. Governing equations for the 2-D flow field in the Plateau border

The flow domain for the tricuspid Plateau border is shown in Figure 2. We only need

to describe one sixth of the tricuspid domain, the rest following on symmetry grounds. As
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noted by Leonard and Lemlich (1965) the domain is most conveniently described in polar

coordinates. The angular coordinate θ satisfies 0 ≤ θ ≤ π
6
, and the radial coordinate r

satisfies a ≤ r ≤ a(1 + ∆0)/ cos θ, where a is the curvature radius of the Plateau border

and ∆0 is the ratio between film half-thickness δ0 and Plateau border curvature radius a.

Note that ∆0 is a small parameter on the grounds that the film is exceedingly thin.

We assume incompressible Stokes flow in the Plateau border with a pressure field P ,

a velocity field u, and a liquid viscosity µ. Hence the Plateau border flow satisfies

∇.u = 0 (5)

0 = −∇P + µ∇2u. (6)

Note that even though we are considering a Stokes flow with the same flow domain

as Leonard and Lemlich (1965), we are dealing with quite distinct flows. The work

of Leonard and Lemlich (1965) treated unidirectional flow directed normal to the plane

of Figure 2. Here we consider flow in the plane of Figure 2. We now proceed to consider

boundary conditions on the various domain boundaries.

3.2. Plateau border surface

As we are dealing with a system involving interfacial rheology, the most important

boundary is the gas-liquid surface of the Plateau border, r = a in our coordinate system.

As was mentioned earlier (see Section 3) in the interests of simplicity, we focus on a

problem where the solution domain is fixed. Hence the radial velocity component ur on

the gas-liquid boundary is assumed to vanish.

Regarding tangential velocities, we use the symbol us to denote the velocity component

uθ evaluated at the Plateau border surface. We also use the variable s to denote the

distance measured along the Plateau border surface, defined by s = aθ. Ultimately us is

determined via a tangential boundary condition (incorporating surface viscosity on the

gas-liquid surface) which is as follows:

−µr
∂

∂r

(

uθ

r

)

=
∂γ

∂s
+ µs

∂2us

∂s2
, (7)
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the notation here recognising that uθ depends on r as well as upon θ, whereas us depends

on s (but not upon r). This is a generalisation of equation (3) given previously, the sign

of the first term recognising that the outward normal to the Plateau border points here

in the direction of decreasing r.

3.3. Plateau border entrance

We now specify the boundary condition across the thickness at the Plateau border

entrance θ = 0. The tangential velocity profile uθ vs r across the entrance is inherited

from the film. Analogously to equation (1) a parabolic profile is assumed

uθ =

(

−3

2

(1 + ∆0 − a−1r)2

∆2
0

+
1

2

)

|us|s=0| . (8)

Note the use of an absolute value on the right hand side of (8): we anticipate that the sign

of uθ|r=a,θ=0 (which by definition is equal to us|s=0 and equivalently to us|x=0) is negative,

implying surfactant transfer from Plateau border to film (the direction of transfer expected

in a fractionation column when film surfaces are fed by Marangoni flows).

To solve for the Plateau border flow field, a second boundary condition is however

required on θ = 0. Identifying an appropriate condition that matches the Plateau border

onto the film in a sensible fashion is subtle for reasons explained in the appendix: we

elected to adopt a tangential stress condition, setting the r, θ component of the stress

equal to µ ∂uθ/∂r, the value of ∂uθ/∂r being determined from equation (8).

3.4. Symmetry lines

In addition to the boundary conditions discussed in Sections 3.2–3.3, we also need to

impose boundary conditions on two symmetry lines represented in polar coordinates by

θ = π/6 (with varying r) and r = a(1 + ∆0)/ cos θ (with varying θ).

We use n and t to represent the unit outward normal vector and unit tangent, and un

and ut to represent normal and tangential velocity components. The boundary conditions

required are u.n = 0 and n.∇(u.t) = 0, or expressed more simply un = 0 and n.∇ut = 0.
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3.5. Quasi-1-d asymptotic approach for the Plateau border

In addition to the 2-d formulation alluded to above, there is also a comparatively

simple ‘quasi-1-d’ asymptotic approach. This describes the region of the Plateau border

that is close to the film as sketched in Figure 1(b).

We have Cartesian coordinate x = 0 at the junction between the film and the Plateau

border and x > 0 in the border itself. Restricting attention to the region x ≪ a we

can employ a lubrication theory entirely analogous to that in Section 2 for the film. The

velocity profile across the border is

u ≈ us(x)

(

3

2

y2

(δ(x))2
− 1

2

)

(9)

where δ is now the half border thickness (which in the border varies with longitudinal

position x). Near the entrance to the border we have

δ ≈ δ0 +
1

2

x2

a
, (10)

which upon defining ∆ = δ/a becomes ∆ ≈ ∆0+
1
2
x2/a2 . It is clear that for x ≪ a, both

∆ ≪ 1 and dδ/dx ≪ 1 (which are necessary conditions for lubrication theory to apply).

The analysis for this quasi-1-d formulation proceeds entirely analogously to Section 2,

and indeed analogously to equation (4) we deduce

3µus/δ = ∂γ/∂x + µs∂
2us/∂x

2. (11)

Equation (11) must be solved with suitable boundary conditions. At x = 0, the values

of us and ∂us/∂x must match up with those on the film. The other boundary condition

that us must vanish at the symmetry point at the centre of the Plateau border surface is

slightly more problematic, because it is strictly speaking outside the domain x ≪ a for

which equations (9)–(11) apply, a complication we will discuss in due course. Provided

this complication can be overcome, equation (11) provides an alternative way to determine

the surface velocity distribution us vs x or equivalently us vs s (s being arc length along
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the surface), instead of using the 2-d approach of Sections 3.1–3.4.

Regardless of which of the two approaches we adopt, we now introduce a simplification.

We admit Marangoni stresses on the film (i.e. non-zero ∂γ/∂x on the film) but not on

the Plateau border. Thus we set γ to equal a constant value γ0 on the Plateau border, so

that ∂γ/∂x vanishes in equation (11) or equivalently ∂γ/∂s vanishes in equation (7).

The justification is that the Plateau border is typically much thicker than the (exceed-

ingly thin) film, so its interior can act as a reservoir of surfactant. Even if the surfactant-

rich border loses material to the surfactant-lean film, the Plateau border’s surface can

be replenished by new surfactant arriving from its interior, provided this new surfactant

manages to arrive at the Plateau border surface more quickly than it is lost, implying in

turn assumptions about the kinetics of surface adsorption. Under circumstances whereby

the Plateau border can act as a reservoir, there must be a physicochemical length scale,

an ‘effective Henry constant’ (defined as the ratio between the concentration of surfactant

adsorbed at interfaces and the concentration of surfactant in the bulk3) which we assume

to be much larger than the film thickness, but smaller than the typical Plateau border

thickness (which is comparable with the curvature radius of the Plateau border). Hence,

despite there being negligible amounts of surfactant in solution within films, there are

nevertheless significant amounts of surfactant in solution within the Plateau border.

Note that based on equation (10), the border is only substantially thicker than the

film for x ≫ O(
√
δ0a) or equivalently for x ≫ O(∆

1/2
0 a). Since ∆0 ≪ 1, this applies to

the overwhelming majority of the border. For x values up to order O(
√
δ0a) however, the

border is only marginally thicker than the film, and strictly speaking we should continue

to account for Marangoni stresses there, even if they are neglected over the rest of the

border. If however both us and ∂us/∂x vary comparatively little between x = 0 and

x = O(∆
1/2
0 a), it is permissible to compute flow fields over the entire Plateau border

ignoring Marangoni stresses once again over the entire border surface.

Neglecting Marangoni stresses on the border surface, implies that the flow in the border

3We use the expression, ‘effective Henry constant’, rather than simply ‘Henry constant’, to recognize
that adsorbed surfactant might be a non-linear function of bulk surfactant concentration.
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is wholly driven by non-zero flow at the junction between the Plateau border and the film,

i.e. due to us|x=0 (or equivalently us|s=0) being non-zero. Moreover we are dealing with a

linear system of equations so that the ratio between ∂us/∂x|x=0 and us|x=0 is independent

of the value of us|x=0: the ratio can be obtained even if us|x=0 is a priori unknown.

Both ∂us/∂x and us are continuous at x = 0 moving from the Plateau border to the

film: hence, if we can determine their ratio on the Plateau border side of x = 0 (without

needing to compute the film flow), we immediately know their ratio on the film side also.

Thus we have a ‘matching condition’ joining the Plateau border and film flows. Once this

ratio or ‘matching condition’ is determined, the film flow can be solved without further

details of the flow in the Plateau border, apart from the ‘matching condition’ itself.

Given this ‘matching condition’ is important for determining the film flow, there has

been speculation (Vitasari et al., 2015) regarding what the ratio between ∂us/∂x|x=0 and

us|x=0 might be. Hypotheses for the value of this ratio are discussed in the next section.

4. Matching conditions between Plateau border and film

This section is laid out as follows. Section 4.1 considers one possible hypothesis

from Vitasari et al. (2015) of how to match the Plateau border flow to that in the film.

The consequences of this hypothesis for the film flows are identified in Section 4.2. An

alternative matching hypothesis is proposed in Section 4.3. It is ultimately by perform-

ing fluid mechanical calculations in the Plateau border (considered later on) that we can

identify conditions under which each hypothesis actually applies.

4.1. Uniform strain rate matching hypothesis

The study of Vitasari et al. (2015) speculated that

∂us/∂x|x=0 = −us|x=0/(πa/6). (12)

This is consistent with a uniform surface rate of strain on the Plateau border, i.e. a

uniform decay of velocity on the border surface ‘extrapolated’ from the entrance to the

border (where it meets the film) to the border’s symmetry point (the distance πa/6 being
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the distance from the entrance to the symmetry point measured along the surface in the

tricuspid Plateau border geometry, and we have ‘unfolded’ this curved surface onto a

straight line along the direction of the film).

Assumption (12) turns out to be sufficient to close the set of equations for the flow on

the film (Vitasari et al., 2015), enabling us to obtain us at any given x, and in particular

us|x=0. As mentioned previously, the velocity us|x=0 is very important here, as it is

precisely this velocity that governs the transport of surfactant between border and film.

Some of the consequences of assumption (12) are explored in the next section.

4.2. Film-Plateau border matching with a uniform strain rate hypothesis

It can be shown (Vitasari et al., 2015) (independently of the assumption in equa-

tion (12)) that a velocity boundary layer can appear at the edge of the film as the Plateau

border is approached: the velocity on the film surface changes quite rapidly with position

within this boundary layer. Specifically if us immediately outside the boundary layer is

denoted us(o), then the boundary layer approximation results in

∂us/∂x|x=0 ≈
(

us|x=0 − us(o)

)

/

(

L
√

δ′0µ̄s/3
)

≈
(

us|x=0 − us(o)

)

/

(

L
π

6
a′crit

)

(13)

where recall L is the half-film length, and δ′0, µ̄s and a′crit are dimensionless groups defined

as follows: δ′0 is an aspect ratio (δ0/L), µ̄s is a dimensionless surface viscosity (µs/(µL)),

and moreover a′crit is

a′crit =
6

π

√

δ′0µ̄s/3. (14)

We also define a dimensionless Plateau border curvature radius a′ to be a/L (with a′ < 1

on geometric grounds), interpreting a′crit as being a critical value of a
′ at which the presence

of the Plateau border starts to limit the film flow (further details to be given shortly).

In equation (13), the term L
√

δ′0µ̄s/3 or equivalently Lπ
6
a′crit represents the length

scale of the velocity boundary layer on the film. Substitution from the definitions of δ′0

and µ̄s, gives the boundary layer length as
√

δ0µs/(3µ). This depends on (dimensional)

film thickness δ0 and on interfacial and bulk rheology (i.e. the ratio µs/µ), but not on the

length scale of the film (half-length L) nor that of the border (curvature radius a).
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The boundary layer length scale determined here is also independent of how surface

tension γ vs x varies, implying that the velocity field can have a boundary layer character

even when the Marangoni stress field does not. There could be more complex situations

for which both the velocity field and the Marangoni stress field develop boundary layers,

hence modifying equation (13), although we neglect such complications here.

Substitution of equation (13) into equation (12) (which assumes uniform strain rate

on the border as mentioned above) gives

(us|x=0 − us(o))/a
′
crit ≈ −us|x=0/a

′. (15)

Rearranging implies

us|x=0 ≈ us(o) (1 + a′crit/a
′)
−1 ≈ us(o)



1 +
6

π

√

∆0Ms

3





−1

(16)

where ∆0 is δ′0/a and where Ms is a (rescaled) dimensionless surface viscosity defined as

Ms = µs/(µa), a parameter already identified by Leonard and Lemlich (1965).

It is clear from this result that us|x=0 can be more or less the same magnitude as us(o)

(i.e. the change in velocity us across the boundary layer is insignificant) if a′ ≫ a′crit.

This is a situation where the Plateau border is sufficiently big, and/or the foam liquid

fraction (dominated by the liquid in the borders) is sufficiently high, and/or the surface

viscosity is sufficiently weak, that the film is ‘unaware’ of any constraints arising from

the presence of the Plateau border: in particular, the film flow field is unaffected by the

constraint that velocity must vanish at the symmetry point of the Plateau border.

If however a′ ≪ a′crit, then us|x=0 is much smaller in magnitude than us(o): there is

then an abrupt change in us near the end of the film across the boundary layer. The

transport of surfactant from the Plateau border to film, which relies on transport at the

velocity us|x=0, is much more limited than it would have been had the symmetry point

on the Plateau border not been constraining the motion.

Our numerical results and asymptotic analyses (both to be presented later) indicate

that when a′ ≪ a′crit (in our current notation, when ∆0Ms ≫ 1) the decay of us towards
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zero really is uniform along the entire surface of the border, exactly as equation (12)

suggests. Indeed in this limit it turns out not even to be necessary to assume that the

curved border is ‘unfolded’ along the lines discussed earlier. Equation (12) is then an

excellent approximation for matching the film to the border.

Note that the study of Vitasari et al. (2015) not only considered the case a′crit ≫ a′, i.e.

δ′0µ̄s ≫ a′ 2, i.e. ∆0Ms ≫ 1, but also considered another more ‘extreme’ case δ′0µ̄s ≫ 1,

i.e. ∆0Ms ≫ (a′)−2. Given that a′ < 1 (and in fact for a dry foam a′ ≪ 1), this latter case

is automatically covered by ∆0Ms ≫ 1, and equation (12) (compatible with a uniform

surface rate of strain on the Plateau border) continues to apply. In fact it turns out

to be not equation (12) but rather equation (13) which breaks down in this particular

limit, i.e. there is no longer a velocity boundary layer. As a consequence, the derivation

of equation (16) ceases to be valid. This situation has however been explored already

by Vitasari et al. (2015), and therefore we do not need to give the case ∆0Ms ≫ (a′)−2

any further special consideration here.

We wish to consider instead what happens when one hypothesises a non-uniform sur-

face rate of strain on the Plateau border surface. This is achieved in the next subsection.

4.3. Non-uniform strain rate hypothesis

As stated above, we want to consider the case of non-uniform strain rates on the

Plateau border surface. In particular we want to know what happens if the magnitude

of the strain rate is biggest near the entrance to the Plateau border (where it joins up

with the film) such that us decays to zero or near zero over a distance that is much

smaller than the distance πa/6 (or equivalently Lπ
6
a′) between the border entrance and

its central symmetry point. Such a rapid velocity decay is constraining the Plateau

border flow, which in turn constrains the film flow near the border. The ratio between

the length scale of the velocity boundary layer on the film Lπ
6
a′crit and the decay length

on the Plateau border is now rather larger than a′crit/a
′ which was the estimated value

of this ratio originally used in equation (16). As a result, the actual value of us|x=0 is

rather smaller than equation (16) would predict. In what follows we shall suppose that,

even when a′crit ≪ a′, the velocity decay length on the Plateau border can be selected
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to be comparable with the length scale of the velocity boundary layer on the film. The

rationale for selecting this particular length scale as being relevant to velocity decay on

the Plateau border will be discussed later. For the present though, we wish to explore

the consequences of selecting it. The effect is to make the film aware of the constraints

from the Plateau border, but nevertheless still unaware of the actual size of the Plateau

border (since this is substantially larger than the velocity decay length).

In lieu of equation (12), we assume a formula for ∂us/∂x|x=0 that is compatible with

the above mentioned decay length scale, i.e.

∂us/∂x|x=0 = −cus|x=0

/

(

L
√

δ′0µ̄s

)

≡ −cus|x=0

/(

L
π
√
3

6
a′crit

)

≡ −cus|x=0

/

(

a
√

∆0Ms

)

(17)

where c is an unknown value (ideally of order unity, but yet to be determined).

