Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Effects of secondary metal carbonate addition on the porous character of resorcinol-formaldehyde xerogels

Taylor, Stewart J. and Haw, Mark D. and Sefcik, Jan and Fletcher, Ashleigh J. (2015) Effects of secondary metal carbonate addition on the porous character of resorcinol-formaldehyde xerogels. Langmuir, 31 (50). pp. 13571-13580. ISSN 0743-7463

[img]
Preview
Text (Taylor-etal-Langmuir-2015-Effects-of-secondary-metal-carbonate-addition-on-the-porous-character-of-resorcinol)
Taylor_etal_Langmuir_2015_Effects_of_secondary_metal_carbonate_addition_on_the_porous_character_of_resorcinol.pdf
Accepted Author Manuscript

Download (866kB) | Preview

Abstract

A deeper understanding of the chemistry and physics of growth, aggregation and gelation processes involved in the formation of xerogels is key to providing greater control of the porous characteristics of such materials, increasing the range of applications for which they may be utilised. Time-resolved dynamic light scattering has been used to study the formation of resorcinol-formaldehyde gels in the presence of combinations of Group I (Na and Cs) and Group II (Ca and Ba) metal carbonates. It was found that the combined catalyst composition, including species and times of addition, is crucial in determining the end properties of the xerogels, via its effect on growth of clusters involved in formation of the gel network. Combination materials have textural characteristics within the full gamut offered by each catalyst alone; however, in addition, combination materials which retain the small pores associated with sodium carbonate catalysed xerogels exhibit a narrowing of the pore size distribution, providing an increased pore volume within an application-specific range of pore sizes. We also show evidence of pore size tunability while maintaining ionic strength, which significantly increases the potential of such systems for biological applications.