
This version is available at https://strathprints.strath.ac.uk/55172/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Introduction

Background
- Differential diagnosis and treatment planning of speech sound disorders (SSD) is one of the major battlefields in the field of pediatric speech-language pathology.
- Intervention methods aim at specific parts of the speech production process, where diagnostic instruments consist of tests that measure knowledge and skills, and lack a direct relation with the underlying processes.

Research goal
- An individualistic, process-oriented approach for the diagnosis and treatment of pediatric SSD
- Advantages
 - Direct leads for treatment - tailored to the individual speaker
 - Evaluate and adapt treatment during the evolution of the disorder

Aim of the present study
- Development and evaluation of a learning task as an instrument to assess the acquisition of sensori-motor representations of novel speech sound units

Methodology

Participants
- 6 normally developing children: 3 male, 3 female; aged 4.6-7.8 yrs
- 5 children with SSD: 2 male, 3 female; aged 4.3-7.5 yrs (Table 1)

Table 1: Diagnostic classification of the children with speech sound disorders

<table>
<thead>
<tr>
<th>ID</th>
<th>Classification</th>
<th>Word discrimination (PPVT III)</th>
<th>Word comprehension (Dutch)</th>
<th>Word comprehension (German)</th>
<th>Word discrimination (Dutch)</th>
<th>Word discrimination (German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PD</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>PD</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>PD</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>PD</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Procedure (Table 2)
- Learning paradigm: repetition task of nonsense words from a soundboard presented via headphones
- Stimuli: 3 non-native speech sound clusters in 4 context conditions, each item repeated twice

Table 2: Schematic overview of the learning task

<table>
<thead>
<tr>
<th>Stage</th>
<th>Goal</th>
<th>Conditions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline measurement</td>
<td>Explain target paradigm</td>
<td>Auditory and visual input</td>
<td>&/gpa/; /gpa/-/gpa/; /gpa/-/gpa/</td>
</tr>
<tr>
<td>Training 1</td>
<td>Practice target stimuli in different conditions</td>
<td>- Sequencing -Prosody</td>
<td>/gpa/-/gpa/; /gpa/-/gpa/; /gpa/-/gpa/</td>
</tr>
<tr>
<td>Break</td>
<td>- Practice target stimuli in different conditions</td>
<td>- Sequencing -Prosody</td>
<td>/gpa/-/gpa/; /gpa/-/gpa/; /gpa/-/gpa/</td>
</tr>
<tr>
<td>Training 2</td>
<td>Repeat training stage 1</td>
<td>- Sequencing -Prosody</td>
<td>/gpa/-/gpa/; /gpa/-/gpa/; /gpa/-/gpa/</td>
</tr>
<tr>
<td>Endpoint measurement</td>
<td>10 x attempt to produce target syllable in isolation</td>
<td>&/gpa/; /gpa/-/gpa/; /gpa/-/gpa/</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Underlying profiles vary widely per child with SSD
- Results highlight important role of perceptual abilities
 - Strong correlation between non-word discrimination score and learning effect
- Results highlight important role of word-stress in SSD
 - Higher PCC in the prosody condition for ga and sja in SSD vs controls
 - Negative correlation between PCC and PWSC in the prosody condition
 - Detailed analysis of the individual data
 - No significant correlations for mla or sja
 - No significant differences for mla or sja

Future directions
- More data needed?
- Promising results for the profiling of SSD, suggesting that a detailed assessment of the acquisition of novel sensori-motor representations could provide direct starting points for therapy planning
- Focus assessment on Embedding, Sequencing & Prosody

References

Financial support
- The Netherlands Organisation for Scientific Research (NWO)
- Dutch Rehabilitation Fund