In that case (even if a′ ≫ a′crit, i.e. even if ∆0Ms ≪ 1), the magnitude of us|x=0 (the

velocity at the end of the film) will always be significantly less than that of us(o) (the

velocity immediately outside the boundary layer). In fact (combining equation (17) with

equation (13)) implies

us|x=0 ≈
√
3

(
√
3 + c)

us(o), (18)

an important equation to which we will return later.

Note that equation (17) only implies (18) when equation (13) is also valid. We have

already stated that (13) might lose validity when the γ vs x field on the film develops a

boundary layer character (instead of just us vs x exhibiting boundary layers). In such

situations (17) can still be valid, even though (18) is not. We will not study such situations

in any detail in what follows, although we will return to this point much later on.

In summary, what we are now claiming is that if a′ ≪ a′crit (equivalently ∆0Ms ≫ 1),

then equation (12) still applies and consequently us|x=0 is much smaller in magnitude than

us(o) as equation (16) then suggests. On the other hand, if a′ ≫ a′crit (i.e. ∆0Ms ≪ 1),

equation (12) does not apply, but should be replaced by equation (17) instead. As a

result, instead of equation (16) (which would now erroneously predict us|x=0 very close to
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us(o)), we need to employ equation (18), which predicts somewhat smaller us|x=0 values.

5. Dimensionless groups and their magnitude

In the foregoing discussion we identified a number of key dimensionless groups. For

analysing the Plateau border flow, these were ∆0 ≡ δ/a (dimensionless film thickness)

and Ms = µs/(µa) (dimensionless surface viscosity). For analysing the film flow, we

identified instead δ′0 ≡ δ0/L (film aspect ratio), µ̄s = µs/(µL) (again a dimensionless

surface viscosity, but scaled differently from Ms), a′ = a/L (dimensionless curvature

radius of the Plateau border), and a′crit (defined in terms of δ′0 and µ̄s in equation (14)).

Not all these dimensionless groups are independent of one another, some being more

relevant to the Plateau border, and others more relevant to the film, but when trying to

match the Plateau border flow to the film flow, it is useful to consider them all.

In what follows estimates of the values of these dimensionless groups are given (Sec-

tion 5.1) and then the governing equations developed earlier in Sections 2–4 are cast in

dimensionless form involving the relevant dimensionless groups (Section 5.2).

5.1. Typical values of dimensionless groups

Estimates of the above dimensionless groups have been obtained (Vitasari et al., 2015)

under conditions typical of a fractionation process.

The geometric factor δ′0 (film thickness to film length) was estimated to be small:

around 4 × 10−3 was typical for a freshly formed film, but a smaller value 3 × 10−6 was

typical of a film that has already had an opportunity to drain.

The geometric factor a′ was estimated (Vitasari et al., 2015) to be 0.1 typically. This

can be shown to correspond to a fairly dry foam (Vitasari, 2014) (liquid fraction 0.17%

assuming a Kelvin cell bubble structure). A wetter foam would have a larger a′ value:

a′ is known to be proportional to the square root of liquid fraction (Vitasari, 2014), so

significant changes in liquid fraction imply less significant changes in a′.

The value of ∆0 (which happens to equal δ′0/a
′) is an order of magnitude larger than

that of δ′0 (somewhere in the range 4 × 10−2 down to 3 × 10−5 being typical). It is clear

that ∆0 (like δ′0 itself) is a parameter that is significantly smaller than unity.
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Considerable uncertainty surrounds the ‘typical’ value of the dimensionless rheological

parameter µ̄s. This is partly because different surface active materials will have very

different surface viscosities, so µ̄s is strongly material dependent. However the uncertainty

is also partly because (even for a given surface active material) different measurement

techniques can lead to wildly different values (Stevenson, 2005; Vitasari et al., 2015).

The surface active protein bovine serum albumin (BSA) is a material that has been

used in fractionation studies previously (Brown et al., 1990). For a typical fractionation set

up, the value of µ̄s was estimated (Vitasari et al., 2015) to be 880, using a surface viscosity

value determined by Durand and Stone (2006). The common surfactant sodium dodecyl

sulphate (SDS) was found by Durand and Stone (2006) to have a surface viscosity two

orders of magnitude smaller than BSA. Different measurement techniques however find

much smaller surface viscosities for SDS (smaller by three or more orders of magnitude):

see Vitasari et al. (2015) and references therein. Thus, with a′ = 0.1 as above, the

parameter Ms (which equals µ̄s/a
′) could be as large as 8800 for BSA, but could be five

(or more) orders of magnitude smaller for a different material (SDS) and/or if a different

measurement technique is deemed more reliable than that of Durand and Stone (2006).

The computations to follow will employ a′ fixed at 0.1, but with ∆0 and Ms values

covering the wide ranges identified above. Before proceeding with detailed calculations

however, it is convenient to cast our governing equations in dimensionless form.

5.2. Governing equations in dimensionless form

We choose different dimensionless scales in the governing equations according to

whether we treat flow on the film (Section 5.2.1) or Plateau border (Sections 5.2.2–5.2.3).

5.2.1. Dimensionless governing equations for the film

For the film we make distances dimensionless with respect to the film half-length L.

The dimensionless coordinate x′ runs from the centre of the film (at x′ = −1) to the

junction with the Plateau border (at x′ = 0).

We make surface tensions γ dimensionless with respect to a Gibbs parameter4 G.

4We define G as a Gibbs elasticity, the absolute magnitude of the derivative of γ with respect to the
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This parameter G governs variations of surface tension on the film: if there are significant

relative changes in the surfactant coverage along the film, we expect variations in γ up to

the order of G. For the systems treated here (Vitasari et al., 2015, 2013b), G is comparable

in size to γ0, the constant tension at the point where the film and border join.

Velocities on the film are made dimensionless on the scale Gδ′0/µ, a scale which arises

from balancing Marangoni stresses with viscous shear stress in the bulk of the film.

Equation (4) becomes

3u′
s = ∂γ′/∂x′ + δ′0µ̄s∂

2u′
s/∂x

′ 2 (19)

where u′
s is dimensionless velocity and γ′ is dimensionless surface tension.

The dimensionless analogues of equations (12) and (16) are

∂u′
s/∂x

′|x′=0 = −u′
s|x′=0/(πa

′/6) (20)

u′
s|x′=0 ≈ u′

s(o) (1 + a′crit/a
′)
−1

= u′
s(o)



1 +
6

π

√

∆0Ms

3





−1

, (21)

u′
s(o) being dimensionless velocity outside a boundary layer. Analogues of (17)–(18) are

∂u′
s/∂x

′|x′=0 = −cu′
s|x′=0

/

√

δ′0µ̄s ≡ −cu′
s|x′=0

/

(

a′
√

∆0Ms

)

≡ −cu′
s|x′=0

/(

π
√
3

6
a′crit

)

(22)

u′
s|x′=0 ≈

√
3

(
√
3 + c)

u′
s(o). (23)

5.2.2. Dimensionless governing equations for the Plateau border

For the 2-d flow in the Plateau border we make distances dimensionless on the scale

a, with r′ denoting the dimensionless radial coordinate. The dimensionless arc length

(denoted S and measured along the Plateau border) is now identical to the angular coor-

dinate θ. The symbol ∇̄ denotes the dimensionless gradient operator. We also define two

logarithm of surfactant surface excess, evaluated for the particular surface excess on the Plateau border.
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sets of dimensionless Cartesian coordinates: anX coordinate (measured along the Plateau

border from the point where the border meets the film), and a Y coordinate (measured

across the border), as well as x̄, ȳ coordinates (rotated with respect to X and Y , and

with their origin outside the Plateau border at the point where r′ = 0; see Figure 2).

On the film (see Section 5.2.1) velocities were made dimensionless on a ‘Marangoni’

velocity scale Gδ′0/µ. Since we assume no Marangoni stresses on the Plateau border

surface, we select a different velocity scale there: velocities are made dimensionless on the

scale |u|r=a,θ=0| ≡ |us|S=0|, the absolute value recognizing that us|S=0 is typically negative.

Dimensionless velocity U has components either Ur and Uθ (in polar coordinates)

or UX and UY (in Cartesian coordinates), while the velocity along the Plateau border

surface is Us. Based on the way we non-dimensionalise velocity, we deduce Us|S=0 = −1.

Pressure meanwhile is non-dimensionalised on the scale µ|us|S=0|/a (equivalently on the

scale Gδ′0|u′
s|S=0|/a ≡ GL−1∆0|u′

s|S=0|), and we denote the dimensionless pressure by p.

Continuity implies ∇̄.U = 0. The dimensionless Stokes flow equation is

0 = −∇̄p+ ∇̄2U . (24)

On the Plateau border surface (r′ = 1), boundary conditions are Ur = 0 and also

−r′
∂

∂r′

(

Uθ

r′

)

= Ms
∂2Us

∂S2
. (25)

At the entrance to the Plateau border (θ = 0) we have a boundary condition

Uθ = −3

2

(1 + ∆0 − r′)2

∆2
0

+
1

2
(26)

and we also set the dimensionless shear stress to the known function ∂Uθ/∂r
′. Symmetry

conditions on θ = π
6
and also on r′ = (1+∆0)/ cos θ are Un = 0 and n.∇̄Ut = 0 where Un

and Ut are normal and tangential velocity components and n denotes a normal vector.

In addition to this, we are free to set a zero for the pressure scale. One possible way of

setting this is to assume zero pressure in the gas phase outside the Plateau border, which
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(owing to the curvature of the Plateau border surface) should give a negative pressure

in the liquid in the Plateau border. However in view of the fact that we have imposed

a condition of uniform curvature on the Plateau border surface, rather than imposing a

normal stress condition along it, we can only set zero pressure in the gas phase at one

particular point on the Plateau border surface, which we take to be the symmetry point

θ = π
6
. We then estimate the (dimensionless) pressure in the liquid at this point to be

−(∆0a
′)−1. The magnitude of this has been obtained by dividing the dimensional Young-

Laplace pressure γ0/a through by the scale GL−1∆0|u′
s|S=0|. Defining γ′

0 = γ0/G and

a′ = a/L, this evaluates to γ′
0(∆0a

′|u′
s|S=0|)−1. In the case of the protein BSA it has been

found (Vitasari et al., 2015) that γ′
0 is order unity (based on data sourced from Durand

and Stone (2006)). Meanwhile the dimensionless velocity |u′
s|S=0| at the film-Plateau

border junction is sensitive to how surfactant is distributed along the film, but should be

no larger than order unity, based on the scalings employed for the film flow5. Hence we

estimate γ′
0(∆0a

′|u′
s|S=0|)−1 to be (∆0a

′)−1 and set this to be (the absolute magnitude of)

the liquid pressure on the Plateau border surface at θ = π
6
. The pressure that we compute

at other θ values along the Plateau border surface will differ from −(∆0a
′)−1. However

as long as the variation in pressure relative to (∆0a
′)−1 is small, our approximation that

the Plateau border surface has a uniform curvature remains valid.

5.2.3. Dimensionless quasi-1-d equations for the Plateau border

In addition to the 2-d formulation described above, we can also obtain a dimensionless

version of the quasi-1-d Plateau border flow (from Section 3.5) applicable for dimensionless

X values considerably smaller than unity. The velocity component UY is much smaller

than UX , and so the flow is dominated by the latter which we denote simply by U .

The governing equations are as follows. In dimensionless form, equation (9) becomes

U ≈ Us(X)

(

3

2

Y 2

(∆(X))2
− 1

2

)

(27)

5Note that |Us|S=0| is unity by definition, but |u′

s|S=0| is scaled differently and differs from unity.
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with dimensionless border thickness

∆ ≈ ∆0 +X2/2. (28)

Equation (11) (neglecting Marangoni effects in the Plateau border) becomes

∂U/∂Y |Y=∆ = Ms∂
2Us/∂X

2 (29)

from which it follows

3Us/∆ = 3Us

/(

∆0 +X2/2
)

= Ms ∂
2Us/∂X

2, (30)

where recall ∆0 is a small parameter. This is the key equation which we must solve.

We seek the value of ∂Us/∂X|X=0 (or equivalently ∂Us/∂S|S=0 since Cartesian coor-

dinate X and arc length coordinate S coincide at X = S = 0). These values can be used

to couple the film flow u′
s and Plateau border flow Us. Equation (20) hypothesises that

a′|u′
s|−1∂u′

s/∂x
′|x′=0 ≡ ∂Us/∂S|S=0 ≈ 6/π (31)

whereas equation (22) gives (for a value of c to be determined)

a′|u′
s|−1∂u′

s/∂x
′|x′=0 ≡ ∂Us/∂S|S=0 = c

/

√

∆0Ms. (32)

In the above (for both 2-d and quasi-1-d systems) there is an assumption (to be

checked a posteriori) that Us and hence ∂Us/∂X (or equivalently ∂Us/∂S) vary on length

scales large compared to ∆
1/2
0 . The reason is that Marangoni stresses are neglected in

equations (25), (29)–(30) assuming that Plateau borders act as surfactant reservoirs due

to being much thicker than films, which can only be true for X larger than order ∆
1/2
0 .
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6. Case permitting analytic solution for the velocity field in the film

In the first instance we consider the velocity field on the film. Either equation (20)

or (22) allows us to close the set of equations determining this. All the above discussion

has been generic without assuming any particular field for surface tension γ′ vs x′ along

the film. In order to calculate actual velocity fields u′
s vs x

′ in this system, it is necessary

to know the value of γ′ vs x′ (which ultimately depends on the instantaneous distribution

of surfactant, that in turn is also coupled to the velocity field via the surfactant mass

balance): for the sake of illustration, a simple and easy-to-solve case with a specified

surfactant distribution is considered in what follows. The u′
s vs x′ velocity fields that

we compute of course drive the subsequent time evolution γ′ vs x′ (although we do not

consider this aspect here, focussing just on the instantaneous velocity field u′
s). In the easy-

to-solve case that we consider here, the contrast between the consequences of equation (12)

and those of (17) becomes readily apparent.

We will suppose for convenience that

γ′ − γ′
0 =

β

2

(

1− (x′ + 1)2
)

(33)

γ′
0 is the (assumed constant and uniform) surface tension on the Plateau border (non-

dimensionalised here with respect to the Gibbs parameter G) and β is a dimensionless

constant6. This is a simple but plausible distribution of surface tension on a film during

the foam fractionation scenarios of interest here: film surface tension is on average higher

than that on the Plateau borders, and moreover local surface tension grows as one moves

towards the centre of the films, away from the Plateau borders.

We are interested in cases where the parameter a′crit is no larger than order a′, since

only in such cases is there any ambiguity regarding which boundary condition to use

(assumption (20) vs assumption (22)). Under these circumstances the velocity field admits

a ‘boundary layer’, a decaying exponential which decays rapidly as x′ moves into the

6In the systems of interest, the value of β depends on the relative differences in surfactant concentration
between surfactant-rich material in Plateau borders, and surfactant-lean material in films. Assuming a
significant relative concentration difference, we can treat β as being a constant of order unity.
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film away from the Plateau border. It follows moreover that the boundary layer length

(
√

δ′0µ̄s/3 in dimensionless units) is no larger than order a′ (with dimensionless Plateau

border curvature radius a′ itself being much smaller than unity).

The solution to equation (19) for u′
s that satisfies condition (20) is

u′
s = −β(x′ + 1)

3
+

β(1 + a′π/6)

3 (1 + a′/a′crit)
exp





x′

√

δ′0µ̄s/3





≡ −β(x′ + 1)

3
+

β(1 + a′π/6)

3 (1 + a′/a′crit)
exp

(

x′

π
6
a′crit

)

. (34)

Hence at the end of the film where it joins the Plateau border (i.e. at x′ = 0)

u′
s|x′=0 = −β

3

(

(a′/a′crit)− π
6
a′
)

(1 + a′/a′crit)
(35)

which is actually consistent with equation (21). Remember that a′crit is no larger than

order a′ here, so the right hand side of equation (35) is reasonably close to −β/3. Indeed

we can denote this value −β/3 by u′
s(o) the dimensionless velocity immediately outside the

exponential ‘boundary layer’. Both velocities u′
s|x′=0 and u′

s(o) are of course negative (i.e.

in the direction from Plateau border to film) since in the systems of interest, Marangoni

stresses drive motion from surfactant-rich Plateau borders to surfactant-lean films, as well

as along the surfaces of the films, towards their centres.

An illustrative case is plotted in Figure 3 using dimensionless parameter values7 µ̄s =

0.088 and δ′0 = 4×10−3 (with
√

δ′0µ̄s/3 ≈ 0.010 and hence a′crit =
6
π

√

δ′0µ̄s/3 ≈ 0.020) and

also with a′ = 0.1. The dimensionless parameter β is taken arbitrarily to equal unity.

