
This version is available at https://strathprints.strath.ac.uk/55172/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Introduction

Background

- Differential diagnosis and treatment planning of speech sound disorders (SSD) is one of the major challenges in the field of pediatric speech-language pathology.
- Intervention methods aim at specific parts of the speech production process, where diagnostic instruments consist of tests that measure knowledge and skills, and lack a direct relation with the underlying processes.

Research goal

- An individualized, process-oriented approach for the diagnosis and treatment of pediatric SSD.
- Advantages:
 - Direct leads for treatment - tailored to the individual speaker.
 - Evaluate and adjust treatment during the evolution of the disorder.

Aim of the present study

- Development and evaluation of a learning task as an instrument to assess the acquisition of sensor-motor representations of novel speech sounds.

Methodology

Participants

- 6 normally developing children: 3 male, 3 female; aged 4.6-7.8 yrs.
- 5 children with SSD: 2 male, 3 female; aged 4.3-7.5 yrs (Table 1).

Table 1: Diagnostic classification of the children with speech sound disorders.

<table>
<thead>
<tr>
<th>ID</th>
<th>Classification</th>
<th>Age (m)</th>
<th>SSD type</th>
<th>PSSC</th>
<th>VOW</th>
<th>/s/</th>
<th>/ʃ/</th>
<th>/ʃa/</th>
<th>/ʃg/</th>
<th>/ʃka/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PD</td>
<td>4.6</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>4.6</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>PD+PAD</td>
<td>4.5</td>
<td>65</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>PD+PAD</td>
<td>4.7</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>PD+PAD</td>
<td>4.7</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>PD+PAD</td>
<td>4.7</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>PD</td>
<td>4.6</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>PD</td>
<td>4.6</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>PD+PAD</td>
<td>4.5</td>
<td>65</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>PD+PAD</td>
<td>4.7</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>PD+PAD</td>
<td>4.7</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>PD+PAD</td>
<td>4.7</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Procedure (Table 2)

- Learning paradigm: repetition task of nonwords from a soundboard presented via headphones.
- Stimulation: non-native speech sounds (cluster)/mla/ in 4 context conditions, each item repeated 3-5 times.

Table 2: Schematic overview of the learning task.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Goal</th>
<th>Conditions</th>
<th>Example</th>
<th>Directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Explain target phonemes</td>
<td>Auditory and visual input</td>
<td>Auditory and visual input</td>
<td>Testable /ga/ and /ʃa/</td>
</tr>
<tr>
<td>Baseline measurement</td>
<td>10 x attempt to produce target syllable in isolation</td>
<td>/ga/</td>
<td>/ʃa/</td>
<td></td>
</tr>
<tr>
<td>Training 1</td>
<td>Practice target stimuli in different conditions</td>
<td>Sequencing</td>
<td>Prosody</td>
<td>Sequencing</td>
</tr>
<tr>
<td>Break</td>
<td>5 min of play time</td>
<td>/ʃa/</td>
<td>/ʃg/</td>
<td></td>
</tr>
<tr>
<td>Training 2</td>
<td>Repeat training stage 1</td>
<td>Prosody</td>
<td>Sequence following consonant</td>
<td>Embodiment</td>
</tr>
<tr>
<td>Break</td>
<td>5 min of play time</td>
<td>/ʃa/</td>
<td>/ʃg/</td>
<td></td>
</tr>
<tr>
<td>Endpoint measurement</td>
<td>10 x attempt to produce target syllable in isolation</td>
<td>/ga/</td>
<td>/ʃa/</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

- Underlying profile vary widely per child with SSD.
- Results highlight important role of perception abilities.
- Strong correlation between non-word discrimination score and learning effect.

Future directions

- More data needed.
- Promising results for the profiling of SSD, suggesting that a detailed assessment of the acquisition of novel sensor-motor representations could provide direct starting points for therapy planning.
- Focus assessment on Embodiment, Sequencing & Prosody.

Data analysis

- Consonant transcription of all utterances by two experienced speech therapists.
- Dependent variables:
 - Percentage consonants correct (PCC).
 - Percentage word-stress correct (PWSC, Prosody condition).

Statistics

- Repeated measures analysis of variance.
- Pearson correlations.
- No significant correlations for /mla/.

Results

- Higher PCC in the prosody condition for /ga/.
- No significant correlations for /mla/.

Learning effects

- PCC overall.
- No learning effect by group interactions.
- No learning effect by group interactions.

References

Financial support

- The Netherlands Organisation for Scientific Research (NWO).
- Dutch Rehabilitation Fund.

Contact: r.k.terband@uu.nl