
This version is available at https://strathprints.strath.ac.uk/55169/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Auditory feedback perturbation in adults and children

Frits van Brenk1, Hayo Terband1, Shanqing Cai2

1. Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, The Netherlands
2. Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, USA

Contact: fritsvanbrenk@gmail.com h.r.terband@uu.nl scai@bu.edu

INTRODUCTION

Auditory feedback important mechanism in speech production [1]
- Perturbation of auditory feedback during speech production elicits a compensatory response in the opposite direction to maintain the intended auditory outcome [2]
- Plays an important role in speech motor learning, i.e. the acquisition of speech motor programs [3]
- Auditory perturbation experiments may help to understand early development of auditory-motor integration.

Research question:
- To what extent are children able to compensate for and adapt to auditory feedback perturbation throughout their developmental trajectory?

METHODOLOGY

Participants
- 15 children: 8 female, 7 male; age range 4.1 - 8.7 y.m, mean 5.8 y.m.
- 37 adults: 32 female, 5 male; age range 19 - 29 years, mean 22.4 y.y.

Procedure
- Stimuli: CVC words /be:r/ (bear), /ve:r/ (feather), /pe:r/ (pear).
- Participants were seated in front of a PC-monitor showing pictures of the target words.
- A bird flying over one of the pictures cued the participant to say the intended word.

Perturbation paradigm and analysis

- Experimental setup Real-time acoustic tracking and shifting of F1 and F2 using Matlab based software package Audapter [5].
- F1 raised 25%; F2 lowered 12.5%.
- Paradigm with 5 phases: Practice - Start - Ramp - Stay - End.
- Length adults and children > 7 y.o. 111 words; children ≤ 7 y.o. 84 words.
- Analysis F1 and F2 were measured from steady-state portions of the produced vowels using custom PRAAT-scripts.
- Compensation differences in formant frequencies between the Start and Stay phase. This is a measure of motor learning: the ability to notice and act on the mismatch between the motor command and the corresponding auditory outcome.
- Adaptation differences between the Start and End phase. This is a measure of the after-effect of change in the motor command, followed by recovery (de-adaptation).
- Statistical analyses differences across groups and phases using Linear Mixed Model analyses with fixed factors Group and Phase; random factor Subject; repeated factors Phase, Word, Repetition.

EXPERIMENTAL DEBRIEFING

- Previous studies reported participants were unable to notice perturbations.
- In this study, around 65% indicated to have heard something (and some took action).
- “Did you hear something odd when listening to your own voice?”
 - No
 - Yes, but recalled possible changes after pointing out vowel manipulations
 - Yes, noticed manipulations during experiment
 - Yes, noticed manipulations, and acted on it during experiment

ANALYSIS OF COMPENSATION AND ADAPTATION

LMM results First Formant
- Group: F (1,212) = 16.2, p < .001; Phase: F (2,2140) = 15.2, p < .001.
- Group x Phase: F (2,2140) = 4.0, p < .028.
- Post-hoc: Adults showed compensation (p < .001), but no adaptation (p = .097).
- Children showed compensation and adaptation (both p < .001).

LMM results Second Formant
- Group: F (1,212) = 21.6, p < .001; Phase: F (2,2147) = 18.3, p < .001.
- Group x Phase: F (2,2147) = 24.9, p < .001.
- Post-hoc: Adults showed significant compensation and adaptation (both p < .001).
- Children showed significant compensation (p < .003), but no adaptation (p = .063).
- No group differences in Start: p = .100; Stay: p = .354; or End: p = .786.

RESULTS

Compensation and adaptation across groups
- Stronger effect of compensation for the group of children suggests auditory-motor properties are less ingrained compared to adult speakers.
- Presence of adaptation effects of F1 suggest ramp and stay phase lengths are adequate, even during the shorter program for children.
- Presence of adaptation of F2 suggests children can adapt to within-group variance.
- Within-group differences might be due to different strategies, semantically or to auditory focus [6].

DISCUSSION

Effect of age
- Is it possible to detect developmental changes with respect to compensation and/or adaptation?

REFERENCES

Financial support: The Netherlands Organisation for Scientific Research (NWO) and Dutch Rehabilitation Fund.