In the case of assumption (22), the solution for the velocity field becomes instead

u′
s = −β(x′ + 1)

3
+

β

3

( c√
3
+ π

6
a′crit)

(1 + c/
√
3)

exp





x′

√

δ′0µ̄s/3



 . (36)

7The choice of µ̄s = 0.088 for this illustrative case recognizes from Section 5.1 that the parameter Ms

(and hence the parameter µ̄s ≡ Msa
′ with a′ = 0.1 here) can be orders of magnitude smaller than the

‘nominal’ Ms value of 8800 quoted in that section.
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From equation (36) we deduce at the end of the film

u′
s|x′=0 = −β

3

(1− πa′crit/6)

(1 + c/
√
3)

(37)

which is consistent with equation (23), and (given that c is expected to be of order unity)

suggestive of a velocity with a magnitude rather smaller than β/3.

Figure 3 plots the velocity profile (36) assuming c =
√
3 (chosen arbitrarily for the

moment, albeit to be justified later on) and all other parameter values as before. We can

see that under these circumstances, the velocity at the end of the film u′
s|x′=0 is more

constrained than with equation (34).

Corroborating the discussion of Sections 4.2–4.3, a comparison between equations (37)

and (35) tells us how much less u′
s at the end of the film is in the case of boundary

condition (22) compared to (20). We can however only effect this comparison if we are

able to determine the value of the parameter c. This requires detailed knowledge of the

flow field in the Plateau border and is the topic of the sections to follow.

7. Two-dimensional fluid dynamical calculations

The 2-d Stokes flow equations for the Plateau border described in Section 5.2.2 have

been implemented in the finite element software COMSOL multiphysics using polar r′, θ

coordinates. Although it is possible to solve numerically the coupled Stokes flow equations

for the Plateau border and film together, in practice we avoid this, as the film would need

to be discretised into very tiny elements due to being much thinner than the Plateau

border. It is less expensive to exploit lubrication type assumptions in the film (as per

Section 2) and perform COMSOL finite element calculations solely for the Plateau border.

We encountered a slight difficulty with implementing the symmetry conditions (Un = 0

and n.∇̄Ut = 0) at the boundary r′ = (1+∆0)/ cos θ, which is a straight line in Cartesian

coordinates, but curved in polar coordinates. COMSOL did not permit us to represent

the boundary of our solution domain via an arbitrary r′ vs θ curve. It did however permit

us to divide the boundary up into a large number of segments (1000 segments) with r′ vs

θ on each segment being represented by a Bezier curve. The Bezier curves were chosen
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such that for each segmented interval of θ, the values of r′ and dr′/dθ at the start and end

of the interval matched the true boundary r′ = (1 + ∆0)/ cos θ. The conditions Un = 0

and n.∇̄Ut = 0 were then applied to these Bezier representations of the symmetry line

(despite the fact that the Bezier representation does not quite coincide with the original

symmetry line, and hence symmetry should be very slightly broken along it).

There was invariably some noise detectable in our simulation data on the length scale

of the Bezier intervals, but it was tiny compared to the velocities calculated. Moreover

the use of Bezier curves in the polar coordinate representation of the symmetry boundary

proved far less noisy than using piecewise linear (or ‘straight’) r′ vs θ segments in that polar

coordinate representation, which would imply dr′/dθ jumps from segment to segment.

7.1. Numerical implementation

We implemented a numerical 2-d simulation in COMSOL, for values of ∆0 equal to

5×10−2, 5×10−3, 5×10−4, and 5×10−5. The finite element mesh was chosen adaptively by

COMSOL. Figure 4 shows a ‘sample’ mesh in the case ∆0 = 0.05. This has been converted

from a mesh in polar r′, θ coordinates to Cartesian x̄, ȳ coordinates (see Figure 2 for

definitions of x̄ and ȳ; compared to the X , Y system, the origin has been shifted and the

coordinate frame rotated). To aid clarity, the mesh shown has only 1558 elements, and the

symmetry line r′ = (1+∆0)/ cos θ (which maps to x̄ = 1+∆0) is constructed using only

100 Bezier segments in r′, θ space (instead of the usual 1000 segments). The meshes we

actually used in our computations were significantly denser (see below). Unsurprisingly

Figure 4 shows smaller elements being chosen near the entrance to the Plateau border

near θ = 0 (owing to the thinner geometry there) but elements could be rather larger

near θ = π/6 where the border has opened much wider. Smaller elements are also seen

along x̄ = 1 +∆0 (as a consequence of the aforementioned Bezier representation).

As stated above, the meshes used in our computations were denser than the one in

Figure 4. Even with these dense meshes however, there was a marked tendency towards

having fewer elements in more ‘extreme’ geometries as ∆0 was decreased. This was partly

due to the fact that, as ∆0 decreased, the overall size of the solution domain decreased

slightly. However it was also due to the fact that, as ∆0 decreased, significant velocities
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tended to be confined closer and closer to the entrance to the Plateau border, meaning

rather large elements could be used elsewhere in the domain. For instance 191503 elements

(869680 degrees of freedom) were used when ∆0 = 5 × 10−2 but only 92155 elements

(435612 degrees of freedom) were used for ∆0 = 5×10−5. Simulations with ∆0 = 5×10−2

took approximately 40 seconds on a PC with an Intel Core i5 and 6Gb RAM memory,

with those for smaller ∆0 values running slightly more quickly8. Notice however that the

smallest ∆0 values also are amenable to asymptotic approaches (see Section 5.2.3).

We studied values of dimensionless surface viscosity Ms over a wide range. We con-

sidered9 Ms values in powers of ten from 104 down to 10−6, and also considered Ms = 0.

Results of the COMSOL simulations are presented and discussed in the next section.

8. Numerical results

This section is laid out as follows. In Section 8.1 we show computed streamline patterns

in the Plateau border. Then in Section 8.2 we show velocity profiles along the gas-liquid

Plateau border surface. Next in Section 8.3 we analyse the surface strain rate at the film-

Plateau border junction, which is essential for coupling the film and Plateau border flows

together. Next in Section 8.4 we consider pressure distributions. Finally in Section 8.5

we discuss the impact of surface viscous effects on surfactant mass transfer rates.

8.1. Streamline patterns

In what follows we consider streamline patterns with two distinct ∆0 values: ∆0 = 0.05

(Section 8.1.1) and ∆0 = 0.005 (Section 8.1.2). Topologies of the streamline patterns are

discussed in Section 8.1.3. Finally Section 8.1.4 places a special focus on a particular Ms

value, namely Ms = 1.

8Note that the 40 second run time reported here gives just the velocity field in the Plateau border
arising due to the surfactant distribution on the film for a given instant in time. The run times reported
in the introduction to the paper corresponding to the simple model of Vitasari et al. (2015) (e.g. just a few
minutes run time with surface viscosity) considered the entire evolution of the surfactant concentration
field, with on the order of 104 time steps. This corresponds to a mere 0.02 s run time per step.

9In addition to the various cases described here, one can solve a formal limit of Ms → ∞ for which
one imposes a tangential velocity condition on the gas-liquid Plateau border surface Us = −(1 − 6S/π)
in lieu of equation (25). However the case Ms = 104 produced a Us profile that was already so close to
that tangential velocity condition, we never found it necessary to tackle the formal Ms → ∞ case.
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8.1.1. Streamline patterns for ∆0 = 0.05

Figure 5 shows three streamline patterns computed for Ms = 104, Ms = 1 and Ms =

0.1 respectively all for the case ∆0 = 0.05. These streamline patterns have been computed

in r′, θ coordinates but plotted in terms of Cartesian x̄, ȳ variables as defined in Figure 2.

On each figure a total of 15 streamlines are shown (including the streamline on the

domain boundary). It is clear that the streamline pattern for Ms = 104 fills the entire

domain, which seems consistent with a hypothesis of uniform decay of the surface velocity

between the entrance to the Plateau border and the symmetry point on the Plateau border

surface. This in fact follows directly from boundary condition (25). If Ms is exceedingly

large, ∂2Us/∂S
2 must be small to compensate. Hence ∂Us/∂S must be near uniform, and

Us must be close to a straight line function of S

Us ≈ −(1− 6S/π) (38)

which satisfies the correct boundary conditions Us|S=0 = −1 and Us|S=π/6 = 0 respectively

at the Plateau border entrance and at the symmetry point on the Plateau border.

The streamline pattern for Ms = 1 fills most of (but not quite all of) the domain: the

spatial decay of the streamline pattern is noticeably faster than for Ms = 104. Finally

for Ms = 0.1 the spatial decay of the streamline pattern is seen to be very abrupt indeed.

This is definitely inconsistent with an assumption of uniform spatial decay of the velocity

field along the entire Plateau border surface.

8.1.2. Streamline patterns for ∆0 = 0.005

Analogous data but with a smaller ∆0 (i.e. ∆0 = 0.005) are shown in Figure 6. Each

plot again has 15 streamlines, but (owing to the extremely thin geometry at the entrance

to the Plateau border) it is not easy to see them all. This is particularly true for Ms = 0.1

where the streamlines are all confined very near the entrance to the Plateau border, the

rest of the Plateau border barely having any flow.

By contrast for Ms = 104 it is still the case that the streamlines fill the entire Plateau

border (as was also seen in Figure 5) but the streamline pattern is subtly different from
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what was seen before. Specifically the topology of the streamline pattern is different, as

Figure 7 shows schematically: two internal stagnation points (one centre and one saddle)

are present in the case with small ∆0 = 0.005 and Ms = 104, and, associated with these

stagnation points, there is a set of closed recirculation streamlines. In fact we observed

this same topology in all cases studied with both ∆0 ≤ 0.005 and Ms ≥ 10.

The explanation for this change in streamline topology is given in the next section.

8.1.3. Streamline topology

When ∆0 is small but Ms is large (i.e. rather larger than unity) we have already

seen that significant tangential flow on the gas-liquid Plateau border surface extends

sufficiently far along the Plateau border that the velocity is still significant at points where

the local border thickness ∆ greatly exceeds the thickness ∆0 at the film-Plateau border

junction. To satisfy continuity, a tangential flow velocity also arises on the symmetry line

r′ = (1 + ∆0)/ cos θ which is of opposite sign but similar order of magnitude to the flow

on the gas-liquid surface r′ = 1.

In the region where ∆ ≫ ∆0, the flow field in the interior of the Plateau border set

up by those tangential boundary flows, should not be too sensitive to precisely which

boundary condition we impose at the film-Plateau border junction at θ = 0 between

r′ = 1 and r′ = 1+∆0, given that the length of that boundary is tiny. In particular if we

were to change the boundary condition at θ = 0 so as to ‘close off’ the film-Plateau border

junction and thereby not permit any fluid penetration whatsoever across any part of it,

we would not expect to affect greatly the flow far from the film-Plateau border junction,

provided we kept the tangential flows on r′ = 1 and r′ = (1 + ∆0)/ cos θ unchanged.

This ‘closed off’ variant of the flow field necessarily has closed recirculation streamlines.

Given the tangential motion imposed on some of the domain boundaries, the resulting

flow is reminiscent of a ‘lid-driven’ system (Ramanan and Homsy, 1994) for which a closed

recirculation streamline topology might be anticipated. Returning to the Plateau border

flow, since the ‘true’ flow field away from the neighbourhood of θ = 0 should be similar

to the ‘closed off’ variant, it too must have closed recirculation streamlines.

The above argument does not however apply if ∆0 is increased: the film-Plateau border
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junction is then rather more significant, and a change to the boundary condition on that

junction (from the original boundary to a ‘closed off’ one) would be rather more than just

a weak perturbation to the flow. Thus there is no need to expect the same streamline

topology in these two distinct cases.

Likewise the argument does not apply when Ms is comparatively small (e.g. Ms rather

less than unity). In such cases the Plateau border flow field and specifically the tangential

velocity on the gas-liquid Plateau border surface decays quite rapidly moving along the

border. In the region where the tangential surface velocity is significant, the thickness of

the Plateau border is still comparable with the thickness of the film. Thus the arguments

suggesting a change in streamline topology towards a closed recirculation pattern do not

apply here, because those arguments relied on flow managing to extend into regions where

the Plateau border thickness vastly exceeded that of the film.

8.1.4. Case Ms = 1

The above discussion in Section 8.1.2 considered ∆0 = 0.005 with Ms = 0.1 and with

Ms = 104. Consider now the case Ms = 1 in Figure 6(b). As for the case Ms = 1 with

∆0 = 0.05 (i.e. Figure 5(b)) this shows at least some streamlines penetrating along most

of the solution domain. However for ∆0 = 0.005 relatively few streamlines (out of the 15

streamlines plotted) penetrate very far into the domain. This suggests a rapid velocity

decay near the entrance to the Plateau border followed by a more gradual decay.

Understanding how a rapid decay followed by a gradual one might come about particu-

larly for Ms values near unity can be explained with reference to the quasi-1-d asymptotic

model of Section 5.2.3. For sufficiently small X values equation (30) simplifies to

3Us/∆0 ≈ Ms∂
2Us/∂X

2. (39)

The solution for Us is an exponential decay, decaying on a length scale
√

∆0Ms/3.

If Ms is significantly smaller than unity then the exponential decay is complete long

before X becomes order ∆
1/2
0 which is the regime for which equation (39) remains close

to equation (30). It is however possible to query the physical basis for equation (30) (and
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hence equation (39)) under these circumstances: as alluded to in Section 5.2.3, Marangoni

stresses in the Plateau border were neglected on the basis that it is much thicker than

the film10 but that is not true for X ≤ O(∆
1/2
0 ).

If however Ms is order unity or above, the exponential decay is ‘frustrated’. As the

decay of Us proceeds and X increases, ∆ becomes larger than ∆0, not only ensuring

the physical validity of (30), but also making it deviate from (39). This increases the

characteristic decay length further and further above
√

∆0Ms/3, so the decay slows down.

It is instructive to compare with Figure 5(c), which has ∆0 = 0.05 and Ms = 0.1,

giving the same value for the product ∆0Ms as in Figure 6(b). Whereas Figure 5(c)

shows a rapid decay of the velocity field (i.e. exponential decay with a characteristic

decay length
√

∆0Ms/3, continuing of course to neglect any Marangoni stresses on the

border), it is clear that Figure 6(b) exhibits a very different length scale for the overall

decay, in view of the gradual decay component mentioned above.

We have also computed streamline patterns for yet smaller values of ∆0 i.e. ∆0 =

0.0005 and ∆0 = 0.00005, but the extremely thin geometry near where the Plateau

border joins the film makes it difficult to resolve the patterns without a highly zoomed

view in that part of the domain. In addition to the 2-d streamline patterns however, it

is also of interest to know the distribution of tangential velocity Us along the gas-liquid

Plateau border surface. Such data are easy to plot even for exceedingly tiny ∆0 values,

and are considered in the next section.

8.2. |Us| vs S curves

In what follows we compare |Us| vs S curves for two different ∆0 values ∆0 = 0.005

(Section 8.2.1) and ∆0 = 0.00005 (Section 8.2.2).

8.2.1. |Us| vs S for ∆0 = 0.005

Curves for |Us| vs S computed numerically are shown in Figure 8(a) for ∆0 = 0.005

and various Ms (remember that by construction Us|S=0 = −1 so that |Us|S=0| = 1).

10Strictly speaking we ignore Marangoni stresses on those parts of the border where it is thicker than
the ‘effective Henry constant’ (see Section 3.5), the effective Henry constant being a physicochemical
length scale bigger than the film thickness, but smaller than the curvature radius of the Plateau border.
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In Figure 8(a), for the case ∆0 = 0.005 andMs = 10000, we see Us is virtually a straight

line function of S. The case ∆0 = 0.005 and Ms = 100 also deviates comparatively little

from a straight line. These data then correspond to the prediction of equation (38). The

data match the assumption (31) used by Vitasari et al. (2015).

Looking instead at ∆0 = 0.005 and Ms = 0.1 we see that |Us| vs S is very far

from a straight line function. Instead it follows very closely an exponential decay (with

characteristic decay length
√

∆0Ms/3 as discussed in Section 8.1.4): the numerical data

and the exponential decay curve are virtually indistinguishable on the scale of the graph.

The cases ∆0 = 0.005 and either Ms = 10 or Ms = 1 are intermediate between the

situations described above. In particular ∆0 = 0.005 and Ms = 10 shows a rapid initial

decay which is arrested (at around S = 0.2 with |Us| being roughly 0.4 at this point) to

be followed by a straight line decay.

The case ∆0 = 0.005 and Ms = 1 does not seem to attain a straight line regime as

S increases. Nevertheless the decay with increasing S turns out to be rather slower than

exponential (to avoid crowding the graph, we have not plotted the corresponding expo-

nential exp(−S/
√

∆0Ms/3) for this particular ∆0 and Ms combination). The numerical

data for ∆0 = 0.005 and Ms = 1 correspond then to the expected ‘frustrated’ exponential

described in Section 8.1.4, i.e. the decay length grows even whilst the decay itself occurs.

8.2.2. |Us| vs S for ∆0 = 0.00005

Data with the same Ms values as before but for ∆0 = 0.00005 (not ∆0 = 0.005) are

plotted in Figure 8(b).

We still see a straight line function for Ms = 10000 and an exponential decay for Ms =

0.1 (albeit for ∆0 = 0.00005 decaying on a much smaller length scale than previously).

The case Ms = 100 now shows a moderate deviation from pure straight line behaviour,

but with a straight line recovered for S values greater than about 0.1 (see also further

discussion of this case in the appendix). The case Ms = 10 also shows a rapid initial

decay which is subsequently arrested into a straight line decay. However the rapid initial

decay progresses to rather smaller |Us| values when ∆0 = 0.00005 than when ∆0 = 0.005

(i.e. down to |Us| of roughly 0.2, instead of roughly 0.4). Finally if we consider Ms = 1
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for ∆0 = 0.00005 we see that the decay of |Us| is substantially faster than was the case

with ∆0 = 0.005 with that same Ms value.

8.2.3. Explaining the various decay modes for Us

In addition to Us exhibiting pure straight line decays (very large Ms) and pure expo-

nential decays (values of ∆0 and Ms both significantly smaller than unity), the data in

Sections 8.2.1–8.2.2 show cases where a rapid initial decay is ‘arrested’ into straight line

decay, and also other cases where a exponential decay is ‘frustrated’, becoming slower

than exponential (although not necessarily a straight line decay).

We already explained in Section 8.1.4 via a quasi-1-d asymptotic analysis, how expo-

nential decays for small ∆0 and Ms values, become frustrated once Ms values approach

unity. We can also exploit the quasi-1-d asymptotic analysis to distinguish pure straight

line decays from cases where rapid initial decays are arrested into straight line decays.

If Ms ≫ 1/∆0, then it is clear (via equation (28)) that Ms ≫ 1/∆ for all X values,

and hence (via quasi-1-d equation (30)) that ∂2Us/∂X
2 must be near zero for all X . This

implies that ∂Us/∂X must be near uniform for all X values (or strictly speaking for all

X values in the X ≪ 1 domain of validity of the quasi-1-d asymptotic equations). This

corresponds to a pure straight line decay.

If however 1 ≪ Ms ≪ 1/∆0, then (according to equations (28) and (30)) values of

X on the order of ∆
1/2
0 still give very large values of ∂2Us/∂X

2, implying significant

non-uniformities in ∂Us/∂X . As X grows however, the value of ∂2Us/∂X
2 decays very

significantly, and it is in this domain that Us vs X is arrested into a straight line decay.

The predictions (whenMs ≫ 1/∆) of uniform ∂Us/∂X in (at least part of) the solution

domain only hold for X ≪ 1 (the domain where the quasi-1-d analysis applies). However

for larger X values, analogous arguments imply (via equation (25)) a uniform ∂Us/∂S

(recalling that Cartesian coordinate X and arc length coordinate S coincide for X ≪ 1).

8.3. |∂Us/∂S| evaluated at the film-Plateau border junction

The profiles of Us vs S allow us to compute the values of surface strain rate |∂Us/∂S|

at the film-Plateau border junction S = 0. Recall from Section 5.2.3 that knowing these
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values is important for coupling the film and Plateau border flows together.

Tabulated data for |∂Us/∂S|S=0| are given in Table 1 (and are also plotted in Figure 9).

An alternative way to present the same data (see Table 2) is in terms of the parameter c

defined via equation (32) which gives

c =
√

∆0Ms |∂Us/∂S|S=0|. (40)

Figure 9 shows that for sufficiently large values of Ms, the value of |∂Us/∂S|S=0|

approaches 6/π (just as equation (38) predicts). Then corresponds to a uniform straight

line decay of |Us| from |Us| = 1 at S = 0 (the film-Plateau border entrance) to |Us| = 0

at S = π
6
(the symmetry point on the Plateau border surface). The value of Ms at which

|∂Us/∂S|S=0| becomes close to 6/π depends on ∆0, with agreement achieved sooner as

∆0 increases. This finding is in accordance with the predictions of Section 8.2.3 which

required large values of ∆0Ms for a pure straight line decay.

The particular data which match these predictions are highlighted in Table 1. Never-

theless the important conclusion from Figure 9 and Table 1 is that for many combinations

of ∆0 and Ms that we have considered, it is simply not the case that |∂Us/∂S|S=0| is close

to 6/π. As a result, the assumption (31) used by Vitasari et al. (2015) to determine the

flow velocity at the film-Plateau border junction (and hence the rate of surfactant mass

transfer predicted between Plateau border and film) is not always valid. Rescaling the

data (as we do in Section 8.3.1 below) to collapse it in various different regimes can help

us to deduce how |∂Us/∂S|S=0| behaves as a function of the parameters ∆0 and Ms.

8.3.1. Rescaling |∂Us/∂S|S=0| data

If we rescale the data from Figure 9 by multiplying |∂Us/∂S|S=0| by ∆0 we obtain the

data of Figure 10. In the limit of very small Ms (i.e. for11 Ms ≪ ∆0 ≪ 1) the rescaled

data approach a constant making it apparent that |∂Us/∂S|S=0| scales proportionally with

11In order to achieve Ms ≪ ∆0, it is necessary to choose the very largest value of ∆0 discussed earlier
in Section 5.1 (∆0 = 4× 10−2), as well as a Ms value more than 5 orders of magnitude smaller than the
base case value (Ms = 8800 in the ‘base case’ discussed above). Indeed from the discussion of Section 5.1,
we expect that Ms ≪ ∆0 will be a far less common scenario than ∆0 ≪ Ms.
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1/∆0 (numerically the coefficient of proportionality appears to be close to 7).

This corresponds to Us decaying rapidly in space, over an order ∆0 length scale. As

explained in Section 5.2.3, that raises a concern as to whether Marangoni stresses can be

ignored in the Plateau border as our calculations have done. Even putting that concern to

one side for the moment, we note disagreement with the quasi-1-d predictions described

in Section 8.1.4 which imply (for Ms and ∆0 values both rather smaller than unity)

exponential decay on a length scale
√

∆0Ms/3. To understand why the exponential decay

predictions cease to apply in the limit of very small Ms (even in the absence of Marangoni

stresses) it is necessary to realise that they were obtained on the basis of lubrication

theory, which demands longitudinal variations in the flow only occur on distances greater

than the thickness of the flow domain. For an exponential decay to be valid
√

∆0Ms/3

should exceed ∆0 (or in order of magnitude terms Ms must be at least as large as ∆0).

In the limit of Ms ≪ ∆0 ≪ 1 the parabolic profile hypothesised in (27) must adjust

locally very close to the Plateau border surface (at Y ≈ ∆) so as to change the magni-

tude of |∂U/∂Y | from the ‘parabolic profile’ prediction 3Us/∆ to a much smaller value.

Equation (29) then no longer implies (30), and decay of Us is permitted over an order

∆0 distance, instead of the
√

∆0Ms/3 distance that equation (30) would predict. In an

extreme case i.e. Ms → 0 (see Figure 11), a ‘stick-slip’ problem would arise (reminiscent

of that considered in Richardson (1970)) with a non-zero ∂U/∂Y on the surface of the

film (thanks to a non-zero Marangoni stress there) matching to a vanishing ∂U/∂Y on the

surface of the Plateau border (where Marangoni stresses are, by assumption, neglected).

As mentioned in Section 5.2.3, the Plateau border has barely thickened at all over this

tiny spatial distance, and it is not necessarily appropriate to treat the Plateau border in

the way our model assumes as being a reservoir of surfactant (with constant and uniform

surfactant coverage). In any case when Ms is exceedingly small it seems simplest just to

ignore surface viscosity altogether, decoupling the Plateau border from the film, and then

to compute the surfactant transport processes of interest on the film via the procedures

already established in Vitasari et al. (2013b).

Returning to consider the full set of ∆0 and Ms values studied in our numerical sim-
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ulations, yet another way of scaling the data is now presented in Figure 12, namely

∆
1/2
0 |∂Us/∂S|S=0| plotted against Ms. The figure makes it apparent that for a range of

Ms values, more or less those values satisfying ∆0 ≤ Ms ≤ 1, we find

|∂Us/∂S|S=0| ≈
√
3(∆0Ms)

−1/2 (41)

an equation that follows directly from the exponential velocity decay (with decay length
√

∆0Ms/3) as predicted in Section 8.1.4. Equation (41) is plotted on Figure 12 (the line

marked ‘slope −1
2
’). In particular for the very smallest ∆0 values that we considered (i.e.

∆0 = 0.00005), we see good collapse of data onto that line over several decades.

Expressed in terms of the parameter c, equation (41) implies that c =
√
3: data

matching this c value are highlighted in Table 2. Knowing c is important for determining

the flow at the film-Plateau border junction (which is evident from equation (23), and

which is an issue upon which we elaborate later). Computing the ‘Plateau border to film’

flow raises however a similar concern to the one just noted above: we are still dealing with

decays over a length scale sufficiently short (and hence over Plateau border thicknesses

sufficiently limited) that it might not be appropriate to use our present model that treats

Plateau borders as surfactant reservoirs with constant and uniform surfactant coverage.

Despite the good collapse of data onto the ‘slope −1
2
’ line noted above, if we take

sufficiently large Ms values in Figure 12, it is clear that the data begin to lie above that

line. This implies that c exceeds
√
3. This is of course expected because for ∆0Ms values

in excess of unity we know that |∂Us/∂S|S=0| ≈ 6
π
and hence (via equation (40)) we have

c ≈ 6
π

√
∆0Ms, which certainly exceeds

√
3.

What is of interest here however is that there is a range of Ms values (typically those

values with 1 ≪ Ms ≪ 1/∆0) for which data on Figure 12 lie underneath the line marked

‘slope −1
2
’. Those data have c values less than

√
3. The smallest c value computed

in Table 2 within the parameter regime under consideration occurs for ∆0 = 5 × 10−5

and Ms = 1000 and has the value c = 0.616. Physically c values less than
√
3 imply

velocity fields moving into the Plateau border decaying over scales longer than the nominal

exponential decay length
√

∆0Ms/3. These longer length scales can be associated with
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the frustrated exponential mechanism described in Section 8.1.4. Further discussion of

these c values less than
√
3, including a formula for predicting what the c values actually

are, can be found in the appendix.

8.4. Distributions of pressure

In our numerical analysis we have assumed that the Plateau border surface is a uni-

form circular arc. This was a simplification that we introduced in Section 3. In reality the

Plateau border surface should be able to deform out of circular, with the local curvature

and the pressure jump from liquid to gas being linked by a Young-Laplace relation. We can

however gauge the suitability (or otherwise) of the circular arc approximation by examin-

ing how the pressure in the liquid phase (computed using the circular arc approximation)

varies along the Plateau border surface. The more uniform is the computed pressure

distribution along that circular arc surface, the better is the circular arc approximation.

Sections 8.4.1 and 8.4.2 consider respectively how the computed pressure distributions

are affected by varying Ms and ∆0.

8.4.1. Pressure dependence with respect to Ms

Figure 13 plots the absolute value of pressure |p| vs arc length S measured along the

Plateau border surface. Recall from Section 5.2.2 that (at least at the Plateau border

symmetry point S = π
6
), the value of p is negative, being set to −(∆0a

′)−1 at that

symmetry point. Here ∆0 is 0.005 and a′ = 0.1, although a number of different values of

Ms (10000, 10, 1 and 0.1) are considered.

Along the Plateau border surface r′ = 1, the arc length S is identical to angular

coordinate θ. Even though Figure 13 corresponds specifically to r′ = 1, plots of pressure

|p| vs coordinate θ along the Plateau border symmetry line r′ = (1+∆0)/ cos θ, although

not plotted here, actually turn out to look the same (on the scale of the graph). This

indicates that p is primarily a function of θ with comparatively weak dependence on r′.

The gradient of the pressure, dominated by (r′)−1∂p/∂θ, is required to drive Stokes

flow within the Plateau border. That a pressure gradient is present is evident in Figure 13:

starting from the symmetry point of the Plateau border surface S = π
6
, and then moving
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backwards to smaller S values, the pressure p is seen to rise, i.e. p becomes less negative,

and so |p| falls. In certain cases for very small S values, p is predicted to change sign from

negative to positive, so that |p| starts to rise again. We will consider the implications of

this predicted sign change very shortly, but for the moment we focus solely on pressure

gradients. Figure 13 shows the pressure gradient is largest for comparatively small S,

but decays quite rapidly moving along the Plateau border. Such a decay in the pressure

gradient comes about for two reasons: firstly the border thickens (implying via lubrication

theory that less pressure gradient is required to drive a given amount of flow along it)

and secondly the flow field itself (represented e.g. by the surface velocity Us) also decays.

Hence over much of the Plateau border surface (on the approach to the symmetry point

S = π
6
) the pressure gradient is negligible, i.e. |p| is near uniform, this uniform value

being (∆0a
′)−1 (shown by a dotted line in Figure 13 and representing the pressure jump

across the gas-liquid surface of the Plateau border).

Computed |p| values close to this dotted line can be considered to be comparatively

close to (∆0a
′)−1, permitting us to treat the corresponding part of the Plateau border

surface as a uniformly curved arc. Computed pressures that deviate from the dotted line

however, indicate parts of the domain where the Plateau border should not be treated

as uniformly curved, i.e. where the shape of the border ought to be adjusted or relaxed.

Such pressures occur for decreasing S values moving towards the neighbourhood of the

film-Plateau border junction, pointing to the existence of a transition region (as already

alluded to in Section 3 and analogous to what is considered in Bretherton (1961); Reinelt

and Kraynik (1989, 1990); Schwartz and Princen (1987)) where the shape of the domain

needs to adjust between a comparatively flat film and a circular Plateau border. We do

not however attempt to compute such transition regions here. An increase in the value

of p moving backwards from S = π
6
(i.e. a decrease in |p| as long as p remains negative)

suggests a tendency that would favour a thicker and flatter, lower curvature border had

the border been permitted to relax its shape. Predicted sign changes in p from negative

to positive are an extreme manifestation of the need to adjust the shape. Although a

Young-Laplace law on the gas-liquid surface of the Plateau border is not imposed in our
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computation, were such a law to be imposed, a sign change in the pressure implies a sign

change in the surface curvature: assumptions of uniform curvature are then untenable.

Smaller Ms values imply smaller and smaller deviation from the dotted line: this

reflects the rapid spatial decay (with increasing S) of the velocity Us at small Ms, which

in turn implies a rapid spatial decay of the pressure gradient (r′)−1∂p/∂θ. Indeed for the

smallest Ms value plotted, the entire pressure distribution lies comparatively close to the

dotted line, and no sign change in p is observed.

8.4.2. Pressure dependence with respect to ∆0

Section 8.4.1 considered pressures only for the case ∆0 = 0.005. A decrease in ∆0

increases the magnitude of the pressure. Partly this is due to setting the pressure at the

symmetry point S = π
6
of the Plateau border surface to −(∆0a

′)−1. Even if we compensate

for this, by plotting p+(∆0a
′)−1 vs S (instead of p vs S) we still see higher pressure drops

along the Plateau border with smaller ∆0: see e.g. Figure 14 comparing ∆0 = 0.005 with

∆0 = 0.00005. This is unsurprising: a Stokes flow incurs a larger pressure drop in an

extremely narrow gap (∆0 = 0.00005) than in a somewhat wider gap (∆0 = 0.005).

Values of Ms = 10000 and Ms = 1 are shown in Figure 14. For Ms = 10000 the

pressure distributions (when expressed in terms of p + (∆0a
′)−1 instead of p) converge

together for S values greater than about 0.2 regardless of the value of ∆0. This is expected,

because the surface velocity distribution in these Ms = 10000 cases should follow the

straight line function equation (38) regardless of the value of ∆0. Away from the narrow

gap region at the entrance to the Plateau border, the same surface velocity distribution

on effectively the same solution domain must produce the same gradients of pressure.

For Ms = 1 we do not see the ∆0 = 0.005 and ∆0 = 0.00005 pressure distributions

converging together in the fashion that was observed for Ms = 10000. The pressure drop

to drive a Stokes flow depends not just on the geometry of the flow domain, but also on

the velocity field within the domain. In Figure 8 we see that the velocity distribution for

∆0 = 0.00005 andMs = 1 decays to zero far more quickly as S grows than the distribution

for ∆0 = 0.005 and Ms = 1 does. The velocity field for ∆0 = 0.005 and Ms = 1 shows

an initial rapid decay being replaced further along the border by a much more gradual
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one. Since the velocity field for ∆0 = 0.005 and Ms = 1 survives longer than that for

∆0 = 0.00005 and Ms = 1, larger pressures are expected with the larger ∆0 value.

We have marked on Figure 14 lines corresponding to zero pressure, so that p+(∆a′)−1

becomes the same as (∆0a
′)−1: see the dashed line (for the case ∆0 = 0.005) or the dotted

line (for the case ∆0 = 0.00005). As was the case in Figure 13, over much of the domain,

pressures are below these lines (indicating a modest change in the value of |p| relative to

(∆0a
′)−1, and hence a Plateau border surface that is well approximated by a uniformly

curved arc). It is only for very small values of S that the computed pressures for any

given ∆0 lie above the respective dashed or dotted line, indicating a need to relax the

shape of the Plateau border surface away from a circular arc.

8.5. Surfactant mass transfer rate from Plateau border to film

The velocity data of Section 8.2 have been scaled such that the dimensionless speed

at the film-Plateau border junction |Us|S=0| was equal to unity for all values of ∆0 and

Ms. This scaling is very convenient for solving for the Plateau border velocity field in

isolation from the film. Here however we want to estimate the magnitude of |u′
s|S=0|, i.e.

the speed at the film-Plateau border non-dimensionalised on the velocity scale specified in

Section 5.2.1. This alternate scaling (in terms of u′
s rather than Us) allows us to couple the

Plateau border and film together, specifically to determine the border to film surfactant

transport rate as a function of ∆0 andMs, to reveal whether there are particular parameter

regimes where the Plateau border is acting as a bottleneck for the flow onto the film.

Equation (23) actually gives us not the value of |u′
s|S=0| on its own, but rather the value

of the ratio |u′
s|S=0|/|u′

s(o)| (with both u′
s|S=0 and u′

s(o) expected to be negative quantities

as surfactant flow is away from the Plateau border towards the centre of the film). We do

however expect that |u′
s(o)| (the speed of the film outside a velocity boundary layer, and

hence unconstrained by the border) will be order unity. This follows as a result of the way

u′
s has been non-dimensionalised as long as ∆0Ms ≤ (a′)−2 and as long as variations in

surfactant coverage along the film are of comparable magnitude to the surfactant coverage

on the Plateau border itself (Vitasari et al., 2015).

Since a′ is a small parameter (we assume a′ = 0.1 here), the above mentioned constraint

42



∆0Ms ≤ (a′)−2 is satisfied for all ∆0 and Ms values considered in Table 1, with the

exception of the product of the largest ∆0 and Ms values (0.05 and 104 respectively12).

Given an order unity value of |u′
s(o)| as mentioned above, it follows from equation (23) that

the ‘Plateau border to film’ flow |u′
s|S=0| will be order

√
3/(

√
3 + c). In other words, the

larger the value of c, the greater the tendency of the Plateau border to act as a bottleneck.

In Sections 8.5.1, 8.5.2 and 8.5.3 that follow we consider how |u′
s|S=0| behaves for

various combinations of the parameters Ms and ∆0. Sections 8.5.4–8.5.6 then summarise

and discuss these findings and relate them to time scales for mass transfer.

8.5.1. Value of |u′
s|S=0| in case Ms ≫ 1/∆0

In the event that ∆0Ms ≫ O(1) (still of course with ∆0Ms rather smaller than

(a′)−2) it happens that c = 6
π

√
∆0Ms, as we have already established in Section 8.3.1.

Clearly c ≫ 1 in this particular limit. Substituting into equation (23), then suggests

|u′
s|S=0| ≈ (

√
3/c)|u′

s(o)| (still taking |u′
s(o)| as being order unity). Based on the definition

in equation (14), this rearranges to |u′
s|S=0| ≈ (a′/a′crit)|u′

s(o)| with a′ ≪ a′crit whenever

∆0Ms ≫ O(1). In a typical case e.g. Ms = 104 and ∆0 = 0.005 (such as was consid-

ered in the streamline pattern shown in Figure 5(a)) we deduce via equation (14) that

a′crit ≈ 0.78. Hence a′/a′crit which is equal to (
√
3π/6)(∆0Ms)

−1/2 evaluates to roughly

0.12 for these parameter values. The speed at the film-Plateau border junction |u′
s|S=0| is

therefore an order of magnitude smaller than the typical film velocity |u′
s(o)|. The above

situation implies that either the foam is sufficiently dry (i.e. the Plateau border size rel-

ative to the film measured via the parameter a′ is sufficiently small) and/or the surface

viscosity is sufficiently large (or in other words a′crit is sufficiently large), that the zero

velocity constraint on the symmetry point of the Plateau border manages to extend its

influence all the way to the film-Plateau border junction.

12It has been shown (Vitasari et al., 2015) that any ∆0 and Ms combination such that the product
∆0Ms exceeds unity automatically reduced |u′

s|S=0| down to an order 1/
√
∆0Ms value. In the event that

in addition ∆0Ms ≥ (a′)−2 (so that 1/
√
∆0Ms is even less than the already small parameter a′), a theory

of Vitasari et al. (2015) suggests further reductions in |u′

s|S=0| over and above the aforementioned ones.
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8.5.2. Value of |u′
s|S=0| in case ∆0 ≪ Ms ≪ 1

Now consider the case ∆0 ≪ Ms ≪ 1. In this case we predict (see e.g. Figure 12)

that c =
√
3. According to equation (23) the flow speed at the film-Plateau border

junction is half of the nominal film surface speed |u′
s(o)| (itself an order unity quantity)

that applies to film points away from the Plateau border. The surface viscosity is now

sufficiently low that the junction is ‘unaware’ of the exact location of the Plateau border

symmetry point, and so is not constrained by that point. However the halving of the

film velocity arises from the assumed lack of any Marangoni stress contribution from the

Plateau border. As already mentioned previously that assumption may well be invalid

when ∆0 ≪ Ms ≪ 1, and restoring Marangoni stresses on that part of the Plateau border

which is only marginally thicker than the film will restore u′
s|S=0 back to the level of u′

s(o).

8.5.3. Value of |u′
s|S=0| in case 1 ≪ Ms ≪ 1/∆0

Finally consider a value c ≤
√
3 as occurs in the domain 1 ≪ Ms ≪ 1/∆0. For

example consider the value c = 0.616 corresponding (as mentioned in Section 8.3.1 above)

to ∆0 = 5×10−5 and Ms = 1000. Via equation (23), the speed |u′
s|S=0| at the film-Plateau

border junction is now 0.73 times the nominal film speed |u′
s(o)| away from the border. The

fact that the velocity at the junction is less than that in the film once again arises due to

assuming no Marangoni stresses in the Plateau border: this tends to reduce the velocity

at the film-Plateau border junction relative to u′
s(o). However the adverse effect on the

speed at the junction is less than previously (i.e. multiplication by a factor 0.73 instead of

by a factor of a half). The surface viscosity is now at a level where it couples the motion of

the film-Plateau border junction with the motion of points on the Plateau border surface

where the border is already much thicker than the film, that thicker border restricting

the flow less than a thinner border (still assuming no Marangoni stresses) would.

8.5.4. Time scales for surfactant mass transfer

To summarise, depending on the ∆0 and Ms values considered, and assuming we

ignore Marangoni stresses on the Plateau border compared to those on the film (an as-

sumption that could be queried in the case of Section 8.5.2 in particular), we have deduced
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flow velocities slowing down at the film-Plateau border junction by factors of 0.12 (Sec-

tion 8.5.1), a half (Section 8.5.2) and 0.73 (Section 8.5.3) depending on the values of ∆0

and Ms that are chosen. Time required for surfactant transport should scale inversely

with those velocities, and would therefore increase by factors of roughly 8.3, 2 and 1.3 re-

spectively. Surface viscosity could thereby make the fractionation process less efficient, in

particular if the time required to achieve surfactant transport onto the foam film becomes

comparable with the typical residence time of films within the fractionation column.

In dimensional units, bubble residence time in a typical fractionation column has

been given (Vitasari et al., 2013b) as around 12 s (based on an experimental study of

Martin et al. (2010)). Meanwhile the Marangoni-driven surfactant transfer time scale

(converted back to dimensional units, and ignoring any surface viscous effects in the first

instance (Vitasari et al., 2013b)) has been estimated to be on the order of 3 × 10−2 s

assuming a comparatively thick film (specifically assuming ∆0 ≈ 4 × 10−2 as quoted in

Section 5.1). Recalling however that the characteristic velocity given in Section 5.2.1 scales

proportional to δ′0 ≡ ∆0a
′, and that characteristic time scales inversely with velocity,

reduction in ∆0 by roughly an order of magnitude (to attain the value ∆0 = 0.005

matching that considered in Section 8.5.1) implies an order of magnitude increase in mass

transfer time scale (which becomes roughly 0.3 s still ignoring surface viscosity). Even

if this time scale is increased by the factor 8.3 mentioned above (to account for surface

viscous effects) mass transfer should have ample opportunity to occur for any reasonable

bubble residence time in a fractionation column (around 12 s as quoted above). Much

smaller ∆0 values (i.e. much thinner films) however change the picture dramatically. A

value of ∆0 as low as 5 × 10−5 (as in Section 8.5.4) implies a three order of magnitude

increase in the estimate of typical surfactant mass transfer time compared to the original

time scale 3×10−2 s quoted above. The surfactant mass transfer time scale then becomes

around 30 s neglecting surface viscous effects. This is now rather longer than the typical

residence time in a fractionation column and suggests a redesign requirement using a

taller column in order to increase residence time. Surface viscous effects causing further

increases in the mass transfer time scale (even quite moderate increases, e.g. doubling
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the time scale or multiplying it by a factor 1.3 as alluded to above) could however impact

on the efficiency of even that redesigned column.

Ironically then, cases for which surface viscosity leads to the biggest relative increase

in surfactant mass transfer have little impact on the fractionation process overall (because

mass transfer time in the absence of surface viscous effects was actually exceedingly short,

given the films were still comparatively thick). Cases where surface viscosity produces

rather modest increases in already comparatively long mass transfer time scales (which

arise in turn owing to having exceedingly thin films) potentially are more problematic.

Determining which of these two different film thickness regimes is most applicable to a

given fractionation process requires knowledge of film drainage rates. This is beyond the

scope of the present discussion (film drainage not being considered here) but the issue is

discussed by Vitasari et al. (2013b).

8.5.5. Coupling to the surfactant concentration field

Yet another point to note is that a significant velocity difference (as our models suggest

via equation (23)) between the film-Plateau border junction and points on the film slightly

away from that junction (i.e. immediately outside a ‘velocity boundary layer’ as has

been described in Section 6) has implications for the time evolution of the surfactant

concentration field. Detailed analysis of this time evolution is outside the scope of the

present work (which is concerned solely with finding instantaneous surfactant transport

rates for a given instantaneous surfactant distribution). However the question is relevant

for determining mass transfer time scales and so is discussed in qualitative terms below.

Consider an element of film surface immediately adjacent to the film-Plateau border

junction, the element size being comparable with the extent of the aforementioned velocity

boundary layer. Analogously with a mechanism noted by Vitasari et al. (2015), sharp

gradients of surfactant coverage could develop in that film element over time due to the

velocity mismatch across it. With that velocity mismatch present but without those

sharp surfactant coverage gradients, more surfactant will be leaving the element (driven

by Marangoni stresses in the direction towards the film centre) than entering it (from the

Plateau border), sharpening gradients of surfactant coverage within the element. Only by
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acquiring a surfactant coverage mismatch almost counterbalancing the velocity mismatch

can a near uniform surfactant flux be delivered across the film element in question, which

is what is expected for an element that is small compared to the overall length of the film.

Our analysis of film velocity fields ought to be reformulated in cases where sharp

surfactant gradients arise on films. At present the analysis starting from equation (13)

and leading eventually to equation (23) has assumed a simple structure for the velocity

boundary layer on the film, balancing bulk viscous shear stresses with surface viscous

stresses within that layer. If however the surfactant concentration field in the film develops

a boundary layer character near the junction with the Plateau border (and hence the

Marangoni stress field ∂γ′/∂x′ likewise has a boundary layer character), then the velocity

boundary layer in the film necessarily becomes much more complex than before. That

equation (13) fails to capture any Marangoni effects within the velocity boundary layer

is apparent from the discussion of Section 4.2 which indicates that the only material

properties affecting the (dimensional) length scale of the velocity boundary layer are µ

and µs (i.e. bulk and surface viscosity), the remaining terms contributing to the said

length scale being wholly geometric. An equation such as (13) that evaluates the strain

rate in the velocity boundary layer at the junction point with the Plateau border wholly in

terms of the change in velocity across the boundary layer and the layer’s nominal thickness

determined without reference to the Marangoni stresses within it, cannot take account of

any complex boundary layer structure on the part of the surfactant concentration field.

Since equation (13) can be modified by sharp gradients in the surfactant coverage

field, it follows that equation (23) will likewise be modified, as the former equation was

needed to derive the latter (see e.g. the derivation of equation (18) of which (23) is

merely a dimensionless version). A change in that latter equation has however two im-

portant consequences. Firstly it changes the velocity at the film-Plateau border junction

(hence changing the border to film surfactant transfer rate, and thereby the time scale to

achieve that transfer). Secondly it identifies an important feedback mechanism: modifying

equation (23) modifies the velocity mismatch, yet it is that very mismatch which causes

(analogously to Vitasari et al. (2015)) a complex structure to appear in the Marangoni
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stress field that in turn required a modification to equation (23) in the first place.

In summary, the predictions of the ratio between surface strain rate and surface veloc-

ity within the Plateau border which we have calculated (as functions of ∆0 and Ms given

in e.g. Table 1) are expected to remain valid. Likewise it is still the case that the surface

strain rate and surface velocity are continuous across the film-Plateau border junction.

However the velocity mismatch between that junction and points on the film immediately

outside a velocity boundary layer produces evolutions of surfactant concentrations that

in turn lead to quite complex ‘boundary layer’ structures for the surfactant distributions

along the film with sharp gradients in surfactant coverage being sustained. These complex

surfactant distributions can then affect the velocities at the junction, the Plateau border

to film mass transfer rates, and the time scale required for mass transfer. Moreover they

feed back onto the velocity mismatch that originally produced them.

8.5.6. Coupling to the shape of the Plateau border

Section 8.5.5 considered the possibility that the surfactant concentration field might

develop a complex structure in the neighbourhood of the film-Plateau border junction,

which then affects the local surface velocity and local mass transfer rate at that point.

Yet another complication affecting velocity and mass transfer near this junction is that,

under the action of normal stresses, the shape of the Plateau border might need to be

relaxed away from circularity: see the discussion in Section 8.4.

The key to determining the Plateau border to film mass transfer rates here, has been

the computations of surface strain rates at the film-Plateau border junction |∂Us/∂S|S=0|

(see e.g. Section 8.3), coupling the film and Plateau border flows together.

The surface strain rates were however computed based on assuming a uniformly curved

Plateau border surface. It is unclear to what extent relaxing the surface shape in the nor-

mal direction is likely to affect these (tangential) surface strain rates. We can hypothesise

that if the surface were to be permitted to deflect outwards (in order to relax the higher

liquid pressures computed in the neighbourhood of S = 0 compared to the negative

pressures obtained at S = π
6
) we would obtain results qualitatively similar to those we

already have, merely replacing the film thickness parameter ∆0 by a larger effective value
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to represent the outwards deflection. This is however speculative, and investigating this

hypothesis by a full ‘free surface’ numerical simulation (i.e. allowing the solution domain

itself to deform so as to balance normal stresses) represents a considerable undertaking.

9. Discussion

The results for the Plateau border flow fields as computed in Section 8 indicate how to

match film and Plateau border flows in various different parameter regimes of dimension-

less film thickness ∆0 and dimensionless surface viscosity Ms. The results also indicate

the extent to which the presence of the Plateau border constrains the film flow.

Specifically if ∆0Ms ≫ 1 (requiring an extremely large Ms given that ∆0 ≪ 1) the

flow at the film-Plateau border junction is very strongly constrained by surface viscous

effects (see e.g. equation (21)). Moreover the surface strain rate on the Plateau border is

spatially uniform, ensuring that the surface velocity exhibits a uniform straight line decay

along the border. This corroborates the work of Vitasari et al. (2015).

In the opposite case of a small Ms value, typically for ∆0 ≪ Ms ≪ 1, the decay of

the velocity field along the Plateau border surface is predicted to be exponential, with a

characteristic decay distance predicted by equation (39) to be
√

∆0Ms/3, which is now

substantially less than the full arc length measured along the border. Via equation (23),

this leads to a more constrained velocity at the film-Plateau border junction than the

assumption of Vitasari et al. (2015), i.e. equation (31) (in place of equation (32)) would

have done. The reason for this is that equation (31) solely constrains the flow at the film-

Plateau border junction for geometric reasons, i.e. based on how close by the junction is to

the border’s symmetry point. In fact for ∆0 ≪ Ms ≪ 1 the velocity on the Plateau border

decays very near the border entrance, well before approaching that symmetry point,

meaning the geometric constraint is not then relevant. The constraint that equation (32)

places on the system in the ∆0 ≪ Ms ≪ 1 limit arises in fact from the assumed absence

of any Marangoni stress on the Plateau border. This then predicts a velocity decay over a

much smaller longitudinal distance than a purely geometric symmetry constraint would.

We can nonetheless identify a potential problem with the assumptions underlying our
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model in this case: we have assumed that Marangoni stresses are present on the film,

but absent on the Plateau border, on the supposition that the Plateau border contains a

reservoir of surfactant through being for the most part substantially thicker than the film.

However with that assumption the predicted flow field in the Plateau border is effectively

confined to a very small part of the border, specifically the region near the entrance to

the border where it is not substantially thicker than the film. Marangoni stresses could

still be significant in that particular region, even though in the rest of the border there

are insignificant Marangoni stresses and likewise insignificant flow.

Once Marangoni stresses on the Plateau border need to be taken into account, we

can no longer solve for the detailed flow field in the Plateau border without prior knowl-

edge of the instantaneous surfactant concentration distribution (and hence instantaneous

Marangoni stress field) along the border’s surface: we have a coupled fluid mechanical

and mass transfer problem for the border in addition to that already studied (Vitasari

et al., 2015) for the film. In the presence of Plateau border Marangoni stresses, no con-

straining effect of the Plateau border would be evident at the junction with the film,

constraints only manifesting themselves moving along the border once it becomes much

thicker than the film13, giving in effect a surfactant reservoir that suppresses Marangoni

stresses. Given the order
√
∆0 length scale over which the border is predicted to thicken

and hence Marangoni stresses would be permitted to decay is now rather greater than the

order
√
∆0Ms scale over which surface viscosity couples the motion of adjacent surface

points together, the flow velocity on the Plateau border surface can be obtained entirely

in terms of local properties (local Marangoni stress at a point and local border thickness

at that point) ignoring surface viscous effects. This means that the the Plateau border

flow no longer couples to the film flow, and hence no longer constrains the film flow.

Under those circumstances, in the limit of small Ms, we can deduce a velocity field on

the border u′
s ≈ 1

3
(a′)−1(∆/∆0)∂γ

′/∂X (which turns out to be the same velocity field as

if we ignored surface viscosity altogether (Vitasari et al., 2013b), the velocity decaying

13Recall that, as has been explained in Section 3.5, the border will act as a surfactant reservoir once
its local thickness exceeds an ‘effective Henry constant’. This ‘effective Henry constant’ is assumed to be
intermediate between the film thickness and the curvature radius of the Plateau border surface.
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with X moving along the border, provided that ∂γ′/∂X decays more rapidly than ∆/∆0

grows). Film flows can then be computed in a similar (i.e. entirely local) fashion ignoring

surface viscous effects altogether. As far as film flows are concerned, we therefore recover

the model already studied in Vitasari et al. (2013b). The above constitutes the most

important finding for the case of small Ms.

To summarise then for ∆0 ≪ Ms ≪ 1, equation (23) that implies a velocity at the

film-Plateau border junction half of the value ‘unconstrained by the border’ would have

been correct in the present limit 1 ≪ ∆0 ≪ Ms if we could contrive to have Marangoni

stresses on the film but not on the Plateau border. It is however not necessarily realistic

to suppose that there are no Marangoni stresses on the Plateau border in this particular

limit. These Plateau border Marangoni stresses return the velocity at the film-Plateau

border junction back towards the ‘unconstrained’ value.

Yet another important limit that we investigated within Section 8 had ∆0 ≪ 1 and

Ms ≫ 1 (but still with ∆0Ms ≪ 1 and hence Ms ≪ 1/∆0). Here the decay in surface

velocity along the border is slower than the increase of the border thickness that drives

a decay in Marangoni stresses, implying it is actually reasonable to ignore Marangoni

effects in the Plateau border, but nonetheless the reduction in the flow at the film-Plateau

border junction is less marked than before: the presence of the Plateau border causes the

junction velocity to fall but it remains more than half the value that would apply ignoring

the constraining effect of the Plateau border. The flow field along the Plateau border no

longer decays exponentially. Instead it exhibits a non-uniform decay near the entrance to

the Plateau border, and a uniform straight line decay further on.

10. Conclusions

In this work we have considered the Marangoni-driven flow and surfactant transport

between a foam Plateau border and a foam film during the process of foam fractionation,

such flows being likely to arise in various scenarios (e.g. foam fractionation with reflux,

fractionation in stripping mode, multicomponent fractionation). In particular we have

studied the role that surface viscosity (measured by a dimensionless parameter Ms) and
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film thickness (measured by a dimensionless parameter ∆0) play in this flow and mass

transfer process. Our analysis recognises that the surface strain rate and the surface

velocity must both be continuous across the film-Plateau border junction. Indeed, if we

know the ratio between the surface strain rate and the surface velocity at the film-Plateau

border junction this provides us with sufficient information to compute the film flow field.

The aforementioned strain rate to velocity ratio can however be obtained via a fluid

mechanical analysis in the Plateau border: this ratio is then what couples the Plateau

border flow to the film flow. It has been proposed in literature (Vitasari et al., 2015) that

the surface strain rate should be uniform on the entire Plateau border surface, and hence

that surface velocity needs to be a straight line function of distance along the border,

vanishing at a stationary symmetry point on the border surface. The ratio between the

surface strain rate and surface velocity (at the film-Plateau border junction) is then just

the reciprocal of arc length of surface between the symmetry point and the junction.

Our fluid mechanical analysis shows that this hypothesis is indeed valid in the case

when the product ∆0Ms exceeds unity. Surface viscosity is then sufficiently strong that the

film-Plateau border junction is constrained by the stationary symmetry point mentioned

above: the velocity at the film-Plateau border junction is reduced substantially compared

to the ‘no surface viscosity’ case and the surfactant mass transfer process slows down

significantly. The impact on the total mass transfer taking place in a fractionation column

can be surprisingly little however, since these substantial slow downs in transfer rate

typically occur in situations where foam films are sufficiently thick that the characteristic

mass transfer time scale (prior to the ‘surface viscous’ slow down) is orders of magnitude

less than the available residence time that foam films spend in the fractionation column.

In other parameter regimes (i.e. ∆0Ms ≪ 1) significant non-uniformities are possible

in the surface strain rate along the Plateau border length (a contrast from what was

hypothesised by Vitasari et al. (2015)). The case ∆0Ms ≪ 1 could be further subdivided

into ∆0 ≪ Ms ≪ 1 and 1 ≪ Ms ≪ 1/∆0. In the case ∆0 ≪ Ms ≪ 1 a rapid exponential

spatial decay of surface strain rate and surface velocity is predicted along the Plateau

border, and such decay is clearly spatially non-uniform. In the case 1 ≪ Ms ≪ 1/∆0

52



on the other hand, a rapid and non-uniform spatial decay occurs near the film-Plateau

border junction, but this is then arrested and replaced by a uniform decay further along

the border. There are consequences for the velocity of surfactant mass transfer across the

film-Plateau border junction, being reduced to half of its ‘no surface viscosity’ value in one

case, and somewhat more than half of that value in the other. Time scales for surfactant

transfer are thereby increased by a factor of two in the first case, and by a factor somewhat

less than two in the other. These moderate increases in surfactant mass transfer times

may however impact negatively on the efficiency of the foam fractionation process as they

typically occur in regimes with exceedingly thin foam films, when transfer (even without

the complications of surface viscosity) is slow, and struggles to reach completion within

the residence time available to foam films within the fractionation column.

In the regime ∆0Ms ≪ 1, the lower velocities due to surface viscosity referred to above

arise not from constraints imposed at the Plateau border symmetry point, but rather from

the fact that the Plateau border is assumed to act as a constant and uniform surfactant

reservoir, thereby suppressing Marangoni stresses on the entire border. One could query

this assumption in e.g. the case Ms ≪ 1 in particular, because in that case significant

surface velocities turn out to be confined to a very restricted part of the Plateau border

near the film-Plateau border junction, where the border thickness is comparable with that

of the film, and insufficient to contain a surfactant reservoir. In such cases, the flow on

the film is unlikely to be constrained by the presence of the Plateau border.

The analysis that we have presented here can compute velocity fields and thereby

surfactant flux fields on films and Plateau borders at a given instant in time and for a

given instantaneous surfactant coverage distribution (surfactant being considered to vary

much more significantly on the films than on the Plateau borders which are treated as

surfactant reservoirs as mentioned above). We have not in this work attempted to compute

the time evolution of the surfactant coverage on the film produced by these velocity and

flux fields. We cannot rule out the possibility therefore that the surfactant coverage field

will evolve over time in such a way as to invalidate some of the assumptions we have used

to obtain the above mentioned estimates of velocities at film-Plateau border junctions,
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of associated surfactant mass transfer rates, and hence of surfactant mass transfer time

scales. The predicted ratios between surface strain rates and surface velocities at the film-

Plateau border junction (which suffice to close the governing equations for the film) are

likely to be more robust than the estimates we have given of surface velocity itself. This

is because deriving those estimates of surface velocity involves additional constraining

assumptions about how surfactant might be distributed on films.

Throughout our work a simplifying assumption has been that the domain of the film-

Plateau border system is fixed with a planar film joining up directly with a circular arc

border. The pressure jumps across the gas-liquid Plateau border surface can be estimated

in such a system and compared with the pressure distribution in the liquid phase along

the assumed circular arc border. Over much of the assumed circular arc, the computed

pressure distribution in the liquid is sufficiently uniform compared to the size of the

aforementioned pressure jumps that deviations from circularity can be neglected. This is

not however the case near the film-Plateau border junction where a transition region is

required over which the surface is not a circular arc: indeed the location of the surface is

not known a priori. Computing the transition region is beyond the scope of this study,

involving modifications to the flow domain applying a boundary condition in the normal

direction. This is however precisely the region where we need to extract tangential surface

information, i.e. the ratio between surface strain rate and surface velocity, which we use

to couple the Plateau border to the film. The effect of including a transition region upon

these tangential properties is unclear, but given that the transition region is expected to

thicken the Plateau border near the point where it joins up with the film, the effect may

be simply like increasing the value of ∆0 in the present model.
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Appendix A. Boundary conditions at the Plateau border entrance

This appendix explains some of the subtleties (alluded to in Section 3.3) associated

with identifying a suitable boundary condition across the Plateau border entrance.

The thin geometry of the film (with film aspect ratio δ′0 defined as δ′0 ≡ δ0/L ≪ 1)

suggests a requirement that, in the polar coordinates of the Plateau border, |uθ| ≫ |ur|.

This is not the same as ur being identically zero everywhere along θ = 0. Indeed imposing

a condition that ur vanishes along θ = 0 (and hence ∂ur/∂r also vanishes there) leads to

problems at the point r = a, θ = 0. Approaching that particular point along the Plateau

border surface (i.e. along r = a), the surface strain rate ∂us/∂s = a−1∂us/∂θ must be

non-zero: indeed determining the value of ∂us/∂s is important for coupling the film and

Plateau border flows. If however (approached along θ = 0), the value of ur and likewise

the value of ∂ur/∂r are taken to vanish at that same point, then continuity is violated.

In order to understand why imposing a condition ur = 0 is problematic at the film-

Plateau border junction, it is useful to consider more carefully the velocity profile in the

film, viz. a parabolic flow profile such as equation (1). If us happens to be changing

along the film surface, it is actually possible to compute the non-zero velocity component

in the transverse direction merely via the continuity equation. The fact that we are able

to use a continuity equation to deduce the transverse velocity component, rather than

more conventionally invoking a transverse momentum equation, comes about because of

the extreme aspect ratio of the film (i.e. δ′0 ≪ 1 implying ∆0 ≪ 1 also). For such an

aspect ratio, the transverse component of the momentum equation is trivial in the film

(merely stating that pressure gradients are longitudinal rather than transverse). As one

moves from the film deeper and deeper into the Plateau border however, eventually the

transverse component of the momentum equation must cease to be trivial: lubrication

type assumptions must eventually cease to apply. Hence to determine the Plateau border

flow field, a second boundary condition is required along θ = 0 to accompany the non-

trivial transverse momentum equation.

Near the entrance to the Plateau border, based on geometry, we have already stated

that |uθ| ≫ |ur|. Moreover (again due to geometry) the radial derivative of uθ (i.e.
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∂uθ/∂r) is expected to be vastly in excess of the angular derivative of ur (i.e. r
−1∂ur/∂θ).

Given equation (8) for uθ vs r, the value of ∂uθ/∂r is known, whereas r−1∂ur/∂θ is a

priori unknown. Now the r, θ component of the strain rate tensor (i.e. the stress tensor

divided by viscosity µ) is ∂uθ/∂r− uθ/r+ r−1∂ur/∂θ. Based on the above arguments we

already anticipate ∂uθ/∂r dominates r−1∂ur/∂θ. The geometry also implies that −uθ/r

is smaller than ∂uθ/∂r (by a factor on the order of ∆0).

We therefore decided to implement a stress boundary condition setting the r, θ stress

component equal to the known term µ ∂uθ/∂r which is expected to dominate. This

boundary condition permits computation of flow fields avoiding any problems satisfying

continuity at the point r = a, θ = 0.

One special situation that we can use to illustrate our chosen stress boundary condition

is the hypothetical case for which flow in the Plateau border is purely rectilinear in the

direction parallel to the film and also locally invariant along that direction. The terms

we have neglected from the strain rate −uθ/r and r−1∂ur/∂θ then turn out to cancel one

another exactly. This is a manifestation of the fact that the radial velocity component

can change with θ simply because the radial unit vector changes with θ, even if the

direction of the fluid velocity vector itself remains fixed. However in this special case,

the aforementioned invariance of the assumed rectilinear flow also implies (via continuity)

that ur vanishes at θ = 0. The above is of course a very special case: under ordinary

circumstances we expect local tangential variation of the flow along the Plateau border

and our chosen boundary condition then produces a non-zero ur.

Appendix B. Case of large Ms with 1 ≪ Ms ≪ 1/∆0

In the main text we indicated how for large values of the parameter ∆0Ms ≫ 1, the

flow field Us on the Plateau border surface was well represented by a straight line function

(38) that decayed uniformly between the entrance to the Plateau border and the border’s

symmetry point. Meanwhile for small values of ∆0Ms with ∆0 ≪ Ms ≪ 1, we indicated

(in Section 8.1.4) how an asymptotic analysis near the Plateau border entrance predicted

an exponential decay of Us on a characteristic length scale much smaller than unity.
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Cases with 1 ≪ Ms ≪ 1/∆0 correspond to neither of the above mentioned limits.

Such cases are nonetheless of physical interest. Section 5.1 suggests that Ms could be as

large as 8800 for fractionation of a high surface viscosity surface active protein, such as

bovine serum albumin (BSA), whereas ∆0 could be as low as 3×10−5 for a common black

film (giving 1/∆0 on the order of 33000).

For 1 ≪ Ms ≪ 1/∆0, if we move a significant distance S along the Plateau border

(comparable with the dimensionless distance π
6
between the Plateau border entrance and

its symmetry point), the boundary condition (25) implies that ∂2Us/∂S
2 ≪ 1, suggesting

∂Us/∂S is nearly spatially uniform and hence Us vs S is locally quite close to a straight

line function. However very near the film-Plateau border junction, equation (30) suggests

(in the limit as Cartesian coordinate X → 0) that ∂2Us/∂X
2 has a very large value (in

turn implying a large ∂2Us/∂S
2 since Cartesian coordinate X and arc length coordinate

S coincide in the X → 0 limit). Hence ∂Us/∂X or equivalently ∂Us/∂S is spatially non-

uniform in this part of the domain. We deduce that the decay of the velocity field Us is

‘complex’ in the sense that there is a non-uniform decay region near the entrance to the

Plateau border, followed by a uniform decay region further along the border.

An asymptotic formulation (equation (30)) in terms of a Cartesian coordinate X (in

lieu of an arc length coordinate S) remains a valid description in the non-uniform re-

gion, thereby simplifying the calculations we need to perform there. In what follows

we demonstrate that these (asymptotic) governing equations admit power law solutions

(see Appendix B.1) and perturbation solutions (see Appendix B.2). The actual solution

we seek for Us vs S is obtained via generating two independent solutions (see Appendix

B.3) and taking a linear combination of them (see Appendix B.4). An analytic estimate

that is consistent with the asymptotic formulation and that determines the ratio between

the surface strain rate and surface velocity at the film-Plateau border junction is obtained

and discussed in Appendix B.5–Appendix B.6.

Appendix B.1. Power law solutions

We seek velocity fields on the Plateau border surface Us vs X satisfying equation (30).

It is instructive to consider various possible solutions of this equation, even if those we
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generate in the first instance do not have the desired property that they decay to zero

at the symmetry point of the Plateau border. Since equation (30) is linear, provided we

can find linearly independent solutions of it, linear combinations of those independent

solutions can be taken to meet the constraint imposed at the symmetry point.

In the limit where X ≫
√
∆0 equation (30) simplifies to

6Us/X
2 ≈ Ms ∂

2Us/∂X
2. (B.1)

Assuming an asymptotic solution Us ∼ XΛ, it follows Λ(Λ− 1) = 6/Ms, and hence

Λ =
1

2
±
√

1

4
+

6

Ms
. (B.2)

Since we are interested in large Ms values here, we can simplify to

Λ ≈ 1 + 6/Ms or Λ ≈ −6/Ms (B.3)

with 6/Ms ≪ 1 in the regime of interest. We conclude that there are two independent

modes of behaviour for Us. One grows nearly linearly with X . The other is almost

constant. Subtracting the near linear term from the near constant one, gives a solution

that exhibits a nearly uniform decay.

Such a solution could be viewed as a ‘frustrated exponential’. Specifically it is ‘trying’

to decay as an exponential, but as that decay occurs, the Plateau border thickens (i.e. the

denominator on the left hand side of equation (30)) grows. This changes the characteristic

length scale for the ‘exponential’ decay, which in this particular case is arrested into a

near uniform decay instead of the originally anticipated exponential.

Appendix B.2. Perturbation solutions

There is an issue with the above power law asymptotic solutions: equation (B.1) only

applies for X ≫
√
∆0 but does not apply all the way down to X = 0. In that limit we

must return to equation (30). Approximate solutions to (30) can however be obtained by

anticipating that on the left hand side of that equation we can replace Us by either a near
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constant solution Us|X=0 or by a near linear solution (∂Us/∂X|X=0)X . We then integrate

the right hand side of that equation twice to obtain an improved approximation for Us.

In the former case (an approximation based on a ‘near constant’ function) we obtain

∂Us

∂X
≈ 3

√
2Us|X=0√
∆0Ms

arctan

(

X√
2∆0

)

. (B.4)

We have (deliberately) set an integration constant here such that equation (B.4) vanishes

as X → 0, to comply with our assumption (for this particular solution branch) that Us

should change only very little with respect to Us|X=0. Integrating again gives

Us − Us|X=0 ≈
3
√
2Us|X=0√
∆0Ms



X arctan

(

X√
2∆0

)

−
√

∆0

2
log

(

X2

2∆0
+ 1

)



 . (B.5)

Even though forX ≪
√
∆0 this solution has (by construction) only second order variation

in X , note that for X ≫
√
∆0 the expected behaviour is

Us − Us|X=0 ∼
3
√
2Us|X=0√
∆0Ms

π

2
X. (B.6)

Our assumption of a ‘near constant’ function can nevertheless still apply even for values

of X/
√
∆0 large compared to unity, as long as X/

√
∆0 is smaller than Ms.

In the latter case (basing the approximation on a ‘near linear’ function substituted

into the left hand side of (30)) we obtain

∂Us

∂X
≈ ∂Us

∂X

∣

∣

∣

∣

∣

X=0

(

1 +
3

Ms

log

(

1 +
X2

2∆0

))

(B.7)

and hence

Us ≈
∂Us

∂X

∣

∣

∣

∣

∣

X=0

(

X +
3

Ms

(

X log

(

1 +
X2

2∆0

)

+ 2
√
2∆

1/2
0 arctan

(

X√
2∆0

)

− 2X

))

(B.8)

where we have chosen integration constants that recover the set value of ∂Us/∂X|X=0 and

that ensure Us|X=0 vanishes.

Equation (B.8) also has a well defined asymptotic behaviour asX becomes much larger
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than ∆
1/2
0 . The function is dominated by the value (∂Us/∂X|X=0)X in that case, all

other terms (including a slightly awkward logarithmic one) are multiplied by a very small

prefactor 3/Ms with Ms ≫ 1 here. Such behaviour can be inferred from equation (B.1):

as X grows towards the order of unity, it is evident that ∂2Us/∂X
2 becomes very small

(on the order of M−1
s with Ms ≫ 1), implying ∂Us/∂X is uniform.

The observation that the solutions of equation (30) have well defined asymptotic be-

haviours for X ≫
√
∆0 is what allows us to find a combination of the available solutions

satisfying a constraint that velocity must vanish on the approach to the symmetry point

on the Plateau border. The procedure for doing this is described below.

Appendix B.3. Generating independent solutions

We can select the required solution via a linear combination method. This involves

generating independent solutions of the governing differential equation, in the first in-

stance without taking regard of the actual boundary conditions imposed. The solutions

thereby obtained are then combined to satisfy the correct boundary conditions.

Consider two solutions Us(I) and Us(II) with the following conditions at X = 0:

Us(I)|X=0 = 1 and ∂Us(I)/∂X|X=0 = 0 (B.9)

Us(II)|X=0 = 0 and ∂Us(II)/∂X|X=0 = 1/
√

∆0Ms. (B.10)

We integrate both solutions numerically out to values of X much larger than
√
∆0. In

this regime we expect

Us(I) ∼ Us(I∞) +
∂Us

∂X

∣

∣

∣

∣

∣

(I∞)

X (B.11)

Us(II) ∼ Us(II∞) +
∂Us

∂X

∣

∣

∣

∣

∣

(II∞)

X (B.12)

where Us(I∞), ∂Us/∂X|(I∞), Us(II∞) and ∂Us/∂X|(II∞) are constants that we determine

numerically. Specifically ∂Us/∂X|(I∞) and ∂Us/∂X|(II∞) are slopes of the Us(I) vs X and

Us(II) vs X curves, whilst Us(I∞) and Us(II∞) are Legendre transforms, i.e. extrapolations

of the tangent to those curves back to the intercept on the Us axis. All these numerical
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values are only weakly sensitive to where we terminate the numerical integration, provided

(as mentioned before) we integrate out to X values larger than
√
∆0.

Functions Us(I) and Us(II) for ∆0 = 0.00005 and Ms = 100 are plotted in Figure 15 on

the domain 0 ≤ X ≤ 0.25. These were computed via a Runge-Kutta integration routine

(step size equal to 0.001). The right hand boundary of the integration domain (X = 0.25)

is chosen arbitrarily to be a value for which the lubrication theory assumptions underlying

the derivation of (30) should still apply (specifically in an earlier equation (28) we must

constrain the thickness of the Plateau border such that ∆ ≪ 1 and d∆/dX ≪ 1).

Note that Us(I) is close to the prediction of equation (B.5). This is quite remarkable

since the value of the function changes by a factor 3 over the domain plotted, yet equa-

tion (B.5) was derived ignoring that variation on the left hand side of (30). Even though

we thereby make an error in the numerator of the left hand side of (30), we only do so for

X values where the denominator of the left hand side of (30) has increased significantly,

making the quotient itself less important.

Moreover we observe that Us(II) is roughly approximated by a linear function Us(II) ≈

X/
√
∆0Ms, but equation (B.8) performs better still (being virtually indistinguishable

from numerical data). A consequence of Us(II) being nearly linear is that the Legendre

transform Us(II∞) is numerically a very small value (certainly much smaller than Us(I∞)).

The analysis leading to equations (B.11)–(B.12) is only strictly valid in the lubrication

region where ∆ ≪ 1 and d∆/dX ≪ 1. The arguments however generalise to an arc length

coordinate S measured along the Plateau border surface (essentially we replace ∂2Us/∂X
2

in equation (30) by ∂2Us/∂S
2). We deduce analogously (for S values larger than

√
∆0)

Us(I) ∼ Us(I∞) + ∂Us/∂X|(I∞) S (B.13)

Us(II) ∼ Us(II∞) + ∂Us/∂X|(II∞) S (B.14)

where the numerical constants Us(I∞), ∂Us/∂X|(I∞), Us(II∞) and ∂Us/∂X|(II∞) are iden-

tical to those obtained previously.
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Appendix B.4. Linear combination of solutions

We now seek a linear combination (denoted Us(lin)) of Us(I) and Us(II) that vanishes at

the symmetry point of the Plateau border (corresponding to S = π/6).

We first define a parameter c′

c′ =
Us(I∞) +

∂Us

∂X

∣

∣

∣

(I∞)

π
6

Us(II∞) +
∂Us

∂X

∣

∣

∣

(II∞)

π
6

. (B.15)

To ensure that Us(lin) vanishes at S = π
6
we can define

Us(lin) = −Us(I) + c′Us(II). (B.16)

We have chosen the sign here such that Us(lin) is a negative quantity (which corresponds

to surfactant transport in the expected direction from Plateau border to film). In what

follows however we consider for convenience the absolute value |Us(lin)|.

Figure 16 shows |Us(lin)| obtained via a linear combination of Us(I) and Us(II) which were

themselves shown previously in Figure 15. It is apparent (as has been stated previously)

that there is a region where the surface strain rate is non-uniform near the Plateau

border entrance, followed by a uniform strain rate region over the rest of the Plateau

border surface. The solution for |Us(lin)| exhibits a rapid initial decay that is arrested and

replaced by a less abrupt straight line decay.

The data on Figure 16 (which have ∆0 = 0.00005 and Ms = 100) compare favourably

with the corresponding finite element numerical data obtained from COMSOL as plotted

on Figure 8(b): we have not included those COMSOL data on Figure 16, because they

are actually so close as to be indistinguishable on the scale of the plot. An approximation

to Us(lin) can also be obtained based on a linear combination of the perturbation approx-

imations in Appendix B.2. This is also plotted in Figure 16: agreement is imperfect14.

14There are some subtleties with the way this approximate solution has been obtained. Given that
equations (B.6) and (B.8) were derived in a domain in which Cartesian coordinate X matches arc length
S, we assumed that we could replace X by S throughout. We then assumed we could take a linear
combination that vanished as S → π

6 . This approach turns out to be consistent with the results that
will be presented in Appendix B.5–Appendix B.6 apart from slight changes in the values of some small
logarithmic corrections.
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It is now very easy to obtain the ratio between the surface strain rate and surface

velocity at the Plateau border entrance (this ratio being necessary to achieve film-Plateau

border matching as we have discussed in the main text). By construction, |Us(lin)|X=0| =

Us(I)|X=0 = 1 and ∂|Us(lin)|/∂X|X=0 = −c′ ∂Us(II)/∂X|X=0 = −c′/
√
∆0Ms. Hence

|Us(lin)|−1∂|Us(lin)|/∂X|X=0 = −c′
/

√

∆0Ms. (B.17)

We now identify the parameter c in equation (32) with the parameter c′ (obtained via

equation (B.15)) here. Via equation (23) this parameter governs the extent to which the

presence of the Plateau border limits the flow at the film-Plateau border junction.

Values of the parameter c (in the domain 1 ≪ Ms ≪ 1/∆0) obtained via this asymp-

totic linear combination technique have been tabulated in Table 3. Values of c obtained

independently via COMSOL numerical simulation (as discussed in the main text) are also

given, and match the values from the asymptotic linear combination technique.

Table 3 shows that c is less than
√
3 in this domain 1 ≪ Ms ≪ 1/∆0 (the particular

value of
√
3 applying instead over the quite different domain ∆0 ≪ Ms ≪ 1). The

significance of c now being less than
√
3 can be seen in equation (23), which predicts

surface velocities ‘constrained’ by the Plateau border at the film-Plateau border junction

to be rather more than half the ‘unconstrained’ values.

Appendix B.5. Derivation of analytic estimate of c′

It is possible to obtain an analytic estimate of c′ using the perturbation approximations

developed in Appendix B.2.

We approximate Us(I) (itself defined in Appendix B.3) by the solution given in equa-

tion (B.5) noting that Us(I)|X=0 = 1. Based on equations (B.4)–(B.5), the Legendre

transform of Us(I) is approximately

Us(I) −X
∂Us(I)

∂X
≈ 1− 3

Ms
log

(

X2

2∆0
+ 1

)

. (B.18)

We seek the value of the Legendre transform Us(I∞) for X ≫
√
∆0. Equation (B.18)

suggests this is sensitive to the X value chosen, although the sensitivity is extremely weak,
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involving a logarithmic correction in X which is moreover multiplied by an order M−1
s

prefactor, with Ms ≫ 1 here.

We shall take Us(I∞) to be evaluated at a specific point denoted XRK (chosen here so

as to correspond to the right hand end of the Runge-Kutta integration domain that was

already employed in Appendix B.3). In our case XRK = 0.25. Defining the symbol LRK

to be log(1 +X2
RK/(2∆0)), we find (via equation (B.18))

Us(I∞) ≈ 1− 3LRK

Ms
. (B.19)

The value ∂Us/∂X|(I∞) (i.e. the X ≫
√
∆0 limit of ∂Us(I)/∂X) meanwhile is obtained

unambiguously from equation (B.4) to be

∂Us

∂X

∣

∣

∣

∣

∣

(I∞)

≈ 3
√
2√

∆0Ms

π

2
. (B.20)

We now proceed to approximate Us(II) by the solution given in equation (B.8) noting

from equation (B.10) that ∂Us(II)/∂X|X=0 = 1/
√
∆0Ms. Observe moreover from equa-

tion (B.7) that the value of ∂Us(II)/∂X only ever deviates from ∂Us(II)/∂X|X=0 by relative

amounts on the order of M−1
s . Evaluating at X = XRK we deduce in fact that

∂Us

∂X

∣

∣

∣

∣

∣

(II∞)

≈ 1√
∆0Ms

(

1 +
3LRK

Ms

)

(B.21)

where LRK is the logarithmic term defined above, which as in equation (B.19) is divided

through by Ms (with Ms ≫ 1 here).

Also observe from equations (B.7)–(B.8) that Us(II)−X∂Us(II)/∂X (i.e. the Legendre

transform) is smaller than Us(II) itself, by a factor of order M−1
s . Specifically

Us(II) −X
∂Us(II)

∂X
≈ − 1√

∆0Ms

6

Ms

(

X −
√

2∆0 arctan

(

X√
2∆0

))

. (B.22)

Hence evaluating the Legendre transform at XRK we deduce

Us(II∞) ≈ − 1√
∆0Ms

6

Ms

(

XRK −
√

2∆0
π

2

)

≈ − 6
√
2

M
3/2
s

(

XRK√
2∆0

− π

2

)

. (B.23)
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Since XRK is chosen much larger than order
√
∆0, this Us(II∞) value is clearly sensitive

to our choice of XRK . Note however that the value of Us(II∞) is much smaller than that

of ∂Us/∂X|(II∞). Moreover it is even smaller than the correction term involving LRK in

∂Us/∂X|(II∞): this is because XRK has a numerical value significantly smaller than unity,

whereas LRK (by construction) has a numerical value significantly larger than unity. To

a good approximation then we can suppose that Us(II∞) vanishes (as would have been the

case had Us(II) been a perfectly linear function in X).

Equation (B.15) for c′ becomes upon substituting from equations (B.19)–(B.21)

c′ ≈
(

1− 3LRK

Ms
+

√
2√

∆0Ms

π2

4

)

π
6

1√
∆0Ms

(

1 + 3LRK

Ms

) . (B.24)

Rearranging and Taylor expanding, retaining only leading order terms in the small pa-

rameter LRK/Ms

c′ ≈ 6

π

√

∆0Ms

(

1− 6LRK

Ms

)

+
3
√
2π

2
√
Ms

(

1− 3LRK

Ms

)

. (B.25)

This is our approximate analytic expression for c′, the value −c′/
√
∆0Ms then fixing (see

equation (B.17)) the ratio between the surface strain rate and the surface velocity at the

film-Plateau border junction, which then (as alluded to previously) matches the film and

Plateau border flows. Implications of equation (B.25) are discussed in the next section.

Appendix B.6. Discussion: Analytic estimate for c′

We interpret equation (B.25) as follows. The first term on the right hand side

6
π

√
∆0Ms is actually the value expected when ∆0Ms ≥ O(1) (corresponding to velocity

decaying uniformly along the entire Plateau border surface). Here however ∆0Ms ≤ O(1)

and velocity decay is non-uniform, faster near X = 0 than for larger X values. Thus the

right hand side of equation (B.25) for c′ (which concerns the velocity decay near X = 0)

involves a second term, 3
√
2π/(2

√
M s). Each term in equation (B.25) is multiplied

by a correction factor, respectively 1 − 6LRK/Ms and 1 − 3LRK/Ms, these factors being

relatively close to unity (since Ms ≫ 1).
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Estimates of c′ computed using equation (B.25) for various ∆0 and Ms are shown in

Table 3. These are compared with c values obtained numerically with COMSOL (see the

main text) and/or by an asymptotic approach (see Appendix B.4).

The table actually reports estimates determined both with and without the logarithmic

correction terms (i.e. terms involving LRK/Ms in equation (B.25)). For Ms = 1000 and

Ms = 10000 the logarithmic corrections make very little difference to the values predicted

by equation (B.25) which are generally close to the previously obtained numerical and/or

asymptotic values. However values computed with the logarithmic corrections fit the

numerical and/or asymptotic data noticeably better than those without. For Ms = 100,

equation (B.25) does not perform anywhere near as well as it does for either Ms = 1000

or Ms = 10000. However it is still the case that including the logarithmic corrections

represents an improvement over not including them.

It is possible to perform some additional analyses on equation (B.25), supposing (at

least as a rough approximation) that the logarithmic correction terms involving LRK/Ms

may be discarded. We can for instance obtain a minimum value of c′ for any given Ms by

taking the limit ∆0 → 0. The minimum value obtained is

min
∆0

c′ ∼ 3
√
2π
/(

2M1/2
s

)

(B.26)

where we assume Ms ≫ 1 and hence min∆0
c′ ≪ 1. Meanwhile (still assuming terms in

LRK/Ms are negligible), we obtain a minimum value of c′ for any given ∆0 by choosing

Ms = Ms(min) ≡
√
2π2

/(

4∆
1/2
0

)

(B.27)

the minimum then being

min
Ms

c′ ∼ 2
(

3 21/4∆
1/4
0

)

= 2





3
√
2π

2
√

Ms(min)



 (B.28)

which is twice min∆0
c′ from equation (B.26) (evaluating that equation for Ms = Ms(min)).

If Ms ≫ Ms(min) (or equivalently if ∆0 ≫ π4/(8M2
s )), the value of c′ is dominated by
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the term involving 6
π

√
∆0Ms. If however Ms ≪ Ms(min) (or equivalently ∆0 ≪ π4/(8M2

s )),

then c′ approaches the value 3
√
2π/(2

√
Ms) i.e. min∆0

c′ given in equation (B.26).

The data for Ms = 1000 and Ms = 10000 shown in Table 3 actually all have c′

dominated by the contribution from 6
π

√
∆0Ms because even the smallest ∆0 value in the

table (i.e. 5× 10−5) already exceeds π4/(8M2
s ). Indeed it is only for Ms = 100 and either

∆0 = 5× 10−5 or ∆0 = 5× 10−4 that Table 3 shows c′ values that are dominated by the

term 3
√
2π/(2

√
Ms) within equation (B.25).

Finally note that very small c′ values, such as equation (B.25) predicts for Ms ≫ 1

but ∆0 ≪ 1/Ms ≪ 1, imply that the presence of the Plateau border places very little

constraint on the film flow. According to equation (23), the ratio between ‘constrained’

velocities at the film-Plateau border junction and ‘unconstrained’ velocities away from

that junction would be around 1− c′/
√
3 for c′ ≪ 1.

Nomenclature

Roman symbols

a Plateau border curvature radius

a′ dimensionless a (a′ ≡ a/L)

a′crit critical a′ constraining film-Plateau border junction

c dimensionless parameter relating surface strain rate and velocity

(at film-Plateau border junction)

c′ coefficient in linear combination (equal to c)

G Gibbs parameter

L film half-length

LRK a logarithmic correction factor depending on XRK

Ms rescaled µ̄s (Ms = µ̄s/a
′)

Ms(min) value of Ms minimising c′

n unit normal vector

P pressure

p pressure (made dimensionless on a scale relevant to Plateau border)
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r polar coordinate

r′ dimensionless r (r′ = r/a)

s arc length coordinate

S arc length coordinate (dimensionless; S = s/a)

t unit tangent vector

u flow velocity

u vector velocity field

us surface flow velocity

uθ velocity component

us(o) ‘unconstrained’ film surface flow outside velocity boundary layer

u′ dimensionless u (based on a Marangoni scale relevant to the film)

u′
s dimensionless us

u′
s(o) dimensionless us(o)

U vector velocity field (dimensionless)

U rescaled u′ (U = u′/|u′
s|S=0|)

UX , UY velocity components (dimensionless)

Ur, Uθ velocity components (dimensionless)

Un, Ut normal and tangential velocity (dimensionless)

Us rescaled u′
s (Us = u′

s/|u′
s|S=0|)

Us(I), Us(II) linearly independent solutions

Us(I∞) limiting intercept for Us(I)

Us(II∞) limiting intercept for Us(II)

∂Us/∂X|(I∞) limiting slope for Us(I)

∂Us/∂X|(II∞) limiting slope for Us(II)

Us(lin) linear combination of Us(I) and Us(II)

x Cartesian coordinate

x′ dimensionless x (x′ = x/L)

x̄ shifted/rotated Cartesian coordinate (dimensionless)

X dimensionless x (scaled differently from x′; X = x′/a′ = x/a)
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XRK right hand end of a Runge-Kutta integration interval

y Cartesian coordinate

ȳ shifted/rotated Cartesian coordinate (dimensionless)

Y dimensionless y (Y = y/a)

Greek symbols

β dimensionless constant governing surface tension variation

(of order unity)

γ film surface tension

γ0 Plateau border surface tension

γ′ dimensionless γ (γ′ = γ/G)

γ′
0 dimensionless γ0 (γ′

0 = γ0/G)

δ Plateau border half-thickness

δ0 film half-thickness

δ′ dimensionless δ (δ′ = δ/L )

δ′0 dimensionless δ0 (δ′0 = δ0/L)

∆ rescaled δ′ (∆′ = δ′/a′)

∆0 rescaled δ′0 (∆′
0 = δ′0/a

′)

θ polar coordinate

Λ power law exponent

µ liquid viscosity

µs surface viscosity

µ̄s dimensionless µs (µ̄s = µs/(µL))
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Ms ∆0

5× 10−5 5× 10−4 5× 10−3 5× 10−2

0 1.077× 105 1.089× 104 1419 134.4
10−6 8.970× 104 1.063× 104 1403 134.3
10−5 5.435× 104 9062 1297 133.4
10−4 2.280× 104 5446 959.6 125.7
10−3 7675 2280 547.2 96.05
10−2 2446 767.3 228.2 55.16
10−1 771.3 243.7 76.54 22.98

1 235.6 74.51 23.57 7.522
10 58.81 18.73 6.274 2.749
100 9.946 4.140 2.429 1.999

1000 2.756 2.141 1.962 1.918

104 1.994 1.933 1.915 1.910

Table 1: Values of |∂Us/∂S|S=0| for various Ms and ∆0. Data shown in italics are within 10% of 6/π
(the value assumed by Vitasari et al. (2015), corresponding to uniform velocity decay along the entire
Plateau border).
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Ms ∆0

5× 10−5 5× 10−4 5× 10−3 5× 10−2

0 0 0 0 0
10−6 0.634 0.237 0.0992 0.0300
10−5 1.215 0.640 0.290 0.0943
10−4 1.612 1.217 0.678 0.281
10−3 1.716 1.612 1.223 0.679
10−2 1.729 1.715 1.613 1.223
10−1 1.724 1.723 1.711 1.624

1 1.665 1.666 1.666 1.681

10 1.315 1.324 1.402 1.943
100 0.703 0.925 1.717 4.469

1000 0.616 1.513 4.387 13.56

104 1.409 4.322 13.54 42.70

Table 2: Values of the parameter c for various Ms and ∆0. Here c has been obtained from |∂Us/∂S|S=0|
by multiplying through by

√
∆0Ms. Near the top of the table, the values of c are small (in fact c is

identically zero for Ms = 0). Note however that there is a band of values in the middle of the table
(shown in bold face) where c is within 10% of the value

√
3. These data correspond to ∆0 ≤ Ms ≤ 1.

Values in italics towards the bottom part of the table, correspond to those also given in italics in the
previous table. Since we already know that |∂Us/∂S|S=0| is nearly 6/π for those cases, we automatically
know that c ≈ 6

π

√
∆0Ms. For such cases, the value of c then tends to be rather larger than unity, since

those data correspond to larger values of
√
∆0Ms. Below the data shown in bold but above the data

shown in italics, there are a set of c values which are significantly less than
√
3. Such data correspond to

Ms ≥ 1 but ∆0Ms ≤ 1.
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∆0 Ms c (numerical) c (asymptotic) c (approximate)

5× 10−5 100 0.703 0.702 0.620 (0.801)
1000 0.616 0.615 0.617 (0.637 )
10000 1.409 1.410 1.411 (1.417 )

5× 10−4 100 0.925 0.922 0.904 (1.093)
1000 1.513 1.513 1.524 (1.561 )

0.005 100 1.717 1.707 1.816 (2.016)

Table 3: Comparison between the values of the parameter c obtained from numerical calculation with
COMSOL (as outlined in Sections 7 and 8.3), from asymptotic analysis (as described in Appendix B.3–
Appendix B.4) and from an approximate analytic formula (given by equation (B.25) in Appendix B.5).
The asymptotic analysis and approximate formula are relevant to values of Ms significantly larger than
unity, but with values of ∆0Ms smaller than unity, and the set of values of Ms and ∆0 shown here satisfy
those constraints. Two computed values are shown associated with the approximate analytic formula.
The first value includes a logarithmic correction (the term LRK in equation (B.25)). The second value
(shown in parenthesis) ignores those logarithmic corrections. Throughout the table, values highlighted
in italics are within 10% of what is predicted by the numerical calculations in COMSOL.
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film half−thickness δ0

radius 
uniform curvature

a

δ0

y

x
0= δ + 1

2

x 2

a
δ (   )x

surface velocity

film half−length L

border to film
surfactant flux

Plateau border

(   ) u s x

u

film half−thickness

(b)

x y(   ,   ) across thickness
velocity profile

border half−thickness

(a)
symmetry point
on Plateau border
(no motion permitted)

Figure 1: (a) Sketch of a film joining up with a Plateau border during foam fractionation, idealising
the film as flat and the Plateau borders as uniform curvature arcs. We are interested in the surfactant
flow between the border (higher surfactant coverage and hence lower surface tension) and the film (lower
surfactant coverage and hence higher surface tension). The border also has a symmetry point at which no
flow may occur. (b) Close up zoomed view of the entrance region of a Plateau border, near the junction
between the film and the Plateau border.
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r

θ

π/6

r

= 1

1 + 

cos θ

∆
=

θ = 0

π/6=θ

θ(  ,  )

0

origin
y

x

r

r

a

a

Figure 2: The polar coordinate solution domain corresponding to one sixth of the tricuspid Plateau
border (the solution throughout the remainder of the Plateau border being deduced via symmetry). As
drawn, the Plateau border radius of curvature is a, but coordinates can also be made dimensionless such
that the Plateau border curvature radius is scaled to unity, and the film half-thickness is ∆0. The origin
is placed outside the Plateau border itself (at the centre of curvature of the Plateau border arc). The
domain of interest is 0 ≤ θ ≤ π

6 and 1 ≤ r/a ≤ (1 + ∆0)/ cos θ. Dimensionless Cartesian coordinates
x̄ = a−1r cos θ and ȳ = a−1r sin θ can also be defined .
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Figure 3: (a) Dimensionless fluid surface velocity u′

s on a film vs dimensionless coordinate x′ along the
film predicted by equation (34) (the ‘original assumption’) and equation (36) (the ‘new assumption’)
respectively. We suppose µ̄s = 0.088 and δ′0 = 4 × 10−3 from which we can deduce (δ′0µ̄s/3)

1/2 ≈ 0.010
and a′crit =

6
π (δ

′

0µ̄s/3)
1/2 ≈ 0.020. We also take a′ = 0.1 and set (without loss of generality) β = 1. In

equation (36), the parameter c is arbitrarily set to
√
3. (b) A zoomed view of u′

s vs x
′ in the neighbourhood

of x′ = 0 where the film joins the Plateau border.
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Figure 4: A mesh generated by COMSOL containing 1558 elements in the case where ∆0 = 0.05 (shown
here for illustrative purposes; in fact our calculations were done with a much denser mesh: 191503
elements in the case ∆0 = 0.05).
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Figure 5: Streamline patterns within the Plateau border in the case ∆0 = 0.05 and (a) Ms = 104, (b)
Ms = 1 and (c) Ms = 0.1. As the product, ∆0Ms decreases, the flow field decays more rapidly moving
into the Plateau border. The streamline patterns were obtained in polar coordinates, but have been
converted here onto Cartesian x̄ and ȳ axes.
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Figure 6: Streamline patterns within the Plateau border in the case ∆0 = 0.005 and (a) Ms = 104, (b)
Ms = 1 and (c) Ms = 0.1.
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(a) No stagnation point (b) With stagnation points

Figure 7: Topology of the streamline pattern in a Plateau border in the case (a) with no stagnation
point and (b) with two stagnation points (one centre and one saddle). To aid clarity, the thickness of the
Plateau border has been exaggerated in both (a) and (b), instead of drawing the figure to scale. However
(b) is deliberately drawn thinner than (a) because cases with low film thickness (and also high surface
viscosity) tend to exhibit the stagnation point topology.
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Figure 8: Numerical results for tangential surface flow |Us| vs distance S along the Plateau border for
various surface viscositiesMs and for film thickness (a) ∆0 = 0.005 and (b) ∆0 = 0.00005. An exponential
decay curve exp(−S/

√

∆0Ms/3) applies when ∆0 ≪ Ms ≪ 1. This curve (labelled ‘exp decay’) is shown
explicitly in (a) for the case ∆0 = 0.005 and Ms = 0.1 but is barely distinguishable from the numerical
data. The analogous exponential curve is not however shown on (b) (which has a much smaller ∆0 and
thereby substantially faster decays) to avoid crowding the figure.
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Figure 9: The surface strain rate evaluated at the film-Plateau border junction |∂Us/∂S|S=0| (determined
from COMSOL numerical simulations in the Plateau border) plotted for various dimensionless film thick-
nesses ∆0 and various dimensionless surface viscosities Ms. Knowing this surface strain rate value is
relevant to coupling the film and Plateau border flows together. For sufficiently large Ms, the values of
|∂Us/∂S|S=0| converge to 6/π (horizontal line) with faster convergence seen for larger ∆0. This limiting
value corresponds to a uniform velocity decay along the Plateau border surface, which has a dimensionless
arc length of π/6 between the film-Plateau border junction (with unit velocity in the present scaling) and
a symmetry point (with zero velocity) on the border surface.
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Figure 10: Computed data ∆0 |∂Us/∂S|S=0| for various ∆0 and Ms. In the limit of Ms → 0,
∆0 |∂Us/∂S|S=0| seems to converge to a constant (with a value of roughly 7, shown as a horizontal
line). This implies a velocity field decaying along the border over a very small distance of order ∆0.
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Figure 11: Sketch of a ‘stick-slip’ singularity, where a parabolic velocity profile U (induced by Marangoni
stresses ∂γ′/∂X) in a film, exhibits a local adjustment at the surface of a Plateau border (with neither
Marangoni stresses nor surface viscosity). The surface velocity Us is continuous across the film-Plateau
border junction, but the surface shear rate ∂U/∂Y |Y=∆ is not (at least in this idealised case where surface
viscous effects are neglected). Such solutions are mathematically possible, but physically are unlikely (as
they assume Marangoni stresses decay over exceedingly small length scales).
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Figure 12: Computed data ∆
1/2
0 |∂Us/∂S|S=0| for various ∆0 and Ms. The line marked ‘slope − 1

2 ’

corresponds to
√
3M

−1/2
s . Data for Ms values satisfying ∆0 ≤ Ms ≤ 1 tend to converge to this line.
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Figure 13: Absolute value of dimensionless pressure |p| vs dimensionless distance S along the Plateau
border for dimensionless film thickness ∆0 = 0.005 and dimensionless surface viscosity Ms values 10000,
10, 1 and 0.1. The absolute value |p| = (∆0a

′)−1 (shown by the horizontal dotted line) is set at S = π/6
(with a′ = 0.1 here). This represents the estimated pressure jump between gas and liquid at the Plateau
border surface. For S values such that |p| lies near this dotted line, the change in pressure along the
surface is relatively modest, making it reasonable to treat the Plateau border as a uniform circular arc
in that region.
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Figure 14: Dimensionless pressure p+(∆0a
′)−1 vs dimensionless distance S along the Plateau border for

two different dimensionless film thicknesses ∆0 = 0.005 and ∆0 = 0.00005 and two different dimensionless
surface viscosities Ms = 10000 and Ms = 1. By construction p+(∆0a

′)−1 → 0 as S → π
6 . The horizontal

dotted and dashed lines correspond to vanishing p values, so that p+(∆0a
′)−1 reduces to (∆0a

′)−1 with
two different ∆0 values and with a′ = 0.1.
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Figure 15: Solutions of equation (30) which has been obtained via an asymptotic formulation for (a) Us(I)

and (b) Us(II) in the case ∆0 = 0.00005 and Ms = 100. In (a) the approximate formula equation (B.5)

is shown. In (b) we compare with a linear function X/
√
∆0Ms and also with the approximate formula

equation (B.8) (the latter being virtually indistinguishable from Us(II)).
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Figure 16: Solutions of equation (30) for the flow speed along the Plateau border surface |Us(lin)| (obtained
via a linear combination of Us(I) and Us(II) themselves being solutions of equation (30)) in the case
∆0 = 0.00005 and Ms = 100. It is also possible to determine the speeds directly via a COMSOL
numerical simulation: the COMSOL data (see Figure 8(b)) are not shown explicitly on the current plot
as they would be indistinguishable from the data already shown. An approximation to Us(lin) constructed
from the perturbation solutions presented in Appendix B.2 is also shown for comparison.
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